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ABSTRACT 

 

The aim of this study is to accurately distinguish 

Parkinson’s disease (PD) participants from healthy controls 

using self-administered tests of gait and postural sway. 

Using consumer-grade smartphones with in-built 

accelerometers, we objectively measure and quantify key 

movement severity symptoms of Parkinson’s disease. 

Specifically, we record tri-axial accelerations, and extract a 

range of different features based on the time and frequency-

domain properties of the acceleration time series. The 

features quantify key characteristics of the acceleration time 

series, and enhance the underlying differences in the gait 

and postural sway accelerations between PD participants 

and controls. Using a random forest classifier, we 

demonstrate an average sensitivity of 98.5% and average 

specificity of 97.5% in discriminating PD participants from 

controls.   

 

Index Terms— Gait, Postural sway, Smartphones, 

Parkinson’s disease, Random forest, Tri-axial acceleration. 

 

1. INTRODUCTION 

 

Parkinson’s disease (PD) is one of the most common 

neurodegenerative disorders, the prevalence of which is 

rapidly growing around the world. It is estimated that from 

2010 to 2030, the number of individuals (65 years or older) 

with Parkinson disease will increase by 77% from 300,000 

to 530,000 [1]. Furthermore, it is reported that for Western 

Europe’s five and the world’s ten, most populous nations, 

the number of people with PD over the age of 50 was 

between 4.1 and 4.3 million in 2005, and will double to 

about 8.7 to 9.3 million by 2020, whereby the burden of PD 

is expected to shift from Western nations to developing, 

Eastern nations [2]. 

 

 

There are no low-cost objective tests for the diagnosis 

of PD. Existing tests for the diagnosis of PD are based on 

subjective neurological examinations, which are performed 

in-clinic. This incurs considerable staff time and costs, and 

logistical costs for patients. There are no inexpensive, and 

yet reliable, tests that can be performed outside the clinic 

with minimal expert supervision, that can accurately track 

symptom progression. It is noteworthy that the current 

clinical consensus understanding of the progression of PD 

after diagnosis comes mostly from longitudinal symptom 

assessments obtained at monthly, and longer, intervals [3]. 

Comparatively little objective information about the 

fluctuation in symptoms on hourly, daily and weekly 

timescales is available. Given the growing number of people 

with Parkinson’s (PWP) and the potential burden it will add 

to national healthcare services, there is tremendous need for 

ubiquitous, objective tests that can be used to support expert 

diagnosis and help improve the quality of life for PWP. 

With advancements in wearable devices [4], several 

researchers have investigated the use of wearable 

accelerometers and other similar technologies to objectively 

measure and monitor key movement severity symptoms in 

PD and related disorders [5]-[9]. It is noteworthy that the 

typical motor characteristics of the PD include tremor, 

bradykinesia, rigidity, and impaired postural balance. 

Existing studies on monitoring PD motor symptoms 

typically use wearable accelerometers or sensors in 

conjunction with video recordings to obtain relevant data in 

a lab-based setting [8]-[9]. On the other hand, given that 

smartphones are relatively inexpensive and ubiquitous, have 

built-in tri-axial accelerometers, and can objectively 

measure the motor symptoms of PD [10]-[11], we 

investigate the efficacy of smartphones to be used as an 

inexpensive, reliable, and an accurate diagnostic support 



tool for PD in a home and community setting. The method 

of this study is to calculate appropriate features from the 

acceleration time series, and thereby enhance the movement 

patterns relevant to PD participants and controls, and use 

these patterns to accurately discriminate PD participants 

from controls. The goal of this study is to reproduce the 

clinical assessment (PD/healthy) as accurately as possible, 

using only the acceleration time series for gait and postural 

sway tests. 

 

2. METHODS 

 

2.1. Data 

 

We conducted a one-month controlled study with 

twenty, age- and gender-matched participants, comprising 

10 PD participants and 10 controls. The Johns Hopkins 

Institutional Review Board reviewed and approved this 

study. Individuals with PD diagnosed clinically by a 

movement disorder specialist and control participants were 

recruited from an academic movement disorder clinic (Johns 

Hopkins). The baseline characteristics of all twenty 

participants are provided in Table 1. 

All participants were provided identical LG Optimus S 

smartphones, capable of recording tri-axial acceleration. For 

the gait test, participants were instructed to walk 20 steps 

forward, turn around, and return back to the starting 

position. For the posture test, participants were instructed to 

stand upright unaided for 30 seconds. All participants were 

instructed to conduct these tests four times daily: just before 

taking their first (morning) dose of levodopa (or in one case, 

rasagiline), one hour later, in mid-afternoon, and before 

going to bed. 

 

Table 1: Baseline characteristics of study participants. 

 

Characteristic PD 

participants 

(N=10) 

Control 

participants 

(N=10) 

Age (SD) 65.1 years (9.8) 57.7 years 

(14.3) 

Percent taking 

levadopa 

90% 0% 

Percent with high 

school education 

100% 100% 

Baseline motor 

Unified Parkinson’s 

Disease Rating 

Score (SD) 

19.6 (6.7) NA 

Baseline Parkinson’s 

Disease 

Questionnaire 39 

score (SD) 

18.5 (16.9) NA 

 

SD: standard deviation; NA: not applicable. 

 

 

2.2. Feature Extraction 
 

We extracted a range of time and frequency-domain 

features from the acceleration time series, partly inspired by 

the list of features extracted in [7]-[9]. We then use a 

classifier to map the features onto a binary diagnostic output 

variable (PD/healthy). Table 2 provides an exhaustive list of 

some of the features extracted in this study, along with a 

brief description of each. 

 

Table 2: Brief description of features extracted from the 

tri-axial accelerometer time series recorded during 

postural sway and gait tests. 

 

Feature Brief Description 

µ Mean  

σ  Standard deviation 

    25
th

 percentile 

    75
th

 percentile 

     Inter-quartile range         
   Median 

    Mode 

   Data range (maximum – minimum) 

   Skewness  

   Kurtosis 

      Mean squared energy 

   Entropy  

      Cross-correlation between the acceleration in 

  and  -axis 

        Mutual information between the acceleration 

in   and  -axis 

        Cross-entropy between the acceleration in   

and  -axis 
1    Extent of randomness in body motion 

     
2     

Instantaneous changes in energy due to body 

motion 

    Autoregression coefficient at time lag 1 

     Zero-crossing rate  

    Dominant frequency component 

   Radial distance 

   Polar angle 

   Azimuth angle 
 

1DFA stands for Detrended Fluctuation Analysis. 
2TKEO stands for Teager-Kaiser Energy Operator. 

 
It is noteworthy that since the data was recorded using 

consumer-grade smartphone accelerometers, we were not 

able to compute some of the primary gait and postural sway 

metrics used in clinical ‘gait lab’ studies, for example, stride 

length, trunk flexion and minimum foot clearance, which 

can potentially be computed using more elaborate wearable 

instrumentation [7]. Encouragingly, despite this limitation, 

we were still able to differentiate PD participants from 

healthy controls with high accuracy, and thus establish the 



feasibility of smartphones for quantifying key motor 

symptoms. As the acceleration time series were recorded at 

irregular time intervals, we applied the Lomb-Scargle 

periodogram to extract frequency-based features [12]. We 

extracted thirty different features from the acceleration time 

series recorded along the x, y and z-axis, and the derived 

absolute acceleration value (aav),      √        . 
In addition to extracting features based on the time and 

frequency-domain properties of the acceleration time series, 

we extracted features based on spherical transformation of 

the tri-axial acceleration time series (radial distance, polar 

angle, and azimuth angle) [13], and demographics (age and 

gender). 

 
2.3. Classification Technique and Classification 

Benchmarks 
 

To provide a clinically meaningful output from the 

acceleration signals, we used a random forest classifier, 

which has shown excellent performance in very similar 

discrimination tasks, such as detecting Parkinson’s disease 

from digital voice signals [14]. Using random forest, we 

map the features extracted from the raw accelerometry 

signals into a determination of whether the participant had 

PD or was healthy. For details on random forests, see [15]. 

To investigate if the accuracy of the random forest 

classifier could have been obtained by chance, we employed 

the following two “naïve benchmarks” that have, by design, 

no discriminative accuracy: 

1) Random classifier – this method is akin to diagnosing a 

subject as having PD based on flipping an unbiased coin. 

Specifically, this classifier assumes PPD:PControl = 0.5:0.5, 

where PPD is the probability of a subject being diagnosed as 

having PD, while PControl is the probability of a subject being 

identified as a control. For example, a subject is classified as 

having PD if the outcome of a fair coin toss is heads; else, 

the subject is identified as a control. 

2) Conditional random classifier – this method is similar to 

the random classifier, with one key difference: the 

probability of an outcome is conditional on the available 

data. This classifier is akin to using a biased coin, such that 

PPD:PControl = NPD:NControl, where NPD and NControl are the 

number of gait and postural sway test instances available for 

PD participants and controls, respectively. This benchmark 

takes into account the difference in size of PD and control 

samples in the acceleration training data set. 

 

2.4. Cross-validation 
 

We used 10-fold cross-validation (CV) with 100 

repetitions [16]. Using this CV method, the data is split into 

a training set (consisting of 90% of the data, used to train 

the classifier) and a testing set (consisting of the remaining 

10% of the data, used for classifier evaluation). The 10-fold 

CV method involves training the methods ten times using 

the training set and evaluating using the test set, ensuring 

that each acceleration signal occurs exactly once in the test 

set. This process was repeated 100 times, and each time the 

data was randomly shuffled prior to training and testing. 

Note that the association between the labels and data was 

kept intact during the process of random shuffling. This 

evaluation method attempts to assess the “generalizability” 

of the classification for other similar, previously unseen 

datasets, and so helps guard against overfitting. 
 

3. RESULTS 

 

To quantify the accuracy of the classifier in 

discriminating PD participants from controls, we employed 

three commonly used performance measures: 

1) Sensitivity (true positive rate) – proportion of PD 

participants correctly identified. 

2) Specificity (true negative rate) – proportion of controls 

correctly identified. 

3) Balanced accuracy – average of sensitivity and 

specificity. 

It is noteworthy that we classify PD participants from 

controls using only the accelerometry data and basic 

demographics such as age and gender. The classification 

performance results are reported in Table 3. 

 

Table 3: Performance measures for the methods used for 

discriminating PD participants from controls. 
 

Method/ 

Measure 
Sensitivity† Specificity* Balanced 

Accuracy‡ 

 

Random  

Forest 

 

 

98.5 ± 1.3 

 

97.6 ± 1.7 

 

98.0 ± 1.1 

 

Random  

Classifier 

 

 

50.0 ± 5.7 

 

50.2 ± 5.7 

 

50.1 ± 3.9 

 

Conditional 

Random 

Classifier 

 

 

67.7 ± 5.1 

 

32.6 ± 5.3 

 

49.9 ± 3.6 

 

 
Note: Results are reported in percentage (%) in the form average ± standard deviation. 
†
Sensitivity = TP/(TP+FN), where TP refers to true positives, while FN stands for 

false negatives. 

*Specificity = TN/(TN+FP), where TN refers to true negatives, while FP stands for 

false positives. 
‡
Balanced Accuracy = (Sensitivity + Specificity)/2. 

 

The two-sided Kolmogorov–Smirnov test was 

employed for group comparison [17]-[18]. Using this test, 

the corresponding distributions of different performance 

measures obtained using random forests and the naïve 

benchmarks were found to be significantly different (p < 

0.001). Based on these results, we can reject the null 



hypothesis that random forests have no discriminative 

accuracy, and statistically verify that the results are 

meaningful and not obtained just by chance. 
 

 

4. SUMMARY AND CONCLUDING REMARKS 

 

Using tri-axial accelerometry data for self-administered 

tests of gait and postural sway recorded via consumer-grade 

smartphones, we were able to distinguish PD participants 

from healthy controls with very high accuracy (Table 3). 

Thus, smartphones appear to be a feasible means for 

performing rapid, self-administered, objective tests of 

critical movement symptoms of PD outside the clinic. 

Most clinical data on PD is low-frequency and recorded 

during periodic assessments in academic research centers. 

Given the feasibility of using smartphones to collect high-

frequency data, future studies could analyze this day-to-day 

data to uncover substantial variations in key symptoms (i.e. 

gait, upper limb, balance, voice, and dexterity impairments) 

with PD. 

In this study, we focused on discriminating PD 

participants from controls solely using accelerometer data. It 

would be worth investigating the efficacy of incorporating 

additional data (for example, reaction times, finger tapping, 

and voice) for the analysis. Future studies could investigate 

monitoring and predicting the severity of PD (as quantified 

using the Unified Parkinson’s Disease Rating Scale 

(UPDRS) or Parkinson’s disease questionnaire (PDQ-39)), 

in order to reproduce the clinicians’ assessment using 

summary measures derived from smartphone data. Future 

probability density estimates of UPDRS or PDQ-39 

generated for different time scales could help clinicians 

make informed decisions regarding drug dosage and timing 

for each individual patient.  
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