arXiv:2109.02774v1 [cs.SD] 6 Sep 2021

FastAudio: A Learnable Audio Front-End for Spoof
Speech Detection

Quchen Fu, Zhongwei Teng, Jules White, Maria Powell, and Douglas C. Schmidt

Abstract—Voice assistants, such as smart speakers, have ex-
ploded in popularity. It is currently estimated that the smart
speaker adoption rate has exceeded 35% in the US adult
population. Manufacturers have integrated speaker identification
technology, which attempts to determine the identity of the person
speaking, to provide personalized services to different members of
the same family. Speaker identification can also play an important
role in controlling how the smart speaker is used. For example,
it is not critical to correctly identify the user when playing music.
However, when reading the user’s email out loud, it is critical
to correctly verify the speaker that making the request is the
authorized user. Speaker verification systems, which authenticate
the speaker identity, are therefore needed as a gatekeeper to
protect against various spoofing attacks that aim to impersonate
the enrolled user. This paper compares popular learnable front-
ends which learn the representations of audio by joint training
with downstream tasks (End-to-End). We categorize the front-
ends by defining two generic architectures and then analyze the
filtering stages of both types in terms of learning constraints. We
propose replacing fixed filterbanks with a learnable layer that
can better adapt to anti-spoofing tasks. The proposed FastAudio
front-end is then tested with two popular back-ends to measure
the performance on the LA track of the ASVspoof 2019 dataset.
The FastAudio front-end achieves a relative improvement of 27 %
when compared with fixed front-ends, outperforming all other
learnable front-ends on this task.

Index Terms—Spoof Speech Detection, Automatic Speaker
Verification, Learnable Audio Filterbanks

I. INTRODUCTION

The prevalence of smart appliances has streamlined our
daily chores but also brought security concerns. It is currently
estimated that over 35% of the US adult population has a smart
speaker at home [1]]. These voice assistants are becoming ever
more versatile and can automate tasks ranging from making
a phone call to placing an order. However, many of these
tasks require different levels of privileges that are tied to the
identity of the person talking to the voice assistant. Therefore,
identifying “who is speaking” has become the backbone of
personalized voice services. Compared to Speaker Identification,
which focuses on personalized services, Speaker Verification
is a binary classification of the validity of user identity claims
for biometric security.

Spoofing attacks against speaker verification approaches
exist and can be broadly categorized into three groups: Text-
To-Speech (TTS), Voice Conversion (VC), and Replay Attacks.
Replay attacks, which attack the identification system by play-
ing back the recorded sample of the victim’s speech, are most
prevalent as they require the least technological sophistication.
However, the threat of replay attacks can be mitigated by
adding random prompt words. With the rapid development of

deep learning, TTS and VC have seen significant improvement
in their ability to fool speaker verification systems. Popular
models like the Tacotron2 [2]] can transform text into high-
quality synthetic speech that is almost indistinguishable from
the speech of humans.

Audio files are usually stored as 1D vectors that are extremely
long (1 second of audio recording with a sampling rate at 16kHz
contains 16000 data points). Because of their length, they are
traditionally prepossessed to create a compressed representation
that is smaller in size but aims to preserve as many of the
important features as possible before spoof detection is applied.
The component that performs this preprocessing step is known
as the front-end. Front-ends can be either handcrafted or
learnable, and the process of choosing the proper handcrafted
front-ends is also known as feature selection. Both types of
front-ends contain filter layers, and constraints can be applied
to the filters.

Though handcrafted front-ends have proven to be a strong
baseline for a variety of tasks, the underlying idea guiding
the design of these features is that they are modeled on the
non-linearity of the human ear’s sensitivity to frequency (Mel
scale) and loudness (Log compression).

Therefore, they may not represent the most salient features
for audio classifications under all domains. Empirically, learn-
able front-ends outperform handcrafted front-ends in 7 out of
8 audio classification tasks in recent studies [3]].

This paper provides the following contributions to the study
of defending against audio spoofing attacks:

1) It proposes a light-weigh learnable front-end called
FastAudio that achieved the lowest min t-DCF in spoof
speech detection compared to other front-ends,

2) It provides a comparison of feature selections for spoofing
countermeasures, with a special focus on learnable audio
front-ends, and shows how applying shape constraints can
make the filterbank layer perform better while reducing
the number of parameters, and

3) It describes the architecture that achieved top perfor-
mance on the ASVspoof 2019 [4] dataset.

The remainder of this paper is organized as follows: Sec-
tion [[Il summarizes the classification of audio front-ends based
on structure and the background for filter learning; Section
[ discusses different constraint types regarding filterbank
learning; Section [IV| describes our experiment setups including

Front-end trains faster and has the least computational complexity as
estimated by multiply—accumulate operations (MACs) compared to other
learnable front-ends. See Table https://pypi.org/project/ptflops/.



dataset, metric, and model details; Section [V]analyzes the result
and describes our experiment insights regarding filter learning
for spoof speech detection, and Section [VI| presents concluding
remarks and potential future work.

II. BACKGROUND ON AUDIO FRONT-END

Spoof speech detection is a single-task classification problem,
for which many front-ends have been tested, including Instan-
taneous Frequency (IF), Group Delay (GD) and Mel-frequency
cepstral coefficients (MFCC), etc. The front-ends used in the
classification of speech have been dominated by MFCC and
recently Log Mel FilterBanks (FBanks); both are hand-crafted
features that are fixed and not learnable. Constant Q Transform
(CQT) [3] is another handcrafted front-end commonly used for
music generation and music note recognition as it can better
mimic musical scales; however, prior research reported CQT
was also the best performing front-end for spoof detection [6].
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As shown in Figure [I] front-ends can be categorized by
the procedures they perform. There are two key categories:
First-order Scattering Transform (FST) [7] based front-ends
and Short-Time Fourier Transform (STFT) based front-ends.
Unlike STFT which multiplies a filterbank matrix with a
spectrogram, FST uses a convolutional layer on the raw audio
waveform to approximate the standard filtering process. While
considerable progress has been made on FST based front-
end approaches, literature has shown that they lose signal
energy, which corresponds to information loss, since only the
first-order coefficients of a scattering transform are used [7].
The FST based approaches are also time-consuming [8|] since
convolution layers with large kernels are computation intensive.
STFT based front-ends remain popular, and FBanks are still
the front-end for the state-of-the-art speaker identification [9]]
and speech recognition [[10] systems. However, many STFT
based front-ends are fixed and may not adapt well to certain
downstream tasks.

Both types of front-ends employ some type of filter-like
manipulations to model the non-linearity of the human ear’s
sensitivity to frequency. The distribution of filter center
frequency is referred to as scale. Studies [11]] have shown
that the Mel-scale, as shown in Equation [I} can capture human
perception for pitch relatively well.

)
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There also exists the Bark scale [12] and Equivalent
Rectangular Bandwidth (ERB) scale [13]], which are less
well-known. However, these scales are mostly based on past
experience and are fixed equations. To make this manipulation
in the front-end domain adaptable, filters can be made learnable.
As shown in Figure[] a filterbank can learn its center frequency
Cn, gain g,, bandwidth b,,, and shape s,,. The filter properties
can be summarized in Equation

Wi (f) = gnsn(cn;bn; f) (2)

Recent research has made progress on learnable audio front-
ends. SincNet [14] uses convolution to extract features with
Sinc functions. TD-filterbanks [15]] uses Gabor convolution to
replace front-end filtering. LEAF [3]], proposed by Google, is
the first fully learnable audio front-end with an added learnable
compression layer. Wav2Vec [16] is a CNN-based unsupervised
audio training method for speech recognition that can use raw
audio data directly for training. RawNet2 [17] was used as the
baseline system for the ASVspoof 2021 challenge and adopted
Sinc Filters with CNN layers to extract audio features.

III. RESEARCH QUESTIONS REGARDING LEARNABLE
FILTERBANKS

Previous research has explored the feasibility of learnable
filterbanks. For example, nnAudio [18] implemented a set
of unconstrained learnable filterbanks; however, T. Sainath
et al. [|19] reported limited improvement from unconstrained
filterbank learning. DNN-FBCC [20] explored some constraints
over filters by adopting a mask matrix. Zhang and Wu [21]]
described a detailed study on the shape and positiveness
constraint’s effect on the filterbanks. However, no systematic
study has been done on constraining the filterbank shape in
the STFT-based approach used for spoof speech detection.

TABLE I

FILTER COMPARISON OF LEARNABLE FRONT-END

Type Name Filter/BandWidth | Center Frequency | Gain
Shape Clamp Sorted Clamp
FST TD-FBanks Gabor - Yes Yes -
based SincNet Sinc Yes No Yes Fixed®
LEAF Gabor Yes No Yes Fixed

STFT nnAudio - No No No -
based | DNN-FBCC - Yes Yes Yes -

FastAudio Triang Yes No Yes Fixed

4 The gain of each filter is not learned in the filter layer but in subsequent

layers.

As shown in Table [} all current FST based front-ends put
shape constraints on the band-pass filters; however, STFT based
front-ends, like DNN-FBCC, do not constrain the filter shape.
Instead, a mask is put on the filters so that the bandwidth
is clamped and the filters are sorted by center frequencies.
Therefore, we designed a learnable front-end, called FastAudio,
specifically focused on answering the following questions:

1) Is a shape constraint necessary for spoof detection, and

which shape constraint has the lowest min t-DCF?

2) Does the center frequency need to be sorted for spoof

detection?



TABLE II
A STAGE-WISE COMPARISON OF STFT BASED FRONT-END

Type Name Pre-emph FFT Selection Filter Compression | Transform Center freq
Spectrogram - STFT Modulus - Log (optional) - -
Gammatonegram - STFT Modulus Gammatone | Log (optional) - Mel
IF Derivative - STFT Phase - - Derivative -
IF - STFT Phase - - - -
Fixed Mel-Filterbanks - STFT Modulus Triangular Log - Mel
Hand-crafted MFCC Yes STFT Modulus Triangular Log DCT Mel
Feature LFCC - STFT Modulus Triangular Log DCT Linear
Extractor IMFCC - STFT Modulus Triangular Log DCT Inverse Mel
RFCC - STFT Modulus Rectangular Log DCT Linear
GFCC - STFT Modulus Gammatone Log DCT ERB
CQT - STFT Modulus Constant-Q Log (optional) - CQT
CQCC - STFT Modulus Constant-Q Log DCT CQT
SPNCC/PNCC Yes STFT Modulus Gammatone Log DCT ERB
RASTA-PLP - STFT Modulus RASTA Log IDFT RASTA*
Partly PCEN - STFT Modulus Triangular PCEN - Mel
Trainable Spline - STFT Modulus Spline PCEN - Mel
nnAudio - Trainable STFT | Modulus ConvlD Log - Mel/CQT
DNN-FBCC - STFT Modulus | Matrix Mask Log - Mel
FastAudio Yes STFT Modulus Triangular Log - Mel(Trainable)
TABLE III
A STAGE-WISE COMPARISON OF DEEP SCATTERING SPECTRUM BASED FRONT-END
Type Name Pre-emph Filter Selection | Windowing/Pooling | Compression | Initial Center freq
Partly TD-FBanks - ConvlD Modulus Lowpass Log Mel(Trainable)
Trainable SincNet - Sinc LeakyRelu Maxpool LayerNorm Mel
Trainable LEAF - Gabor Modulus Gaussian Lowpass sPCEN Mel(Trainable)

3) What do trained filterbanks learn about spoof detection
compared to handcrafted FBanks?

These questions are discussed in subsection C and D of Section

vl

IV. EXPERIMENT AND DATASET

The ASVspoof 2019 corpus consists of two parts: Logical
Access and Physical Access. Logical Access (LA) contains
fake (spoof) speech generated from various text-to-speech and
voice conversion techniques. Physical Access (PA) contains
spoof speech that is simulated to mimic various room sizes,
speaker orientations/distances, and hardware artifacts. The true
speech audio files are referred to as Bona fide. Here we focus
on the LA task. Since there are existing ASV (automatic speech
verification) systems that provide some protection against
spoofing attacks, the goal is to design a system that can best
complement existing ASV systems (the result of the existing
ASV system is provided by the dataset in labels). The system
we are designing is called the countermeasures (CM). The
evaluation metric is the tandem detection cost function (min
t-DCF), which is designed to best reflect real-world protection
effects.

A. Dataset

The performance of the FastAudio learnable front-end is
evaluated on the ASVspoof 2019 LA dataset. As shown in
Table the dataset was partitioned into three parts where the
evaluation set is three times the size of the training set. The
training and development sets contain data generated from the

same algorithms; however, to ensure the spoof detection system
can generalize well to audio of unseen types, the evaluation
set also contains attacks that are generated from different
algorithms.

TABLE IV

DESCRIPTION OF ASVSPOOF 2019 LA DATASET

Subset #Speaker #Utterances

Male | Female | Bona fide | Spoofed
Training 8 12 2580 22800
Development 8 12 2548 22296
Evaluation 21 27 7355 63882
B. Metrics

The primary metric for spoof speech detection is the
minimum normalized tandem detection cost function (min
t-DCF), as shown in Equation E} The min t-DCF measures the
overall protection rate for combined CM and ASV systems,
where S depends on application parameters (priors, costs) and
ASV performance (miss, false alarm, and spoof miss rates),
while PS% (s) and Pg™(s) are the CM miss and false alarm

miss

rates at threshold s [4].

t — DCF™in

norm

= min (8P (s) + PE™(9)} )

Equal error rate (EER) was used as a secondary metric to
make comparison possible with earlier datasets like ASVSpoof
2017. EER is defined as the value of false acceptance rate and
false rejection rates where they are equal.



TABLE V
A STAGE-WISE COMPARISON OF DIFFERENT ARCHITECTURES

Name Front-end | First Layer | Main Block Pooling Optional Classifier
X-vector MFCC TDNN CNN Statistical Pooling - PLDA
ECAPA-TDNN FBank TDNN CNN Attention Statistical Pooling PLDA Cosine Similarity
Res2Net CQT TDNN CNN Pooling PLDA Cosine
RawNet2 SincNet Conv CNN GRU - FC
EfficientNetB0 LEAF Conv CNN Avg/Max pooling - FC

C. Back-end

We made a summary on the structures of common front-ends
in Table [l and Table Our FastAudio front-end consists of
an STFT transform followed by a learnable filterbank layer,
and finally a log compression layer to mimic the non-linearity
of human sensitivity to loudness. We integrated the front-ends
with two of the most popular back-ends for audio classification:
X-vector [22] [23] and ECAPA-TDNN [24]] [23]]. The back-
end turns the FBank-variant into a 256-dimensional embedding
vector. The vectors are then fed into a linear classifier. A
summary of other popular back-end architectures is shown in
Table [V

TABLE VI
X-VECTOR AND ECAPA-TDNN
Xvector ECAPA-TDNN

Layer Output Layer Output
Input (N, T) Input (N, T)
TDNN X 5 (1500, T/) | ConvID + ReLU + BN  (C, T')
Stats Pool (3000, 1) SE-Res2Block X 3 3,C, T
Linear (256, 1) ConvlD + ReLU (1536, T')

Atten Stats Pool + BN 3072, 1)

FC + BN (256, 1)

D. Experimental Setup

The model was trained on 2 Nvidia 2080 Ti GPUs for
100 epochs and the batch size was set to 12 (except for TD-
filterbank whose batch size was 4 to stay within memory limits).
We also compared the performance of our front-end with other
STFT-based and FST-based front-ends, both under learnable
and fixed settings. To make the comparison fair, we keep the
hyperparameters across all experiments the same so that the
front-end outputs have the same dimensions. The sampling rate
was set to 16kHz, window length to 25ms, window stride to
10ms, and the number of filters to 40. All learnable front-ends
were initialized to mimic Mel-FBanks, as previous research [15]]
has shown that random initialization has worse performance.

V. RESULTS AND ANALYSIS

A. How do learnable front-ends perform on min t-DCF
compared with handcrafted front-ends for spoof speech
detection?

Since the most recent systematic comparison of front-ends on
spoof detection we can find was done in 2015 [25]], we designed
the experiments so that an updated baseline can be established
that includes learnable front-ends. We choose a combination of
FST and STFT front-ends with both fixed and learnable setting

so that the experiment is comprehensive. As shown in Table
we found that the FST-based learnable front-ends need
longer training time than hand-crafted features in the spoof
speech detection task and cannot beat the performance of CQT.
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Fig. 2. Heatmap of the magnitude of the frequency response for initialization
filters (up) and learned filters (down).

B. Can we design an STFT-based front-end for spoof speech
detection that is learnable and can it beat the performance
of COT?

Since FST-based learnable front-ends failed to beat the
performance of CQT, we designed a front-end following the
traditional STFT-based approach and limited the number of
trainable parameters. Since it trains faster than FST-based
front-ends, we call it FastAudio. We hypothesize that instead
of changing the front-end architecture completely like in the
FST-based approach, we can boost the performance of the fixed
STFT-based approach by making the filterbank layer learnable.
We tested FastAudio under 3 different constraint settings and
the best one achieved 27% decrease in min-tDCF compared to
FBanks, outperforming CQT (See Table [VII).

C. Which set of constraints for filterbank learning performs
best in spoof speech detection?

We found that the existence of shape constraint plays an
important role in improving spoof detection accuracy. However,
we did not find a significant difference in constraining the
shape of the filters to be Gaussian or Triangular. We found that
sorting the filterbanks by center frequency does not improve
accuracy, which confirms the conclusion from previous study
in LEAF [3]. As shown in Figure Q], the learned filterbank
distribution closely follows the hand-crafted filterbanks in both
center frequency and bandwidth. The similarity in ¢,, and b,



TABLE VII
A STAGE-WISE COMPARISON OF THE DIFFERENT FRONT-ENDS’ PERFORMANCE ON THE ASVSPOOF 2019 LA DATASET

ECAPA-TDNN X-vector
Front-end #Params Constraint EER min t-DCF EER min t-DCF MACs Train Time/Epoch
CQT 0 Fixed 1.73 0.05077 3.40 0.09510 0 10:58 min
Fbanks 0 Fixed 2.11 0.06425 2.39 0.06875 0 10:53 min
FastAudio-Tri 80 Shape+Clamp 1.54 0.04514 1.73 0.04909 0.00GMac 13:02 min
FastAudio-Gauss 80 Shape+Clamp 1.63 0.04710 1.67 0.05158 0 12:51 min
FastAudio-Sort 80 Shape+Clamp+Order ~ 1.89 0.05204 1.69 0.05235 0 12:59 min
LEAF 282 Shape+Clamp 2.49 0.06445 3.28 0.07319 0.01GMac 34.45 min
nnAudio 8.04k No 3.63 0.08929 5.56 0.14707 0 13:00 min
TD-filterbanks 31k Shape+Clamp 1.83 0.05284 3.18 0.08427 1.32GMac 22.48 min
Front-end Name Constraint EER  min-tDCF Backend Baseline
SincNet RawNet2 Fixed 5.13 0.1175 - -
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Fig. 3. Visualization of Learnable Front-ends

helps explain the strong performance of handcrafted features
compared to the learnable front-end, especially compared to the
FST-based front-ends. We hypothesize that during the training
process, the filterbanks actually ’self-regulate’ to remain mostly
sorted in both center frequency and bandwidth.

The visualization of the front-end output is shown in Figure
[} All of the outputs contain “horizontal lines” that correspond
to certain frequencies, which is a sign of filter selectiveness.
We found that front-end output like LEAF, TD-filterbanks and
nnAudio changed greatly after training due to the number
of trainable parameters. When the shape of the filters is not
constrained, as shown in nnAudio, the trained front-end shows
signs of over-fitting (many random distributed dots) and has
the worst performance. Since the nnAudio has no constraint for
filter shape, the learned filter shape is determined by 201 points,
thus it may contain very sharp peaks and select frequencies of
very narrow ranges, thus creating the irregular dots.

D. What does FastAudio learn about spoof speech detection
and how can we interpret what it learns?

Formants are the spectral peaks resulted from acoustic
resonance of the human vocal tract. Since in English vowels
contain more energy than consonants, we expect our learned
filters center frequencies to concentrate around the formants
of average vowels of English [26]. We plotted the cumulative
frequency response of the FastAudio in Figure ] We found

2 peaks in the lower frequency and 1 peak in the high
frequency. The peaks in frequencies around 320Hz~440 Hz
and 1120Hz may correspond to the 1st and 2nd formants
averaged over all vowels in English [14]. This adaptation to
human speech suggests FastAudio was able to successfully
learn what is important for spoof speech detection tasks. Similar
adaptation was also reported in FST-based front-end for speech
identification tasks [14].
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Fig. 4. Cumulative frequency response of the FastAudio filters

Interestingly, we also found peaks in the high pitch regions
near the sampling boundary, which suggests spoof speech may
differ from the real speech in frequencies that are “ignored”
by scales used by handcrafted front-ends like the Mel-scale.
High-frequency energy was thought to be less important and
subsequently underrepresented in Mel-scales. However, in
the spoof detection task, we suspect that because these high
frequencies are “unimportant” to human hearing, the spoof



TABLE VIII
A STAGE-WISE COMPARISON OF DIFFERENT FRONT-END’S PERFORMANCE ON ASVSPOOF 2021 LA DATASET

ECAPA-TDNN X-vector
Front-end #Params Constraint min-tDCF min-tDCF MACs Train Time/Epoch
CQT 0 Fixed 0.3676 0.3812 0 10:58 min
Fbanks 0 Fixed 0.26 0.2788 0 10:53 min
FastAudio-Tri 80 Shape+Clamp 0.2661 0.3047 0 13:02 min
FastAudio-Gauss 80 Shape+Clamp 0.2611 0.3122 0 12:51 min
FastAuido-Sort 80 Shape+Clamp+Order 0.388 0.293 0 12:59 min
LEAF 282 Shape+Clamp 0.2753 0.2794 0.01GMac 34.45 min
nnAudio 8.04k No 0.2783 0.3376 0 13:00 min
TD-filterbanks 31k Shape+Clamp 0.2522 0.2827 1.32GMac 22.48 min
Front-end Name Constraint min-tDCF EER Backend Baseline
SincNet RawNet2 Fixed 0.4152 9.49 ResNet v
LFCC LFCC-LCNN Fixed 0.3152 8.90 LCNN v
LFCC LFCC-GMM Fixed 0.5836 21.13 GMM v
CQCC CQCC-GMM Fixed 0.4948 15.80 GMM v

speech generator does not create realistic imitation in high
frequencies. Thus, the representation of high-frequency data
may be a good indicator for spoof speech detection.

Together, these findings indicated that:

1) Learned FastAudio filters are more selective than their

initialization.

2) FastAudio emphasizes frequencies around Ist and 2nd
formants, which may be important for distinguishing
between spoof and bona fide speech.

Learned FastAudio filters are more sensitive to high-
frequency energy, which may be a salient feature of
spoof detection.

Through end-to-end training, FastAudio can adapt to
spoof detection tasks. The front-end successfully adapted
to the downstream task and was able to learn the
phonetics of human speech.

3)

4)

E. How can people use FastAudio for spoof detection and
suggestion for model fusion

People who focus on designing the back-end for spoof speech
detection can use FastAudio as a drop-in replacement. Our
experiment shows that FastAudio is a better front-end than
CQT in spoof detection, despite CQT being reported as the
best front-end in previous research [6]]. From the information
theory’s perspective, the fusion of the result from models whose
front-end outputs are least similar tends to produce a better
result. Thus, the visualizations of learnable front-ends output
in this paper can provide guidance for feature selection, which
can be used as a supplement to handcrafted front-ends for
spoof detection [25].

F. Does the lesson learned generalize to ASVspoof 2021
dataset?

ASVspoof 2021 dataset kept the train and development part
of 2019 data the same and added a much larger evaluation
dataset that is 10 times the size as before. Thus, the ASVspoof
2021 challenge is more difficult because more spoofing
techniques are added. Since the ASVspoof 2021 dataset was
not officially released yet, we can not analyze the details
as we did on the ASVspoof 2019 dataset. However, since

we participated in the 2021 competition, we summarized a
preliminary result of different front-end’s performances in
Table We found that CQT performs poorly on the
new dataset and TD-filterbanks is the best learnable front-
end. FastAudio has a similar performance as its hand-crafted
equivalent (FBanks).

VI. CONCLUSION

This paper investigates the performance of learnable front-
ends on spoof detection and proposes an STFT-based audio
front-end called FastAudio. We tested the proposed front-end
under different constraint settings and found FastAudio was
able to successfully adapt to spoof detection. The proposed
front-end achieves top performance on the ASVspoof 2019
dataset, beating the fixed equivalent by 27% and surpassing
the performance of CQT, which was reported as the best hand-
crafted feature for spoof speech detection. From our work on
learnable front-ends for spoof speech detection, we learned the
following important lessons:

1) Learnable front-end can beat the best handcrafted features
in spoof speech detection since they can adapt to the
downstream tasks.

Shape constraint is important for filterbank learning to
prevent over-fitting.

The center frequencies and bandwidth of filters do not
need to be sorted, and

High-frequency information can be important for spoof
speech detection.

2)
3)
4)
In future work, we plan to test FastAudio’s potential

outside spoof detection domain, on other datasets such as
UrbanSound8K.

REFERENCES
[1] B. Kinsella, “U.s. smart speaker growth flat lined in
2020,” 2021. [Online]. Available: https://voicebot.ai/2021/04/14/

u-s-smart-speaker- growth-flat-lined-in-2020/

J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerry-Ryan, R. Saurous, Y. Agiomyrgiannakis,
and Y. Wu, “Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions,” 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4779-4783,
2018.

[2]


https://voicebot.ai/2021/04/14/u-s-smart-speaker-growth-flat-lined-in-2020/
https://voicebot.ai/2021/04/14/u-s-smart-speaker-growth-flat-lined-in-2020/

[3]

[4

=

[5]
[6]

[8

=

[9

—

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

N. Zeghidour, O. Teboul, F. D. C. Quitry, and M. Tagliasacchi, “Leaf: A
learnable frontend for audio classification,” ArXiv, vol. abs/2101.08596,
2021.

M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado,
A. Nautsch, J. Yamagishi, N. Evans, T. Kinnunen, and K.-A. Lee,
“Asvspoof 2019: Future horizons in spoofed and fake audio detection,”
ArXiv, vol. abs/1904.05441, 2019.

J. C. Brown, “Calculation of a constant q spectral transform,” Journal
of the Acoustical Society of America, vol. 89, pp. 425-434, 1991.

X. Li, N. Li, C. Weng, X. Liu, D. Su, D. Yu, and H. Meng, “Replay and
synthetic speech detection with res2net architecture,” in ICASSP, 2021.
J. Andén and S. Mallat, “Deep scattering spectrum,” IEEE Transactions
on Signal Processing, vol. 62, pp. 4114-4128, 2014.

J. Lee, J. Park, K. L. Kim, and J. Nam, “Samplecnn: End-to-end
deep convolutional neural networks using very small filters for music
classification,” Applied Sciences, vol. 8, p. 150, 2018.

B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-tdnn: Em-
phasized channel attention, propagation and aggregation in tdnn based
speaker verification,” in INTERSPEECH, 2020.

J. Villalba, N. Chen, D. Snyder, D. Garcia-Romero, A. McCree, G. Sell,
J. Borgstrom, L. P. Garcia-Perera, F. Richardson, R. Dehak, P. Torres-
Carrasquillo, and N. Dehak, “State-of-the-art speaker recognition with
neural network embeddings in nist srel8 and speakers in the wild
evaluations,” Comput. Speech Lang., vol. 60, 2020.

R. Lippmann, “Speech recognition by machines and humans,” Speech
Commun., vol. 22, pp. 1-15, 1997.

E. Zwicker and E. Terhardt, “Analytical expressions for critical-band
rate and critical bandwidth as a function of frequency,” Journal of the
Acoustical Society of America, vol. 68, pp. 1523-1525, 1980.

B. Glasberg and B. Moore, “Derivation of auditory filter shapes from
notched-noise data,” Hearing Research, vol. 47, pp. 103-138, 1990.
M. Ravanelli and Y. Bengio, “Speaker recognition from raw waveform
with sincnet,” 2018 IEEE Spoken Language Technology Workshop (SLT),
pp. 1021-1028, 2018.

N. Zeghidour, N. Usunier, I. Kokkinos, T. Schatz, G. Synnaeve, and
E. Dupoux, “Learning filterbanks from raw speech for phone recognition,”
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5509-5513, 2018.

A. Baevski, H. Zhou, A. rahman Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech representations,”
ArXiv, vol. abs/2006.11477, 2020.

H. Tak, J. Patino, M. Todisco, A. Nautsch, N. Evans, and A. Larcher,
“End-to-end anti-spoofing with rawnet2,” in ICASSP, 2021.

K. Cheuk, H. Anderson, K. R. Agres, and D. Herremans, “nnaudio:
An on-the-fly gpu audio to spectrogram conversion toolbox using 1d
convolutional neural networks,” IEEE Access, vol. 8, pp. 161 981-162 003,
2020.

T. Sainath, B. Kingsbury, A. rahman Mohamed, and B. Ramabhadran,
“Learning filter banks within a deep neural network framework,” 2013
IEEE Workshop on Automatic Speech Recognition and Understanding,
pp. 297-302, 2013.

H. Yu, Z. Tan, Y. Zhang, Z. Ma, and J. Guo, “Dnn filter bank cepstral
coefficients for spoofing detection,” IEEE Access, vol. 5, pp. 4779-4787,
2017.

T. Zhang and J. Wu, “Discriminative frequency filter banks learning
with neural networks,” EURASIP Journal on Audio, Speech, and Music
Processing, vol. 2019, pp. 1-16, 2019.

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2018, pp. 5329-5333.

M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lugosch,
C. Subakan, N. Dawalatabad, A. Heba, J. Zhong, J.-C. Chou, S.-L. Yeh,
S.-W. Fu, C.-F. Liao, E. Rastorgueva, F. Grondin, W. Aris, H. Na, Y. Gao,
R. Mori, and Y. Bengio, “Speechbrain: A general-purpose speech toolkit,”
ArXiv, vol. abs/2106.04624, 2021.

B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-tdnn: Em-
phasized channel attention, propagation and aggregation in tdnn based
speaker verification,” arXiv preprint arXiv:2005.07143, 2020.

X. Xiao, X. Tian, S. Du, H. Xu, C. E. Siong, and H. Li, “Spoofing
speech detection using high dimensional magnitude and phase features:
the ntu approach for asvspoof 2015 challenge,” in INTERSPEECH, 2015.
B. Lindblom, “Explaining phonetic variation: A sketch of the h&h theory,”
1990.



	I Introduction
	II Background on Audio Front-end
	III Research Questions Regarding Learnable Filterbanks
	IV Experiment and Dataset
	IV-A Dataset
	IV-B Metrics
	IV-C Back-end
	IV-D Experimental Setup

	V Results and Analysis
	V-A How do learnable front-ends perform on min t-DCF compared with handcrafted front-ends for spoof speech detection?
	V-B Can we design an STFT-based front-end for spoof speech detection that is learnable and can it beat the performance of CQT? 
	V-C Which set of constraints for filterbank learning performs best in spoof speech detection?
	V-D What does FastAudio learn about spoof speech detection and how can we interpret what it learns?
	V-E How can people use FastAudio for spoof detection and suggestion for model fusion
	V-F Does the lesson learned generalize to ASVspoof 2021 dataset?

	VI Conclusion
	References

