
MEMORY EFFICIENT CORNER DETECTION FOR EVENT-DRIVEN DYNAMIC VISION
SENSORS

Pao-Sheng Vincent Sun*, Arren Glover+, Chiara Bartolozzi+ and Arindam Basu*

City University of Hong Kong*
Italian Institute of Technology+

ABSTRACT

Event cameras offer low-latency and data compression
for visual applications, through event-driven operation, that
can be exploited for edge processing in tiny autonomous
agents. Robust, accurate and low latency extraction of highly
informative features such as corners is key for most visual
processing. While several corner detection algorithms have
been proposed, state-of-the-art performance is achieved by
“luvHarris”. However, this algorithm requires a high num-
ber of memory accesses per event, making it less-than ideal
for low-latency, low-energy implementation in tiny edge
processors. In this paper, we propose a new event-driven
corner detection implementation tailored for edge computing
devices, which requires much lower memory access than lu-
vHarris while also improving accuracy. Our method trades
computation for memory access, which is more expensive for
large memories. For a DAVIS346 camera, our method re-
quires ≈ 3.8X less memory, ≈ 36.6X less memory accesses
with only ≈ 2.3X more computes.

Index Terms— Dynamic Vision Sensors, Event-based,
Corner Detection, Neuromorphic Hardware

1. INTRODUCTION

Machine vision is an integral part of technological inno-
vation, supporting autonomous operation of vehicles, Un-
manned Aerial Vehicles (UAV), drones, robots, Internet of
Things (IoT) and many other applications. Its advancements
come from the improvement of both the hardware used and
the algorithms that are run on the hardware. Frame-based
cameras have been the default vision sensor till date. They
capture the scene based on sampling light intensity at fixed
exposure time. However, despite the abundance of informa-
tion provided, the bandwidth required to transmit the data
from the camera to the processor is enormous, since every
pixel’s information is transmitted regardless of their content.
Their temporal resolution is limited by the exposure time, that
causes also motion blur for fast moving stimuli. To overcome
these bottlenecks, event cameras sample the visual signal only
at fixed changes in temporal contrast [1, 2], removing redun-
dancy due to unchanged input, so that their output bandwidth

is significantly reduced as compared to frame-based cameras,
featuring higher dynamic range, lower-latency, and lower
power consumption.

The spatio-temporal sparsity of events from station-
ary event cameras allows usage of Deep Neural Networks
(DNNs) in edge IoT applications by enabling duty-cycling of
the DNN processor [3, 4]; however, this requires the avail-
ability of the results from low-level image processing steps
such as noise removal and corner detection. Hence, these
steps need to be computed with high energy efficiency since
they reside in the always ON part of the system. Several
algorithms and hardware implementations show promising
results [5–9]. Unfortunately, all of these were designed for
using powerful processors consuming hundreds time more
than what is available in extreme edge applications [10]. [3,4]
demonstrate in-memory computing based noise removal with
high energy efficiency; but corner detection methods are yet
to be optimized for edge devices.

Therefore, in this paper, we present a corner detection
pipeline (Fig. 1) that can be deployed on edge devices, featur-
ing: 1) A memory efficient method for storing events while
retaining the temporal ordering between events, 2) An effi-
cient process to convert events into a fixed size matrix repre-
sentation for corner detection; 3) A computationally efficient
process for classifying events as corners without sacrificing
accuracy.

2. BACKGROUND

2.1. Event Camera

Event cameras feature sparse event outputs that encode
change in illumination. These outputs are typically encoded
using the x and y coordinate of the output pixel, the times-
tamp of the event, t, and the polarity of the event, p. The
polarity of the event denotes a positive (ON event) or nega-
tive (OFF event) change in brightness.

2.2. Event Based Corner Detection

Computer vision tasks need sharp, well-defined features
transferable across different scenarios and tasks. One of

ar
X

iv
:2

40
1.

09
79

7v
1 

 [
ee

ss
.I

V
] 

 1
8 

Ja
n 

20
24



Fig. 1: The algorithm presented in this paper can be broken
down into three stages. a) Update 2D Array with temporal
ordering b) Construct the OS which introduces relative spatial
ordering. c) Perform corner detection after sort normalization
on the current row.

the most popular and informative features to detect is a cor-
ner. Plenty of corner detectors have been developed, with
techniques based on either change in luminous intensity, such
as Harris corner detector [11], or segment-based techniques
like Features from accelerated segment test (FAST) [12].

These algorithms have also been adopted for event-based
corner detection, with a data structure termed Surface of Ac-
tive Events (SAE) [13] as a replacement for the image. For
Harris-based corner detection, such as eHarris [6,7], the Har-
ris detector is applied per event to a patch extracted from a bi-
narized SAE surrounding the event location. Its main bottle-
neck is the throughput, that scales with the number of events,
limiting the applicability of this method in real-world scenar-
ios. Segment-based algorithms like FAST [7] and ARC* [8]
can be directly applied to a SAE, and perform calculations at a
higher throughput, as no complex operations like matrix mul-
tiplication are needed, at the cost of limiting the accuracy of
the detection. Despite this, their throughput for high resolu-
tion event cameras moving in cluttered scenes is still limited,
and they are prone to false positives [9].

LuvHarris [9] attempts to increase the throughput while
maintaining high accuracy by proposing two changes: 1)
A variant of the SAE called Threshold-Ordinance Surface
(TOS) which uses 8-bit unsigned integers to represent the
newness of the events recorded, and 2) a pipeline that uses
multi-threaded processing to improve upon the throughput
and accuracy, with one thread used to update TOS every
event while another thread updates the Harris score as a
Lookup table (LUT) as fast as possible. While luvHarris
produces state-of-the-art results in terms of accuracy, and
increases throughput by having only a small fraction of the
computation performed per event (i.e. the TOS update), it re-
quires a per-event update of a neighbourhood of pixels in the
TOS. Unfortunately, the energy required for memory access

dominates computation cost in modern VLSI processes [14],
and the TOS update becomes a memory bottleneck making
the direct adoption of luvHarris difficult for ASICs designed
for the extreme edge.

3. METHODS

We build on luvHarris, tailoring its implementation to hard-
ware for edge computation.

The first bottleneck of luvHarris comes in terms of up-
dating the TOS for every event. Intuitively, the TOS in lu-
vHarris maintains a global spatial memory of events which
is ordered locally by the neighbourhood update. For each in-
coming event, a square patch of TOS around the pixel loca-
tion of the event is updated, requiring xxx memory writes per
event. We propose next a data structure and update method to
have a similar effect but without the numerous writes to mem-
ory. We use a 2D temporal array that is updated per event, and
used to create an Ordered Surface, that is then used as input
to the module computing the Harris score.

The computation of the Harris score requires two convo-
lutions of an image patch with Sobel operators, element-wise
multiplications to create 3 intermediate matrices and finally
smoothing of these 3 matrices by a Gaussian kernel. Assum-
ing typical values of a 7 × 7 patch and 3 × 3 Sobel opera-
tor, this results in ≈ 600 MAC operations. With a 100 MHz
clock, this results in a throughput of only 166k corner evalua-
tions per second (CEPS), which is far below event rates from
modern event camera which easily reach 3 − 4 MEPS [9].
luvHarris has a high event throughput by using a LUT to as-
sign corner detections. The table is updated only as fast as
hardware can allow. However, with the advent of In-memory
computing (IMC) to accelerate convolutional neural networks
(CNN) [15], the Harris evaluation may be performed much
more efficiently on ASICs. Using IMC, all convolutions (in-
cluding Gaussian smoothing) can be done in parallel in 1
cycle (49 × 25 crossbar for Sobel and 25 × 3 crossbar for
Gaussian, both of which are well within reported IMC macro
sizes [15]) and need 25 cycles for the 3 intermediate matrices
for a total of 27 cycles. With the same clock speed, this results
in a throughput of ≈ 3.7M CEPS, sufficient to match event
camera event rates. Hence, we propose to revert to a low-
memory-access, event-by-event Harris calculation for edge
devices, while maintaining other advantages of the luvHar-
ris algorithm.

3.1. 2D Temporal Array

To keep a continuous history of events that can be used to
construct the Ordered Surface (OS) for corner detection, we
propose a 2D array data structure (Fig. 1) which is capable of
maintaining global temporal ordering between events while
distinctly marking which events are yet to be classified. The
salient points about this structure are: 1) D + 1 rows and C



columns; each cell stores the (x, y) coordinates of the events;
2) A row pointer and column pointer to keep track of the in-
sertion location. 3) C determines how many events need to be
accumulated before the construction of OS and corner detec-
tion stage is triggered–this can potentially increase accuracy
over eHarris as fully event-by-event detection can have high-
frequency noise; 4) Ehist = D × C determines the number
of events in an OS used in corner detection.

We use a column pointer to keep track of the current in-
sertion location and to determine if the construction of the
OS and corner detection process can begin. An additional
row (D+1-th) is used to allow insertion of events while Har-
ris evaluation is performed on the OS. Events from the event
camera will be sent through a Spatial-Temporal Correlation
Filter (STCF) [16] first to remove “noise” events. If the event
is classified as signal, it will be stored within the array. The
column pointer is incremented on a per-event basis, with a cir-
cular reset mechanism, i.e. it will reset back to zero (the start
of an array row) after it points to the end of the row and starts
the construction of the OS and the corner detection process.

One of the flexibilities offered by this data structure is the
ability to adjust the number of events available for corner de-
tection. For increasing the number of rows, the event history
Ehist available increases, and more events are used for con-
structing the OS (longer history). However, an unconstrained
increase in the event history size is unnecessary and costly,
since events that are temporally further away from the current
batch do not contribute significantly to the event, but could
hinder the detection accuracy as unwanted noise. Evaluat-
ing in batches of C events offers the advantage of providing
more support events to the local patch when calculating the
Harris response for the event of interest. Also, keeping this
batch of C events for D more cycles allows for an overlap-
ping stride over event history while 1D queues [7] have non-
overlapping stride. At the same time, differently from lu-
vHarris, this method relies on a fixed number of events for the
computation, being less robust to sudden changes of clutter
or accelerations that structurally modify the number of gener-
ated events. Nevertheless, for many robotic edge applications,
such as navigation, appropriate parameter tuning can be found
for a given environment.

3.2. Ordered Surface

Transforming events into an fixed size matrix representation
introduces spatial information enabling conventional com-
puter vision techniques to be applied directly. The proposed
OS is designed to represent the latest Ehist events as an image
such that the global temporal order and spatial relationship
of the events can be visualized. As the 2D array already
maintains a temporal ordering of the different events, we can
assign an order value to each event such that the more recent
the event is, the larger its value will be. The 2D array is tra-
versed from the row with the oldest events to the current row,

Algorithm 1 Ordered Surface Construction

Require: 2D Array, rowPtr (row pointer), OS
T, OS ← 1, 0
for r = (rowPtr + 2) mod (D + 1) : rowPtr do

for c = 0 : C do
x, y ← arrayr,c
OSx,y ← T
T ← T + 1

end for
end for

as indicated by the row pointer. The process for generating
the OS is summarised in Algorithm 1. The temporary OS
in our algorithm replaces the TOS in luvHarris; but OS only
requires D write per event compared to (2k + 1)2 write per
event in luvHarris. While the OS has both spatial and tempo-
ral information, the temporal information is based on global
ordering and hence spans a much larger range of value than
the 8 bits used in TOS. This is corrected by sort normalization
in the next step of patch creation.

3.3. Patch Creation and Corner Detection

To take advantage of the sparsity of events, only a local patch
surrounding the event of interest is extracted from the OS for
the Harris calculation. The algorithm is presented in Algo-
rithm 2. The global ordering information in the OS spans a
large range of values (0 − C × D) which makes it difficult
for Harris evaluation. Normalizing the global indices to span
the range of patch indices would normally require costly divi-
sion operation. Instead, the non-zero values in the patch are
added to a queue and sorted in descending order. Then based
on the order, the values are normalized such that the normal-
ized pixel value is equal to 255− index, where index refers
to the pixel’s position in the sorted queue–we refer to this pro-
cess as sort normalization. From a theoretical point of view,
our patch normalization is similar to rank order coding [17]
which has been postulated as one potential encoding strategy
used in visual cortex. Once the patch is extracted and nor-
malized, we can apply the Harris detector to it, generate the
score for the event of interest, and classify it as a corner if the
score exceeds a threshold. As mentioned earlier, we expect to
use IMC approaches to accelerate the Harris evaluation. Also,
we perform this calculation for all of the events stored within
the latest row in a batch of C–this provides more context to
correctly classify corner events.

4. RESULTS

4.1. Setup

To compare the performance of the proposed algorithm
against existing algorithm with the same detector, two dif-



Algorithm 2 Local Patch Construction and Harris Calcula-
tion
Require: x, y,OS, k (Patch Half Size)

for r = −k : k do
for c = −k : k do
px, py ← c+ k, r + k
Patchpx,py ← OSx+c,y+r

end for
end for
Sort SortQueue in descending order
SortV alue← 255
for value : SortQueue do
PatchV alue ← SortV alue
SortV alue← SortV alue− 1

end for
Score← HarrisDetector(Patch)
if Score >= Threshold then
CornerF lag ← True

else
CornerF lag ← False

end if

ferent datasets from [18] are chosen. The method for gener-
ating the ground truth used to determine the accuracy of the
algorithm is the one proposed in [9], where the event file is
converted into standard image with e2vid [19,20] and the cor-
responding Harris score is generated from these images, with
the assumption that the top 20% scoring events are corner
events.

The algorithms chosen for comparison are luvHarris [9]
and eHarris [6]. The Harris detector from the OpenCV library
[21] is used for our algorithm (as in luvHarris). The sorting
algorithm used comes from C++’s standard template library.

4.2. Corner Detection Accuracy

The performance of the proposed algorithm compared to lu-
vHarris and eHarris can be seen in Figure 2. For these simu-
lations, C = 100, D = 10 or 16, and k = 3 where the patch
for Harris calculation is of size P = (2k + 1) × (2k + 1).
These parameters were selected based on a hyperparameter
search across a small validation set. Similar to [9], we sweep
the threshold to generate ROC curves instead of comparing
corner detection at a fixed threshold. As seen from the two
subplots, our proposed algorithm outperforms eHarris by a
large margin and is capable of matching or outperforming the
accuracy obtained by luvHarris.

4.3. Resource requirement

We compare the resource requirement of our algorithm with
the state-of-the-art (SOTA) luvHarris algorithm in terms on:
1) Number of operations per event; 2) Energy usage per

(a) Shapes 6DoF. (b) Dynamic 6DoF.

Fig. 2: Precision Recall Plot for two files in the Event Camera
Datasets [18].

event; 3) Memory required to run the algorithm. Intuitively,
our method exchanges the extra memory access of updating
neighbourhood pixels in TOS of luvHarris with sort op-
erations ((1 − S)Plog2((1 − S)P ) operations for sorting
non-zero elements) during the patch normalization. Assum-
ing the usage of a DAVIS346 event camera with resolution
346 × 260 and a conservative sparsity estimate of S = 0.5
in the patches (S = 0.62 and 0.8 in the two datasets shown),
our proposed method requires ≈ 2.3X more computations.
However, the number of writes of an event to the OS memory
in our method is only D times during its lifetime in the 2D
array. In comparison, P = (2k + 1)2 elements have to read
and written back per event in the TOS memory. With a con-
servative estimate of write energy being ≈ 3X read energy
of a SRAM (this can easily be 6-10X [22] for large SRAM),
the memory access energy of our method is ≈ 36.6X less
than luvHarris. Lastly, luvHarris maintains 8-bit and 32-bit
per-pixel memories for the TOS and Harris LUT respectively
while our method requires only an 10 − 11-bit per pixel
memory for the OS resulting in a ≥ 3.8X memory savings
compared to luvHarris [9].

5. CONCLUSION AND DISCUSSION

In this paper, we have proposed an algorithm for event based
corner detection for edge devices, which uses less memory
and memory accesses than SOTA algorithms. Despite the
smaller memory footprint and energy usage, the algorithm
still achieves accuracy comparable/better than SOTA algo-
rithm like luvHarris. However, the Harris LUT in [9] provides
an elegant method for embedded platforms with serial pro-
cessors where the speed of Harris evaluation is a bottleneck.
Our proposed work is intended for ASICs that use IMC to ac-
celerate Harris evaluations in which, instead, memory access
becomes the bottleneck. Future work will try to keep the Har-
ris LUT for event-rate scalable implementations while using
IMC for the TOS update since the TOS representation has the
added advantage of not requiring tuning of event history ac-
cording to application, with adaptability similar to [23]. Ex-
periments to evaluate the actual throughput achieved is also
required for a valid comparison of algorithms.



6. REFERENCES

[1] P. Lichtsteiner and et. al. A 128× 128 120 dB 15 µs
latency asynchronous temporal contrast vision sensor.
IEEE Journal On Solid-State Circuits. 43 (2008).

[2] C. Posch, and et. al. Retinomorphic event-based vision
sensors: bioinspired cameras with spiking output. Pro-
ceedings Of The IEEE. 102 (2014).

[3] X. Zhang and A. Basu. A 91-1220 TOPS/W, 976-1301
GOPS Hybrid In-Memory Computing Based Always-
On Image Processing for Neuromorphic Vision Sensors.
IEEE Journal Of Solid-State Circuits. 58 (2022).

[4] S.K. Bose and A. Basu. A 389 TOPS/W, always ON re-
gion proposal integrated circuit using in-memory com-
puting in 65 nm CMOS. IEEE Journal Of Solid-State
Circuits. 58 (2022).

[5] Guillermo Gallego and et. al. Event-based vision: A sur-
vey. IEEE Transactions On Pattern Analysis And Ma-
chine Intelligence. 44, 154-180 (2020).

[6] Valentina Vasco and et. al. Fast event-based Harris cor-
ner detection exploiting the advantages of event-driven
cameras. 2016 IEEE/RSJ International Conference On
Intelligent Robots And Systems (IROS). pp. 4144-4149
(2016).

[7] Elias Mueggler and et. al. Fast event-based corner detec-
tion. 2017 British Machine Vision Conference (BMVC).
(2017).

[8] Ignacio Alzugaray and Margarita Chli. Asynchronous
corner detection and tracking for event cameras in real
time. IEEE Robotics And Automation Letters. 3, 3177-
3184 (2018).

[9] Arren Glover and et. al. luvharris: A practical corner de-
tector for event-cameras. IEEE Transactions On Pattern
Analysis And Machine Intelligence. 44, 10087-10098
(2021).

[10] A. Gaofalo and et. al. DARKSIDE : A Heterogeneous
RISC-V Compute Cluster for Extreme-Edge On-Chip
DNN Inference and Training. IEEE Open Journal Of
Solid-State Circuits. 2 pp. 231-243 (2022).

[11] C. Harris and et. al. A combined corner and edge detec-
tor. Alvey Vision Conference. 15, 10-5244 (1988).

[12] Edward Rosten and Tom Drummond. Machine learn-
ing for high-speed corner detection. Computer Vi-
sion–ECCV 2006: 9th European Conference On Com-
puter Vision, Graz, Austria, May 7-13, 2006. Proceed-
ings, Part I 9. pp. 430-443 (2006).

[13] Ryan Benosman and et. al. Event-based visual flow.
IEEE Transactions On Neural Networks And Learning
Systems. 25, 407-417 (2013).

[14] M. Horowitz. Computing’s energy problem (and what
we can do about it). 2014 IEEE International Solid-State
Circuits Conference (ISSCC). pp. 10-14 (2014).

[15] X. Si et. al. A Twin-8T SRAM Computation-in-Memory
Unit-Macro for Multibit CNN-Based AI Edge Proces-
sors. IEEE Journal Of Solid-State Circuits. 55, 189-202
(2020).

[16] Shasha Guo and Tobi Delbruck. Low cost and latency
event camera background activity denoising. IEEE
Transactions On Pattern Analysis And Machine Intel-
ligence. 45, 785-795 (2022).

[17] S. Thorpe and et. al. Spike-based strategies for rapid
processing. Neural Networks. 14 (2001).

[18] Elias Mueggler and et. al. The event-camera dataset and
simulator: Event-based data for pose estimation, vi-
sual odometry, and SLAM. The International Journal
Of Robotics Research. 36, 142-149 (2017).

[19] Henri Rebecq and et. al. High speed and high dy-
namic range video with an event camera. IEEE Trans-
actions On Pattern Analysis And Machine Intelligence.
43, 1964-1980 (2019).

[20] Henri Rebecq and et. al. Events-to-video: Bringing
modern computer vision to event cameras. Proceedings
Of The IEEE/CVF Conference On Computer Vision And
Pattern Recognition. pp. 3857-3866 (2019).

[21] Gary Bradski. The openCV library. Dr. Dobb’s Journal:
Software Tools For The Professional Programmer. 25,
120-123 (2000).

[22] S.K. Bose, D. Singla and A. Basu. A 51.3-TOPS/W,
134.4-GOPS in-memory binary image filtering in 65-
nm CMOS. IEEE Journal Of Solid-State Circuits. 57
(2021).

[23] Jinjian Li and et. al. Asynchronous Event-Based Corner
Detection Using Adaptive Time Threshold. IEEE Sen-
sors Journal. (2023).


	 Introduction
	 Background
	 Event Camera
	 Event Based Corner Detection

	 Methods
	 2D Temporal Array
	 Ordered Surface
	 Patch Creation and Corner Detection

	 Results
	 Setup
	 Corner Detection Accuracy
	 Resource requirement

	 Conclusion and Discussion
	 References

