
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continuous space discriminative language modeling

Citation for published version:
Xu, P, Khudanpur, S, Lehr, M, Prud'hommeaux, ET, Glenn, N, Karakos, D, Roark, B, Sagae, K, Saraclar, M,
Shafran, I, Bikel, DM, Callison-Burch, C, Cao, Y, Hall, KB, Hasler, E, Koehn, P, Lopez, A, Post, M & Riley, D
2012, Continuous space discriminative language modeling. in 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan, March 25-30, 2012. Institute of
Electrical and Electronics Engineers, pp. 2129-2132. https://doi.org/10.1109/ICASSP.2012.6288332

Digital Object Identifier (DOI):
10.1109/ICASSP.2012.6288332

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2012 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan,
March 25-30, 2012

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Dec. 2024

https://doi.org/10.1109/ICASSP.2012.6288332
https://doi.org/10.1109/ICASSP.2012.6288332
https://www.research.ed.ac.uk/en/publications/0f85515f-1dd2-4899-9edd-1b5dfa8d6094


CONTINUOUS SPACE DISCRIMINATIVE LANGUAGE MODELING

P.Xua, S.Khudanpura, M.Lehrb, E.Prud’hommeauxb, N.Glennd, D.Karakosa, B.Roarkb, K.Sagaec, M.Saraçlare,
I.Shafranb, D.Bikelf, C.Callison-Burcha, Y.Caoa, K.Hallf, E.Haslerg, P.Koehng, A.Lopeza, M.Posta, D.Rileyh

aJHU, bOHSU, cUSC, dBYU, eBoğaziçi U., fGoogle, gEdinburgh, hRochester

ABSTRACT

Discriminative language modeling is a structured classifica-
tion problem. Log-linear models have been previously used to
address this problem. In this paper, the standard dot-product
feature representation used in log-linear models is replaced
by a non-linear function parameterized by a neural network.
Embeddings are learned for each word and features are ex-
tracted automatically through the use of convolutional lay-
ers. Experimental results show that as a stand-alone model
the continuous space model yields significantly lower word
error rate (1% absolute), while having a much more compact
parameterization (60%-90% smaller). If the baseline scores
are combined, our approach performs equally well.

Index Terms— Discriminative language modeling, neu-
ral network

1. INTRODUCTION

A language model (LM) assigns scores to word strings and
plays an important role in automatic speech recognition
(ASR) and many other applications. Under the predominant
source-channel paradigm for speech recognition, the LM is
generally used as the source of prior information, which eval-
uates the well-formedness of each hypothesis. Therefore,
standard LMs are usually estimated from well-formed text in
a maximum likelihood fashion. Specifically, the joint proba-
bility of a word sequence is often factorized into the product
of local probabilities as below,

P (w1, w2, ..., wl) =

l∏
i=1

P (wi|hi), (1)

where hi is the word history preceding the ith word wi. The
set of conditional distributions {P (w|h)} can be easily esti-
mated based on empirical counts in the text corpus.

Most of the work presented here was done as part of a 2011 CLSP sum-
mer workshop project at Johns Hopkins University. We acknowledge the sup-
port of the sponsors of that workshop. This work was also partially supported
by NSF Grants #IIS-0963898 and #IIS-0964102, and by TUBITAK (Project
No: 109E142). Any opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the authors and do not necessarily
reflect the views of the sponsors.

Discriminative training of LMs has been proposed as an
effective complement to standard language modeling tech-
niques [1, 2, 3]. Instead of attempting to learn a distribution
over all possible word sequences, the discriminative objective
directly targets the acoustically confusable hypotheses that
the ASR system produces. To train such a model, we usually
require transcribed speech data. An existing recognizer can
be used to decode the speech and generate the corresponding
confusion sets, and then discriminative training will learn to
separate the lowest-error hypothesis from its set of competi-
tors.

In discriminative language modeling, the LM is usually
parameterized as a global linear model. Each word sequence
W is associated with a score, which is the dot product be-
tween the feature vector Φ(W ) and the parameter vector Θ.
The probability of W is given by

P (W ) =
eΦ(W )·Θ

Z
, (2)

where Z is a normalizer. The features are in general repre-
sented symbolically, namely each word is treated as a distinct
symbol. If n-gram features are used, each distinct word se-
quence of length up to n activates a different feature. This
set of features can be very large and grows quickly with the
training data.

In contrast, continuous feature representations are usually
more succinct. Each word in the vocabulary is represented as
a continuous vector. Word sequences can be represented as
the concatenation of the representation for each word. Neu-
ral networks are powerful tools to learn such representations,
they are also capable of learning non-linear features automat-
ically. Therefore, it’s not necessary to define any high order
product features (e.g. bigrams, trigrams...) which often dras-
tically increase the number of model parameters, all the com-
plex non-linear interaction among words in the sequence can
be discovered automatically.

Besides the space advantage, continuous feature represen-
tations are often believed to be able to generalize better. By
mapping each word into a shared continuous space, word sim-
ilarities and sequence similarities can be exploited, allowing
for much more compact representations. We are able to fit
a smaller number of parameters to a large training set, and
potentially generalize better to unseen word sequences.



LMs have been trained in the continuous space before
[4, 5], but only for the standard generative language model-
ing, where the goal is to model P (w|h). This work is different
in that it’s the first discriminative LM trained in the continu-
ous space. The most closely related work to our knowledge is
[6]. The authors described a general deep architecture based
on convolutional neural networks that can be used for various
tasks. Our work resembles theirs in that we also use convolu-
tional layers in our architecture, but the important distinction
is that the task we have is a structured prediction problem, as
opposed to more of the standard classification problems pre-
sented in their paper. Therefore, our proposed architecture
carries noticeable differences.

The rest of the paper is organized as follows: We will
present the training of standard discriminative LM in Sec-
tion 2, the same loss function will be used for the continuous
space model. We will then explain how to change the fea-
ture representation into continuous space in Section 3. Some
training issues with the proposed model will be addressed in
Section 4. Experimental results will be presented in Section 5.

2. PERCEPTRON AND MAXIMUM CONDITIONAL
LIKELIHOOD TRAINING

The model in (2) can be trained in several ways. Perceptron
training and maximum conditional likelihood (MCL) train-
ing are two commonly used approaches. Both methods share
the similar intuition–increase the probability of the oracle hy-
pothesis W ∗, while penalizing other hypotheses in the set of
likely candidates output by the recognizer. We denote this set
as GEN(A), where A stands for acoustics. The loss func-
tions of the two methods are shown in (3) and (4),

LP =

(
− log

P (W ∗)

P (Ŵ )

)+

, (3)

LMCL = − log
P (W ∗)∑

W∈GEN(A) P (W )
. (4)

Perceptron training is an iterative procedure, which re-
quires in each iteration identifying the best hypothesis Ŵ ac-
cording the current model. The loss only occurs if the current
model fails to rank the oracle hypothesis on top of the others.
Meanwhile, MCL training directly considers all the compet-
ing hypotheses in GEN(A), the loss exists for all training
instances, therefore, the optimization is generally more com-
plex.

It’s worth noting that with the standard feature represen-
tation, it’s generally hard to train with the MCL loss function
without some kind of feature selection. The number of fea-
tures in GEN(A) is often too large to fit in memory. Fortu-
nately, this problem will disappear with the continuous fea-
ture representation that we’ll introduce in the next section.

3. FEATURE LEARNING USING CONVOLUTIONAL
NEURAL NETS

Note that in (2), the score assigned to the word string is given
by the dot product between the feature vector and the parame-
ter vector. The model is linear in nature, and the features have
to be specified beforehand. In order to capture the non-linear
interactions among words in the sequence, we have to define
features that consist of combinations of words (e.g. bigrams,
trigrams...). The number of such features grows quickly with
data. To describe our approach of representing features, we
first replace the dot product with some non-linear function
g(W ; Θ), thus the model in (2) becomes

P (W ) =
eg(W ;Θ)

Z
. (5)

The neural network can be used to parameterize g(W ; Θ).
It has the ability to learn proper embeddings for each word,
and automatically extract non-linear features useful for our
task. In order to assign a score to each word sequence W , our
network architecture has to deal with input of variable length,
which is not what the standard neural network can handle.

In [6], an architecture that can be built on top of variable-
length word sequences was presented. Central to their
methodology is the use of convolutional layers. Fig. 1 shows
the first three layers of their architecture. Each word in the

Fig. 1. Feature learning on word sequences proposed in [6]

sentence is associated with a continuous vector– this can be
described as a look-up operation in the table R. The concate-
nated vector for the sentence does not have a fixed dimension
either, therefore, features are extracted locally within fixed-
size windows. As we can see, a linear transform T spans over
only n words (n = 3 here) and is applied to every n-gram in
the sentence. Non-linear functions such as tanh are usually
applied enabling nonlinear features to be detected.

For classification tasks such as the ones presented in [6],
where the goal is to assign classes to the words in the input
sequence, the features after the transform T in Fig. 1 usually
have to go through a max-pooling layer which keeps only the
top-k largest values in the feature vector. The resulting fixed-



size vector can be used as input to the standard neural network
layers (e.g. softmax).

Discriminative language modeling is a different classifi-
cation task in which the classes are word sequences. The fea-
tures we extract from each individual sequence are not used to
construct the distribution over classes directly, thus the max-
pooling layer is not necessary. The neural net in our architec-
ture only has to output a score g(W ) for each word sequence
W . Therefore, the extracted features for the sequence can be
summed up directly.

Fig. 2. Neural net representation of g(W ) used in this paper

Fig. 2 shows the proposed architecture to parameterize
g(W ). The first two layers are the same as in Fig. 1. Be-
fore summing up the features, we apply another shared linear
transform F , the result of which is a score assigned to the n-
gram. Note that F can span over more than one feature vector
in the previous layer. Such stacking of convolutional layers is
often used for vision tasks [7], allowing for more global fea-
tures to be extracted in upper layers. In order to obtain a score
for the entire sequence, the scores for all n-grams are added
up. Compared with the standard dot-product representation
for g(W ), we replace the large number of n-gram features
with a neural net structure that can be shared by all n-grams,
leading to a much more compact model.

Once we have a score for every hypothesis in GEN(A),
we can easily compute P (W ) and train our model within the
composed neural network. The complete architecture of our
approach is shown in Fig. 3.

4. TRAINING ISSUES

Albeit large, the architecture in Fig. 3 is not difficult to train.
Gradient descent methods can be easily applied to all parame-
ters in R, T and F with the help of back propagation. Taking
advantage of the shared structures and tied parameters, the
optimization procedure can usually be greatly simplified.

Fig. 3. Full architecture for discriminative LM

When computing g(W ), we have to go through all n-
grams for each W in GEN(A). Fortunately, GEN(A) usu-
ally contains hypotheses that share a lot of n-grams in com-
mon. Therefore, computing scores for these n-grams only
has to be done once for each training instance. The back
propagation stage can also benefit greatly from the fact that
n-gram scores are linearly combined. To illustrate this, write
g(W ) as the sum of each n-gram scores, namely g(W ) =
g(sW1 ) + g(sW2 )... + g(sWlW ), where sWi denotes the ith n-
gram in W , and lW is the total number of n-grams in W .
Taking the gradient of the MCL loss function in (4), we have

∇LMCL = −∇g(sW
∗

1 )−∇g(sW
∗

2 )...−∇g(sW
∗

lW∗ )

+
∑

W∈GEN(A)

P (W )
(
∇g(sW1 ) +∇g(sW2 )... +∇g(sWlW )

)
. (6)

As we can see, if some n-gram s appears the same number
of times in W ∗ and all other W in GEN(A), then−∇g(s) +∑

W∈GEN(A) P (W )∇g(s) = 0, the contribution of s to the
gradient is exactly zero. Therefore, it is also not necessary to
go through all n-grams in the back propagation stage. Only n-
grams that are not shared by GEN(A) generate error signal
to update the parameters.

In theory, any differentiable loss function can be applied
on top of the architecture. However, the local optimum prob-
lem of training neural networks can make non-convex loss
functions less desirable. The Perceptron training seems to
have trouble reaching a good solution in our architecture.
Therefore, we’ll only report results using MCL trained mod-
els in the next section.

5. EXPERIMENTS & RESULTS

Our experiments are done on the English conversational tele-
phone speech (CTS) dataset. The state-of-the-art IBM Attila
recognizer is trained on 2000hrs of speech, half of them from
the Fisher corpus, and the other half comes from Switchboard
and Call-home. The baseline LM is a 4-gram LM trained on
the 2000hrs of transcript containing about 25 million words,



plus close to 1 billion words of web data. For training the
discriminative LM, the 2000hrs of transcribed speech data is
divided into 20 partitions. The acoustic model trained on the
2000hrs is used to decode all the partitions. But the LM used
to decode each partition only includes transcripts from the
other 19 partitions. Such cross-validated language modeling
is often used for training discriminative LM [2]. The hope is
to avoid LM overfitting such that the confusions generated for
each partition resemble those we’ll see on the test data. We
produce 100-best lists for all utterances in each partition for
training discriminative LMs. The trained models are used to
rerank the 100-best lists on the test data.

We train the standard averaged perceptron-based discrim-
inative LM with trigram features in comparison with the con-
tinuous space discriminative LM (CDLM) using three train-
ing sets containing 2, 4, and 8 partitions respectively. The
Dev04f corpus is used as the tuning set, consisting of 3.3hrs
of speech. The final word error rates (WER) are reported on
the 3.4hrs Eval04f corpus.

For training CDLMs, online gradient descent is used. The
size of the feature extraction windows is fixed at three words,
since it is generally thought that the standard discriminative
LM generally does not benefit much from n-gram features be-
yond trigrams [2, 3]. The size of the word representation, and
the size of the hidden layer are optimized on the development
set. All the parameters in R, T, F are randomly initialized.

Table 1 shows the WER results of using the CDLM and
the standard Perceptron DLM. Note that both the Perceptron
and the CDLM scores can be combined with the baseline
scores (AM+LM scores), which are generally important
sources of information. The combination weights can be
tuned on the develop set. As we can see, without the help
of the baseline scores, the CDLM performs much better than
the standard Perceptron. Nonetheless, the advantages disap-
pear as the baseline scores are combined. The improvement
achieved by the two approaches become almost identical.
Being a stronger stand-alone model seems to prove the supe-
rior generalization ability enabled by the continuous feature
representation. We may also have benefitted from the fact
that the MCL loss function considers the entire confusion set,
which is difficult to train with using the symbolic representa-
tion. However, such advantages are apparently offset by the
acoustic model and the maximum likelihood trained LM.

Besides the competitive performance, our CDLM tech-
nique consistently produces much smaller models (ranging
from 60% to 90% smaller), the sizes of which do not increase
directly with more data. On the other hand, the number of
features for the Perceptron DLM clearly has a tendency to in-
crease as more training data becomes available.

6. CONCLUSION

We describe continuous feature representations for discrimi-
native language modeling. Features are learned automatically

dev eval #parameters
1-best ASR 22.8 25.7

Perceptron
2 parts 22.3/31.1 25.1/30.2 1.7M
4 parts 21.8/29.5 25.1/29.3 3.3M
8 parts 21.7/29.4 24.8/29.1 5.3M

CDLM
2 parts 22.3/29.7 25.2/29.0 0.74M
4 parts 21.9/29.0 24.9/28.5 0.32M
8 parts 21.6/28.5 24.7/28.0 1.8M

Table 1. WER of Perceptron DLM and CDLM. Each cell
contains the WER with/without combining with the baseline
scores.

through a novel neural network architecture.The resulting LM
significantly outperforms the standard Perceptron DLM as a
stand-alone model. When combined with the baseline scores,
our model performs equally well. The proposed architecture
also produces much more compact models, reducing the num-
ber of parameters by 60%-90% in our experiments.

7. REFERENCES

[1] H. Kuo, E. Fosler-Lussier, H. Jiang, and C. Lee, “Dis-
criminative training of language models for speech recog-
nition,” in Proc.of International Conference on Acous-
tics, Speech and Signal Processing. IEEE, 2002, vol. 1,
pp. 325–328.

[2] B. Roark, M. Saraclar, and M.Collins, “Discriminative
n-gram language modeling,” Computer Speech and Lan-
guage, vol. 21, pp. 373–392, 2007.

[3] Z. Li and S. Khudanpur, “Large-scale discriminative
n-gram language models for statistical machine transla-
tion,” in Proc.of the Eighth Conference of the Association
for Machine Translation in the Americas (AMTA-2008),
2008.

[4] Y. Bengio, R. Ducharme, and P. Vincent, “A neural prob-
abilistic language model,” Journal of Machine Learning
Research, vol. 3, pp. 1137–1155, 2003.

[5] H. Schwenk, “Continuous space language models,” Com-
puter Speech and Language, vol. 21, pp. 492–518, 2007.

[6] R. Collobert and J. Weston, “A unified architecture for
natural language processing: deep neural networks with
multitask learning,” in Proc.of ICML 2008, 2008, pp.
160–167.

[7] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick
Haffner, “Gradient-based learning applied to document
recognition,” in Proceedings of the IEEE, 1998, pp.
2278–2324.


