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ABSTRACT

Complex spatial dependencies in transportation networks
make traffic prediction extremely challenging. Much exist-
ing work is devoted to learning dynamic graph structures
among sensors, and the strategy of mining spatial depen-
dencies from traffic data, known as data-driven, tends to be
an intuitive and effective approach. However, Time-Shift of
traffic patterns and noise induced by random factors hinder
data-driven spatial dependence modeling. In this paper, we
propose a novel dynamic frequency domain graph convo-
lution network (DFDGCN) to capture spatial dependencies.
Specifically, we mitigate the effects of time-shift by Fourier
transform, and introduce the identity embedding of sensors
and time embedding when capturing data for graph learning
since traffic data with noise is not entirely reliable. The graph
is combined with static predefined and self-adaptive graphs
during graph convolution to predict future traffic data through
classical causal convolutions. Extensive experiments on four
real-world datasets demonstrate that our model is effective
and outperforms the baselines.

Index Terms— Traffic prediction, frequency domain sig-
nal processing, multivariate time series analysis, dynamic
graph learning, graph convolution.

1. INTRODUCTION

With the increase of global urbanization and population con-
centration, complex transportation environments have be-
come a major challenge for urban management, leading to the
urgent need for Intelligent Transportation Systems (ITS)[1]
about AI[2] to enhance the population carrying capacity of
cities.

Traffic prediction is an indispensable part of ITS, which
aims to accurately predict future traffic data by learning his-
torical traffic states and patterns[3] obtained from sensors.
However, due to the high correlation between sensors, future
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information of each sensor relies not only on its own histori-
cal information but also on the historical data of other sensors.
Spatio-temporal graph neural networks are proposed to cap-
ture not only the temporal dependence of traffic data inherent
in each sensor, but also to mine the spatial dependence among
sensors, and this class of methods has been proven to out-
perform general time series forecasting[4] methods such as
ARIMA[S]] and LSTM]6] with the main enhancement coming
from mining the reliable spatial dependencies among sensors.

Mining effective spatial dependencies, also known as
graph structures, has been an important challenge in traffic
prediction. Early schemes such as DCRNNJ7] relies on prior
spatial information to calculate predefined graph structures,
GWNet[8] self-adaptively learns graph structures with learn-
able parameters. STGCN[9] , AGCRN[10], and MTGNN][L1]
all apply or improve upon these static graphs to achieve out-
standing enhancements.

In subsequent research, researchers find that the spatial
dependence of different times is not the same due to the com-
plex urban transportation environment. ASTGNN][12] and
DMSTGCNI]13] apply learnable parameters at each times-
tamp such as day of week or hour of day to self-adaptively
capture spatial dependencies over different time periods. In
contrast, the approach of applying changing historical traffic
data to model dynamic graphs is called data-driven. Since
traffic patterns can always change randomly, data-driven ap-
proaches that can adjust the graph structure based on his-
torical information during the testing phase [[14] tend to be
more effective than self-adaptive approaches that rely purely
on learnable parameters. STFGCNJ[15)], DGCRNI16], and
DSTAGNN]17] all utilize self-attention scores of time do-
main information or the spatial proximity between traffic data
in time domain to construct the graph structures.

However, we argue that data-driven modeling of spatial
dependence faces two problems: Time-Shift and Data Noise.

Time-shift is a common problem in urban transportation.
For instance, during urban commuting, when people come off
duty from industrial areas, the congested traffic can take half
an hour or more to reach residential areas. Time-shift of traffic
patterns due to similar situations is common in modern cities



because of urban functional zones, and it can result in tidal
wave-like delay variations between interrelated traffic data as
shown in Fig. [I].
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Fig. 1. Time-shift in Traffic Forecasting

However, time-shift can invalidate spatial proximity mea-
sures, which are widely applied to capture spatial dependence
of traffic data. It’s because schemes such as Euclidean dis-
tance and cosine similarity are computed in aligned dimen-
sions, but changes in interrelated traffic data affected by time
shifts do not occur at the same timestamp, which raises diffi-
culties in examining proximity to capture the correlation be-
tween roads in time domain. Fig[2]represents the cosine sim-
ilarity between traffic flows at the same observation time in
one week, and we can observe that the similarity between
traffic flows in time domain exhibits low differentiation and
stacking. This is due to the misalignment of the temporal di-
mension caused by time-shift, which makes the traffic flows
on related roads have similar similarity to those on uncorre-
lated roads, which makes it difficult to explore valid spatial
dependencies through proximity.
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Fig. 2. Cosine similarity of traffic flow in time and frequency
domains within one weak

Noise in traffic data is an unavoidable problem as in gen-
eral data-driven strategies, and is often triggered by emergen-
cies such as traffic accidents or road construction. Therefore,
traffic data with noise is not always reliable, and it is a real-
istic challenge to introduce additional information to reduce
the effect of noise while learning the spatial relationships be-
tween sensors.

To solve the above problems, we propose a dynamic fre-
quency domain graph convolutional network(DFDGCN). To
mitigate the effect of time-shift, we propose to examine the
traffic patterns through the frequency domain information of
traffic data. As shown in Fig[2] the frequency domain infor-
mation between sensors exhibits better differentiation, it is
because even if the traffic information is time-shifted, rely-
ing on the time-shift property of the Fourier transform, the

frequency domain components of traffic data will still be in
the same phase dimension, which will facilitate us to mine
dynamic spatial dependence subsequently. In addition, we in-
troduce identity embedding of sensors and time embedding
when capturing traffic data for graph learning to minimize the
effect of data noise. Specifically, we summarize the main con-
tributions of our work as follows:

* We focus on the time-shift problem when mining spa-
tial dependence of traffic data, and to the best of our
knowledge we are the first to mitigate it by frequency
domain analysis with the property of Fourier transform.

* We propose DFDGCN to learn dynamic graph struc-
tures among sensors by combining traffic data with
identity embedding and time embedding to cope with
data noise.

* Extensive experiments on four publicly available datasets
demonstrate that our proposed model outperforms
baselines, and ablation experiments witness the va-
lidity of our model.

2. METHODOLOGY

2.1. Fourier transformation

As described in the previous section, Time-Shift problem is
a challenge for data-driven spatial dependence modeling, and
we propose to address the problem by Fourier Transforming,
which transfers traffic data to the frequency domain.

Assuming the existence of traffic data f(¢) captured by
sensors at a particular intersection, traffic data f(¢ — to) can
be captured when the traffic flow is delayed by time ¢y to
reach the next intersection. In the process of spatial depen-
dence modeling, learning the relationship between f(¢) and
f(t — to) under the same time window is difficult or has a
high computational overhead due to Time-Shift.

However, their corresponding Fourier transforms F'(w),
F; (w) are related under the same dimension, according to
the definition of Fourier transform:

Fw) = /Oo F(t)e 7¥tdt (1)

Fi,(w) = /oo f(t —to)e I*tat )

According to ¢ - tg = ¢, F},(w) can be continued to be ex-
pressed as:

Fyy(w) = /OO f(c)eijw(to+c)dc (3)
= [/oo f(C) . e—jwcdc]e—jwto _ F(w) . e—jwto

Thus we prove that the traffic data in the frequency do-
main is represented in the same phase dimension, which
solves the trouble caused by time-shift and means that learn-
ing the spatial dependencies between sensors will be more
accurate and convenient.



2.2. DFDGCN

Urban traffic environments are complex and variable, and to
alleviate the time-shift as well as noise problems in the data-
driven dynamic graph modeling, we propose a frequency
domain graph module described by Fig[3] The core of
DFDGCN is to update the dynamic adjacency matrix Ap
based on the traffic data observed at the current observation
window.
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Fig. 3. The structure of proposed Frequency Domain Graph
Module

According to section 2.1} traffic data in the frequency do-
main receives less effect of time shift than that in the time do-
main. As aresult, we transfer the traffic data X; at each obser-
vation window to the frequency domain by Fourier transform.

In order to deal with the noise in traffic data, we introduce
identity embedding[18] and time embedding[19] to increase
additional information about the transportation network, so
that we can easily extract the effective traffic patterns of each
sensor and explore the spatial dependency among them:

DE; = Wgy - Fy||E||Wr, - (T} ||T}P) (5)

where F, represents learnable identity embedding of each
sensor, T}V TP denote the labels indicating day of week and
hour of day, all W are the learnable parameters for embedding
the individual labels.

In addition, we apply a one-dimensional convolution layer
with 1x 1 convolution kernel for further embedding, in order
to learn the connections between the dimensions of D F;.

Finally, we apply a fully connected layer to learn DFE;
again to obtain directionality and then matrix multiply it with
the transposition of DFE;. After the activation function and
Softmax we obtain the final adjacency matrix:

Al = Softmar(ReLU(DE,W,q4;DE})) (©6)

Consistent with previous work, we consider the dynamic
frequency domain graph as a transition matrix for the hidden
diffusion process. By combining it with the predefined graphs
P in DCRNN and the self-adaptive graph A4 in GWNet, we
propose the following graph convolutional layer:

K
Zy =Y (P"X;Wiy + ALy XeWio + A X, Wi s) (7)
k=0
For the processing of temporal information we adopt the same
causal convolutional with residual network as in GWNet[8]].

3. EXPERIMENTS

3.1. Datasets

We verify DFDGCN on four commonly used large real-world
datasets with tens of thousands of time steps and hundreds of
sensors. The statistics are summarized in Table [[I PEMS-
BAY is a traffic speed dataset and the others are traffic flow
datasets, and the time steps for each dataset are obtained by
sampling at five-minute intervals.

Table 1. Statistics of Datasets

Type | Datasets | Time Steps | Nodes | Edges
Speed | PEMS-BAY 52116 325 2369
Flow PEMSO03 26208 358 547
Flow PEMSO07 28224 883 866
Flow PEMSO08 17856 170 295

3.2. Baselines and Metrics

We selected publicly available and classical baselines for
traffic predicting, including recent traditional method HI[20],
representative deep learning methods GWNet[8]], DCRNN[7],
AGCRN]I10], STGCN][9], MTGNN[11], DGCRN[16]. Due
to space limitations, we do not introduce each method in
detail. We examine all baselines by three metrics, including
mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE).

3.3. Experimental Setups

The four datasets are divided into training, validation, and test
sets in the ratio of 7:1:2. We predict future traffic data of 12
time steps with historical traffic data of length 12, and com-
pare the performances of the 3rd, 6th, 12th and the average of
the 12 timestamps, which are labeled @3, @6, @12 and Avg..
In our model, The dimensions of the Fourier transformed time
series embedding as well as the identity embedding are both
10, and T}V TP in the temporal embedding are both 12 di-
mensions. The embedding size after 1-dimensional convo-
lution is 30. Baselines as well as training strategies can be
found in the publicly available benchmarlﬂ The best experi-
mental results will be marked boldly while the second will be
underlined. The source code of DEDGCN is available 2]

3.4. Experimental Results

From Tab[2] DFDGCN basically outperforms Baselines in
the three metrics. Compared with GWNet, which is the
base model of DFDGCN, the better results of DFDGCN
indicate that the frequency domain graph actually captures
the dynamic spatial dependence accurately. Compared with
DGCRN which also mines dynamic spatial dependencies
from traffic data, the rationality of our proposed problem and
the validity of our model can be preliminarily judged.

Thttps://github.com/zezhishao/BasicTS
Zhttps://github.com/blisky-li/DFDGCN



Table 2. Results of DFDGCN and Baselines for traffic forecasting on four real datasets

Datasets [ PEMS-BAY [ PEMS03 [ PEMS07 [ PEMSO08
Method Metric| @3 @6 @12 Avg. @3 @6 @12 Avg. @3 @6 @12 Avg. @3 @6 @12 Avg.
MAE | 3.06 3.06 3.05 3.05 | 3246 3245 3244 3245 | 49.02 49.04 49.06 49.03 | 36.65 36.66 36.68 36.66
HI RMSE| 7.05 7.04 7.03 7.05 | 49.78 49.76 49.75 49.76 | 71.15 71.18 71.21 71.18 | 50.44 5045 50.46 50.45
MAPE| 6.85% 6.84% 6.83% 6.84% |30.58% 30.59% 30.63% 30.60% |22.73% 22.75% 22.79% 22.75%|21.60% 21.63% 21.68% 21.63%
MAE | 1.30 1.65 199 159 | 13.38 1445 1600 14.42 | 1890 2048 23.01 2047 | 1350 1441 1581 14.40
GWNet RMSE| 2.73 373 4.60 3.68 | 2325 2531 27.73 25.19 | 30.84 33.50 37.27 3347 | 21.63 2345 25.77 2339
MAPE|2.71% 3.73% 4.71% 3.59% |13.82% 14.84% 16.03% 14.64% | 7.89% 8.58% 9.81% 8.61% | 8.63% 9.24% 10.11% 9.21%
MAE | 131 165 197 159 | 1429 1519 1751 1553 | 1946 21.13 241 21.16 | 14.12 1523 1695 15.22
DCRNN RMSE| 2.76 3.75 4.60 3.69 | 2475 2655 30.34 27.18 | 31.22 34.14 3846 34.14 | 22.12 24.18 2695 24.17
MAPE|2.73% 3.71% 4.68% 3.58% |14.88% 15.33% 17.31% 15.62% | 8.27% 8.95% 10.37% 9.02% | 9.48% 10.21% 11.37% 10.21%
MAE | 1.35 1.67 194 161 | 1422 1534 1686 1529 | 19.25 20.58 22.68 20.57 | 1426 1524 17.03 15.32
AGCRN RMSE| 288 3.82 450 3.70 | 25.01 2699 29.52 2695 | 31.62 3439 38.16 3440 | 22.57 2440 2691 2441
MAPE|2.91% 3.81% 4.55% 3.64% |13.88% 15.86% 15.95% 15.15% | 8.18% 8.69% 9.67% 8.74% | 9.39% 9.85% 11.37% 10.03%
MAE | 1.36 170 2.02 1.64 | 1461 1557 17.44 15.65 | 2028 21.68 24.26 21.74 | 1498 1597 17.87 16.08
STGCN RMSE| 2.88 384 4.63 3.76 | 2549 2727 30.01 2731 | 3255 35.15 3936 3527 | 23.52 2530 28.03 2539
MAPE|2.86% 3.79% 4.72% 3.67% | 14.33% 15.07% 17.18% 15.39% | 8.63% 9.18% 10.29% 9.24% | 9.85% 10.51% 11.71% 10.60%
MAE | 1.33 1.66 195 160 | 13.71 1487 1644 1485 | 19.32 20.88 2345 20.89 | 14.16 15.15 16.78 15.18
MTGNN RMSE| 2.80 3.77 450 3.66 | 23.04 2549 28.16 25.32 | 31.23 34.04 38.08 34.06 | 22.37 2426 26.83 24.24
MAPE |2.81% 3.75% 4.62% 3.59% | 14.36% 15.12% 16.01% 14.97% | 8.31% 8.95% 10.18% 9.00% | 9.67% 10.81% 11.53% 10.20%
MAE | 1.30 1.61 195 157 | 1346 1467 1636 1459 | 18.70 20.22 2246 20.17 | 13.44 1452 1621 14.42
DGCRN RMSE| 2.72  3.67 454 3.62 | 23.74 2606 2883 2592 | 30.59 3336 36.80 33.32 | 21.57 23.58 26.37 23.58
MAPE|2.69% 3.59% 4.54% 3.48% |14.53% 15.44% 16.84% 15.32% | 7.81% 8.39% 9.44% 8.42% | 8.63% 9.40% 10.70% 9.46%
MAE | 1.30 1.61 190 155 | 13.27 1433 1580 14.28 | 18.64 20.11 22.17 20.03 | 13.39 14.23 15.56 14.23
DFDGCN RMSE| 2.72 3.66 439 3.57 | 2347 2552 2792 2539 | 30.72 3341 36.70 33.24 | 21.53 23.34 25.65 23.30
MAPE|2.70% 3.62% 4.44% 3.46% |13.41% 14.90% 15.94% 14.45% |7.74% 8.31% 9.24% 8.31% |8.52% 9.04% 9.95% 9.07%
Table 3. Ablation CXpeI'iIIlCIltS on graph convolution on and D refers to our proposed frequency domain graph'
PEMSO08 ; :
Graph Metric | @3 o6 o A . Frqm fthe results (;)f the.: convo}llutlonkof 2;11 511131gle gr':liph, Qur
MAE B 1520 714 575 ynamic reqpency 'omaln grap yvor s.t e best, indicating
P RMSE | 2218 2417 2707 24.19 that we effectively mine the dynamic spatial dependence. The
MAPE | 941% 995% 11.12%  10.09% comparison with T practically illustrates the serious impact of
A MAE 1324 1447 15.88 1442 time-shift on data-driven spatial dependence mining and our
RMSE 21.63 23.44 25.72 23.3 . . . .
MAPE | 002% 955% 1044%  9.53% effectiveness .1n analyzing spgtlal dependence from the fre-
MAE | 1350 1432 1573 1233 quency domain. When multiple graphs are convolved, the
D RMSE | 21.84 2371 26.04 23.61 frequency-domain graph always brings more improvement.
MAPE | 8.84% 951% 1042% 9.48% However, the effect always deteriorates when convolving the
T li\;[v[As]?z ;gg; ;383 éggz éjg? frequency domain graph with predefined graphs. We conjec-
MAPE 8.6.4% 9.3.]% 10.45% 9.3.5% ture that it may be attributed to these factors: (l) The static
MAE | 1350 1441 15.81 14.40 priori information of predefined graphs play a negative role in
P+SA RMSE | 2163 2345 2577 2339 traffic prediction; (2). Multiple graphs convolution may suffer
I\I/\[&F;EE 81%6350;” 913‘;? 1?; ;g/b 9151%? from problems such as different information densities of in-
D+P RMSE | 2168 2354 2605 2352 dividual graphs, inconsistency of convergence speed with the
MAPE | 887% 9.42% 1043%  9.46% direction of hyperparameter gradient descent similar to that in
MAE | 13.32 1417 1545 14.16 multitask learning, which is a separate topic of research.
D+SA RMSE 21.53 23.24 25.33 23.15
MAPE | 855% 9.10% 10.07% 9.13%
MAE 13.39 14.23 15.56 14.23 4. CONCLUSION
D+P+SA RMSE 21.53 23.34 25.65 23.30
MAPE | 8.52% 9.04% 995%  9.07% In this paper, we focus on spatial dependence in traffic pre-

Tab. [3] presents the ablation experiment on graph convo-
lution in our model to explore which graph plays a more im-
portant role in traffic prediction since both static predefined
graphs as well as adaptive graphs are applied in DFDGCN. P
refers to predefined graphs and S A refer to the self-adaptive
graph, they are static graphs which preserve static spatial re-
lationships in traffic network. T is called time-domain graph,
which directly applies traffic data in the time domain for the
graph construction in Section [2.2] without Fourier transform,

diction and propose a novel model DFDGCN. We argue that
data-driven spatial dependence modeling suffers from time-
shift and data noise, thus we propose to analyze traffic data in
the frequency domain and construct an effective graph struc-
ture to mine spatial correlation in transportation network.
Experiments support our argument and demonstrate that our
model outperforms other baselines. In subsequent research,
we will focus on exploring spatial dependence between sen-
sor signals and optimizing multi-graph convolution.
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