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ABSTRACT 

Recent improvements in tracking and feature extraction mean 

that speaker-dependent lip-reading of continuous speech us- 

ing a medium size vocabulary (around 1000 words) is realis- 

tic. However, the recognition of previously unseen speakers 

has been found to be a very challenging task, because of the 

large variation in lip-shapes across speakers and the lack of 

large, tracked databases of visual features, which are very 

expensive to produce. By adapting a technique that is es- 

tablished in speech recognition but has not previously been 

used in lip-reading, we show that error-rates for speaker- 

independent lip-reading can be very significantly reduced. 

Furthermore, we show that error-rates can be even further re- 

duced by the additional use of Deep Neural Networks (DNN). 

We also find that there is no need to map phonemes to visemes 

for context-dependent visual speech transcription. 

Index Terms— Automatic lip-reading, Deep neural net- 

works, Speaker adaptive training 

 
1. INTRODUCTION 

 

Automatic lip-reading is known to be a difficult problem.  

So far, the technology of automatic lip-reading has been 

largely confined to constrained tasks such as: small vocab- 

ulary recognition [1] [2] [3] where the number of words is 

constrained; speaker-dependent recognition where the num- 

ber of speakers is constrained, or it has been relegated to 

a means of boosting the performance of conventional au- 

dio speech recognition (audio-visual speech recognition [4]). 

Furthermore, the few studies that exist on the difficult task  

to measure human lip-reading performance indicate that even 

hearing-impaired people achieve rather low word accuracy 

rates when lip-reading speakers they have never seen before 

[5]. 

Speaker-independent lip-reading has not been studied 

very much. [6] presents results for a ten isolated word 

speaker-independent system. In [3], the authors investigate 

speaker-dependent, multi-speaker and speaker-independent 

lip-reading using two isolated letters datasets (AVletters and 

AVletters 2). They show significant performance drop in 

speaker-independent recognition tasks compared to the other 

two configurations and find that the use of the Maximum 

Likelihood Linear Regression (MLLR) adaptation technique 

is not sufficient to compensate for the drop in performance. 

In this work, we examine speaker-independent recognition 

on around 1000 words database of continuous English speech 

derived from the Resource Management (RM) corpus [7]. 

The work has been complemented by developments in track- 

ing and feature extraction: [8] demonstrated that tracking and 

feature extraction are possible even on outdoor scenes with 

video taken by hand-held domestic interlaced cameras. 

Recently, Deep Neural Networks (DNN) with different 

deep learning architectures have proved to be successful in 

Automatic Speech Recognition (ASR) and other areas of ma- 

chine learning [9]. A lot of research has already been pub- 

lished in which deep learning techniques are applied to ASR. 

However, much less work has been done on applying those 

techniques to automatic lip-reading. Some research has been 

published on Audio-Visual Speech Recognition (AVSR) us- 

ing deep learning [10] [11] [12] [13] [14] [15]. [10] applied 

unsupervised deep learning to learn cross modality features 

of audio and video speech data.  The first stage of training   

is Restricted Boltzman Machines (RBMs) to unsupervisedly 

learn a better representation of audio and visual features. The 

learned features are then passed to a deep autoencoder where 

training is supervised. They reported a classification improve- 

ment on AVletters and CUAVE when only visual features are 

available at supervised training and testing but both modali- 

ties are present at the feature learning stage. In [15], the use of 

a context-dependent DNN system on a single speaker dataset, 

(RM)-3000, gave a word accuracy of 85% with a 33% im- 

provement on the baseline HMM. 

The Maximum Likelihood Linear Transform (MLLT) is a 

standard technique in ASR [16] and has also been applied to 

AVSR [17] [15]. In MLLT, the idea is to find a linear trans- 

form of the input features in which the assumption of a diag- 

onal covariance matrix is the most valid (in the sense of loss 

of likelihood compared with using full covariance matrices). 

When this condition is met, modelling is closer to using full 

covariance matrices and it can be shown that inter-class dis- 

crimination is improved. 

Previous work has shown that the features obtained from 

the  lips  are  highly  speaker-dependent  [3].    In  this  paper 
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we show that the application of Speaker Adaptive Training 

(SAT), which is also a standard technique in ASR, appears  

to have considerable promise in speaker-independent lip- 

reading. SAT is a technique for normalising the effects of 

variation in the acoustic features of different speakers when 

training a set of acoustic models for recognition. It basi- 

cally avoids modelling the inter-speaker variability and only 

models the intra-speaker variability. Individual speaker char- 

acteristics are modelled by linear transformations of the mean 

parameters of the acoustic models. The algorithm functions 

by alternately optimising the model means and the transfor- 

mation parameters for a particular speaker. 

We report the best known results for speaker-independent 

lip-reading by using a combination of MLLT followed by 

SAT. We also report the performance of a ”hybrid” Context- 

Dependent Deep Neural Networks (CD-DNN) where Context- 

Dependent Gaussian mixture model (CD-GMM) likelihoods 

in HMM are replaced by posterior probabilities of DNN after 

being converted into quasi-likelihoods [18]. 

The result is useful because it first challenges the con- 

ventional wisdom that speaker-independent recognition is ex- 

tremely difficult. Second, it shows DNN to be promising for 

speaker-independent lip-reading despite the limited amount 

of training data and without the inclusion of a pre-training 

stage (feature learning). 

 
2. DATASET AND FEATURES 

 

For data, we use an audiovisual corpus of twelve speakers 

[19], seven male and five female, each reciting 200 sentences 

selected from the RM corpus [7]. The vocabulary size is ap- 

proximately 1000 words. Figure 1 shows an example of the 

data which was recorded on five gen-locked cameras from dif- 

ferent angles.  Here we use only the front view,  which    was 
 

(a) 30◦ (b) 45◦ (c) 60◦ 
 

 
(d) 0◦ (e) 90◦ 

 
Fig. 1. Different views of the dataset [20] 

 
recorded using a tri-chip Thomson Viper FilmStream high- 

definition camera at a resolution of 1920×1080. The database 

has a vocabulary size of around a 1000 words and consists of 

a number of stylized sentences such as “Give me Constella- 

tion’s displacement in long tonnes ”. Previous tests on these 

data with professional human lip-readers [5] revealed viseme 

error rates of 39.7% to 85.4% and word-error rates of 0% to 

69% (compared to a viseme accuracy of 46% and a word ac- 

curacy of 14% for the automatic system). 

Each video has been tracked using linear-predictor based 

tracker (described in [21]). To generate AAM features, an 

Active Appearance Model (as in [5]) was trained using an 

one-held-out methodology (that is, the model used to describe 

speaker n was trained using all speakers except speaker n). 

In previous work, we have examined several choices of fea- 

tures that appeared to work best with a Hidden-Markov Model 

based classifier implemented using the Hidden Markov Model 

Toolkit (HTK) [22]. Among the best features were the com- 

bined Shape and Appearance model (denoted CSAM in [20]). 

In these features, the shape vector, s and the appearance vec- 

tor a are further combined using PCA to produce a combined 

feature vector. Here we retain 97% of the variation and the 

combined feature size is typically 21- or 22-dimensional. 

 
3. EXPERIMENTS 

 

Kaldi speech recognition toolkit [23] was used to train our 

visual speech models (phonemes and visemes units) and de- 

code the test data using a strategy of 12-fold cross-validation: 

for each fold, a different speaker is held-out for testing and 

the classifier’s models are trained on the data of the remaining 

speakers. Visemes are visually distinguishable speech units 

which have a one-to-many mapping to phonemes. Fisher 

phoneme-to-viseme mapping [24] [25] is used and shown in 

Table 1. 

 
Table 1. Fisher mapping of 45 phonemes to 14 visemes in- 

cluding silence 
 

Viseme Phonemes 
 

 

V1 /b/ /p/ /m/ 

V2 /f/ /v/ 

V3 /t/ /d/ /s/ /z/ /th/ /dh/ 

V4  /w/ /r/ 

V5 /k/ /g/ /n/ /l/ /ng/ /hh/ /h/ /y/ 

V6  /ch/ /jh/ /sh/ /zh/ 

V7 /eh/ /ey/ /ae/ /aw/ /er/ /ea/ 

V8  /uh/ /uw/ 

V9 /iy/ /ih/ /ia/ 

V10  /ah/ /ax/ /ay/ 

V11 /ao/ /oy/ /ow/ /ua/ 

V12   /aa/ 

V13 /oh/ 

V14 /sil/ 
 

 

 

 

The HMM/GMM systems we built are:  (i)   monophone 
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fMLLR 

and monoviseme systems with Δ and ΔΔ features, (ii) 

triphone and triviseme systems with LDA,  (iii)  triphone  

and triviseme systems with LDA+MLLT, (iv) triphone and 

triviseme systems with LDA+MLLT+SAT. Kaldi’s automatic 

method of building decision trees without the need to provide 

a set of questions [23] is quite convenient to build context- 

dependent lip-reading systems. To compose the Kaldi decod- 

ing graph, a word-pair bigram language model was built and 

the lexicon was derived from the RM distribution [7]. 

The feature processing pipeline up to the DNN stage      

is summarised in Figure 2. Firstly the visual features are 

mean-normalised on a per-speaker basis before considered in 

a block of 7 frames. They are then decorrelated and forced  

to a dimensionality of 40 using Linear Discriminant Analysis 

(LDA) and further decorrelated using maximum likelihood 

linear transform (MLLT) [16]. Speaker Adaptive Training 

(SAT) [26] is then applied using feature-space maximum 

likelihood linear regression (fMLLR) of 40 × 41. The 40- 

dimensional speaker adapted features are then spliced across 

a window of 9 frames and applying LDA to decorrelate the 

concatenated features and reduce dimensionality to 250 [18]. 

The fMLLR is also applied to the features of the test speaker. 

For DNN only, the 40-dimensional speaker adapted features 

are then spliced across a window of 9 frames and applying 

LDA to decorrelate the concatenated features and reduce 

dimensionality to 250 [18]. 

 
40x147 or 

chosen to be 1 million which made the number of the tanh 

units in each of the four hidden layers to be 491. The learning 

rate was initially set to 0.02 and kept fixed during the rest of 

15 epochs as long as the increment in cross-validation frame 

accuracy in a single epoch was higher than 0.5%. If not, the 

learning rate was halved; this was repeated until it was less 

than 0.004. The decoding beam length was 30 and lattice 

beam width was 18. The DNN experiments use conventional 

CPUs rather than GPUs [18, 23]. 

 

4. RESULTS 

 
Figure 4 shows the word accuracy results for each of the 

twelve speakers tested on our system using viseme units, 

with the mean performances shown as the final column. The 

“Mono” results were made using a single model of each 

viseme. Moving to trivisemes increases the number of poten- 

tial classes but there is a significant increase word accuracy. 

The four triviseme configurations are LDA (which is the first 

two boxes of Figure 2 ), LDA plus MLLT (the first three 

boxes of Figure 2) and LDA + MLLT + SAT (all the boxes in 

Figure 2). Also shown are the results using DNN. 

Figure 3 shows that, with very few exceptions, perfor- 

mance increases with each stage for every speaker. Some- 

times the gain is small (typically when adding MLLT to the 

LDA features) but some stages show larger gains. 

The  mean  results  across  all  speakers  are  summarised 
21x1 or 22x1 40x154 40x40 40x41 250x360 250x1 in  Figure  4.   Word  recognition  accuracy  is  always higher 

Visual features 

     
LDA 

w=9 

features 

when phonemes are used as the modelling units rather than 

visemes. This confirms what has been recently established on 

a speaker-dependent task [25]. This is counter-intuitive, since 
Fig. 2. Schematic diagram of the feature processing where w 
represents the window width of LDA. 

 
In the case of mono-models, a total number of Gaussians 

is chosen to be 600. For training the other three types of 

context-dependent models, a maximum number of leaves for 

the decision tree is 700 and total number of Gaussians is 3000. 

The number of Guassians per HMM state is decided automat- 

ically based data count [23]. The actual number of leaves 

after clustering is always lower than the given maximum, for 

instance, it ranges from 512 to 544 in the 12 experiments of 

the triphones systems. The decoding beam length is 30 and 

lattice beam width is 10. 

The DNN system is trained using the alignment of 

context-dependent states and the decision tree derived from 

the GMM stage (LDA+MLLT+SAT). It had four hidden lay- 

ers of tahn units and the output layer is a soft-max layer of 

size 2000. This size was deliberately chosen to be larger than 

the number of leaves in the decision tree to allow the cre- 

ation of multiple ”virtual” targets for each leaf [23]. Training 

the DNN utilised the mini-batch stochastic gradient descent 

technique. The weights were updated using mini-batches of 

size 64 frames.   The total number of DNN parameters   was 

many of the features that distinguish phonemes can’t be seen 

(e.g. voicing, or place of articulation when it is far back in 

the mouth). However, the viseme to phoneme mapping intro- 

duces ambiguity: because it is a many-to-one mapping, some 

words have the same visemic transcription (homophenous 

words) [25]. 

The largest performance increase appears to come from 

the addition of SAT. This is satisfying, because previous work 

[3], showed that the visual features that we use that represent 

a certain sound are highly speaker-dependent, and hence this 

feature adaptation by speaker is highly beneficial. It is also 

worth noting that the amount of training data is rather small 

for the DNN stage, so we think the DNNs have more potential 

performance. 

 

5. CONCLUSIONS 

 
Speaker-independent recognition has been seen as an un- 

achievable goal of lip-reading for sometime. Even skilled 

human lip-readers find that their performance is high speaker- 

dependent [5, 27]. In this paper, we incorporated SAT and 

fMLLR,  which  are  essential  techniques  in  the state-of-art 

LDA 

w=7 
MLLT 

Mean 

Normalisation 
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Fig. 3. Word accuracy for various speakers using Type IV features. Left: recognition using visemes as units. Right: phonemes. 

 
 

Given the increased evidence that the use of DNN is bene- 

ficial in lip-reading, future work should investigate the use of 

more of the different DNN architectures and training strate- 

gies available and applied to ASR. 
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