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ABSTRACT
The one-shot talking-head generation learns to synthesize
a talking-head video with one source portrait image under
the driving of same or different identity video. Usually
these methods require plane-based pixel transformations via
Jacobin matrices or facial image warps for novel poses gen-
eration. The constraints of using a single image source and
pixel displacements often compromise the clarity of the syn-
thesized images. Some methods try to improve the quality of
synthesized videos by introducing additional super-resolution
modules, but this will undoubtedly increase computational
consumption and destroy the original data distribution. In
this work, we propose an adaptive high-quality talking-head
video generation method, which synthesizes high-resolution
video without additional pre-trained modules. Specifically,
inspired by existing super-resolution methods, we down-
sample the one-shot source image, and then adaptively recon-
struct high-frequency details via an encoder-decoder module,
resulting in enhanced video clarity. Our method consistently
improves the quality of generated videos through a straight-
forward yet effective strategy, substantiated by quantitative
and qualitative evaluations. The code and demo video are
available on: https://github.com/Songluchuan/
AdaSR-TalkingHead/.

Index Terms— Super-Resolution Video, One-Shot Talking-
Head generation.

1. INTRODUCTION

In recent years, the field of talking head synthesis has seen
significant advancements. The primary objective of these sys-
tems is to animate a target face using an arbitrary portrait
video, whether from the same or a different identity. Some
graphics-based neural rendering methods [1, 2, 3, 4] neces-
sitate both facial geometry and a substantial dataset of tar-
get face videos for training. Furthermore, these rendering
modules require retraining for different identities or back-
grounds. Such methods are limited in their generalizability
due to high resource consumption and dependence on 3D ge-
ometric data. In contrast, pure neural rendering methods [5,
6, 7, 8, 9] eliminate the need for geometric priors and special-
ized training videos. Pretrained on large-scale datasets [10,
11], these methods transform pixels based on the flow-guided
warp or Jacobin matrix [5] to obtain the driven image. These

attributes benefit neural rendering to be widely available and
capable of infer the driven videos without finetuning.

One-shot pure neural rendering methods have a broad
range of applications, from virtual video conferencing that
reduces bandwidth usage [7] to character animation in video
games and digital human synthesis, e.t.c.. As aforementioned,
the low quality of the synthesized videos constrains their
widespread adoption. The state-of-the-art methods MetaPor-
trait [12], SadTalker [13] and VideoReTalking [14] attempt to
ameliorate this by retraining an independent super-resolution
module to enhance video quality. However, this two-stage
synthesis process incurs unnecessary computational overhead
and the error accumulation.

In this work, we propose an adaptive super-resolution
method in the talking head generation framework. Inspired
by the super-resolution methods, such as ESRGAN [15] and
Real-ESRGAN [16], which construct low-quality images data
for pairwise training by compressing and downsampling high-
quality images. It adaptively captures high-frequency infor-
mation from low-quality images for reconstruction through
a uniquely designed encoder-decoder structure. Addition-
ally, this technique proves compatible with one-shot talking
head generation systems. Specifically, we follow the process
of pure neural rendering [7]. For both the one-shot source
face image and the driven images with varying poses, key-
points are extracted separately. Guided by these two sets
of keypoints, our encoder-decoder modules extract features
from the source image to synthesize novel facial images with
varied poses in a fully supervised manner. During training,
we intentionally lower the quality of the source image but
use high-quality ground-truth images as the supervisory sig-
nal. This strategy forces the encoder module to learn the
extraction of high-frequency features from low-quality in-
puts. When we proceed to the inference phase, we employ a
high-quality source image. Benifits from the pre-trained en-
oder’s capability to capture these high-frequency features, the
system is able to reconstruct images with enhanced clarity.

We validate the efficacy of our approach using both quan-
titative and qualitative experiments, benchmarking it against
existing methods for one-shot talking-head generation. In
summary, our key contributions are as follows:

• We introduce a simple but effective method for adap-
tive high-quality talking head video generation. To our
best knowledge, this work is the first to integrate super-
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Fig. 1. Illustration of our whole pipeline. (a) We apply pretrained and frozen (snowflake) modules to obtain images of different
quality. (2) The pipeline of our framework, the burning represent participation in learnable training. It is worth noting that
images with borders of different colors (green and red) form a set of training pairs.

resolution techniques into the talking head generation
process in an end-to-end fashion.

• Our approach outperforms multiple state-of-the-art
methods in both quantitative and qualitative evalua-
tions, as evidenced by tests on large-scale datasets
relevant to this task.

We expect that our work can provide insights into the fu-
ture development of high quality portrait video generation and
other related tasks.

2. OVERVIEW
2.1. Preliminaries
Super-Resolution Network Processing. The super-resolution
networks aim to reconstruct a high-quality image from a
low-quality image. In our task, we need to reconstruct high-
resolution facial video from low-quality source images. For
the given source image Ihs , the different types of noise, resize
methods (area, bilinear, bicubic), and different compression
methods for low-quality image creation. Through that, we can
obtain the low-quality image I ls paired with the high-quality
one Ihs .
One-Shot Talking-Head Generation. The one-shot talking-
head generation intent to animate a single source image Is
under a series of motion images {Id1, Id1, ..., Idn}. We can
apply the following formula:

I ′sn = T (E(Is), Idn), (1)

the I ′sn is the generated portrait image with novel motion but
keeps the same identity with Is. The T is the mapping func-
tion, and E is the appearance encoder. In this work, we expect
E to be able to adaptively capture the high-frequency infor-
mation from I ls, thereby reconstructing a clearer image. It
is worth noting that we have ground truth {Is1, Is1, ..., Isn}
corresponding to {I ′s1, I ′s1, ..., I ′sn} for training.

2.2. Adaptive High-Frequency Encoder

The adaptive high-frequency encoder E is designed to capture
high-frequency details from in-the-wild input sources. Unlike
previous methods [7, 5, 6] that focus mainly on pixel trans-
formation, our approach emphasizes the extraction of high-
frequency features. To this end, we intentionally downsam-
ple the source image I ls1 for training, while maintaining high-
quality ground truth images Ihsn for guidance. The process
of generating a high-quality image Ihsn from a low-quality
image I ls1 can be mathematically described by the formula
T (E(I ls1), Idn) → Ihsn. In this formulation, E serves the dual
purpose of learning features essential for both facial transfor-
mation and texture details.

Moreover, we acknowledge the challenge of differing data
distributions between the training and inference phases. To
mitigate this, we remove the batch normalization (BN) lay-
ers in E, which effectively suppresses artifacts and blurring.
Additionally, we employ a pre-trained facial video super-
resolution module [12] to further refine Ihsn to super-high
quality Ishsn , thereby forming the training pair (Ihs1, I

sh
sn). This

approach ensures that E can robustly obtain high-frequency
information, not just from low-quality images but also when
high-quality images are fed into the system during inference.
The pipeline of our framework and cross-quailty training are
shown in Fig. 1

2.3. Motion Estimation

The motion estimation module computes a dense motion
field, represented as D ∈ R3×H×W , which aligns a specific
frame from the driving video (D ∈ {Id1, Id2, ..., Idn}), with
the source frame Is. This motion field is crucial for aligning
the feature maps extracted from Is to the facial pose in D. We
define a mapping function TIs←D (R2 → R2) that correlates
each pixel in D to its corresponding position in Is.
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Fig. 2. Qualitative comparison with the baseline methods on the videos from HDTF dataset [17]. The left part is under the same
identity, while the right is cross identity. We zoom in the facial details on the each left. A red arrow indicates incorrect head
posture, and the ground truth is on the top. We highly recommend watching our supplementary video for more comparisons.

To estimate this dense motion field, we employ a standard
U-Net architecture to independently estimate keypoints from
both the source image and the driving video. These keypoints
are then utilized to calculate sparse motion vectors via a Jaco-
bian matrix through deformation [5]. A Convolutional Neural
Network (CNN), denoted as P , approximates the dense mo-
tion field, T̂Is←D, serving as a refined transformation func-
tion of TIs←D at the keypoint locations. For each keypoint
pk, the heatmap Hk is generated, which localizes the regions
where the transformations are most relevant. These heatmaps,
when concatenated with the sparse motion vectors, assist in
predicting occlusion masks. These masks specify which re-
gions of D can be generated through warping from Is, and
which should be inpainted. The occlusion masks are applied
to images with high-frequency information encoded via the
encoder. Finally, a SPADE generator [18] (without BN lay-
ers) is utilized to generate the target video, thereby achieving
the desired motion for the source image.

2.4. Training losses
Our framework employs multiple loss functions, primarily
consisting of two major categories. The first category fo-
cuses on facial reconstruction, guiding the facial movement
in sparse motion fields; the second category pertains to image
quality.
Facial Structure Losses. The facial structure losses aim to
ensure that both the expressions and poses in the synthesized
facial images closely match those in the ground-truth images.
These losses comprise various components, including key-
points loss Lk, head pose loss LH , and facial expression loss
LE . The keypoints loss is the L2 distance performed on the
2D keyponits with corresponding depth information (spatial
dimension), while both the head pose loss and facial expres-

sion loss utilize the L1 distance over the estimated facial pa-
rameters.
Equivariance Loss and Deformation Loss. Following the
work of Wang et al. [7], we incorporate equivariance loss Le

to ensure the consistency of image-specific keypoints in 2D to
3D transformation. Similarly, deformation loss Lδ is adopted
to constrain canonical space to camera space transformation.
Perceptual Loss. Different from the perceptual loss in pre-
vious talking-head generation task, the perceptual loss LP at
here is calculated from the feature maps front the activation
layers via pretrained VGG network [19], which proved in [16]
to be able to achieve sharper features and consistent lighting.
GAN Loss. The multi-resolution patchs GAN loss function
LG [20, 21], where the discriminator predicts at the multiple
patch-level. And the feature matching loss is also used to
optimize the discriminators.

3. EXPERIMENTS

3.1. Experimental Setup
Datasets. We train our model on the large-scale datasets
TalkingHead-1KH [7] and CelebV-HQ [22] respectively,
which are two high-quality datasets with face in the center of
camera and resolution to 5122. Then we eval the performance
of the model on the HDTF dataset [17] and follow the random
sampling strategy on the HDTF for evaluation.
Implementation Details. We implement our model with Py-
Torch and four A100 GPUs. To speed up our convergence,
the pretrained model on VoxCeleb-1[11]. The degradation
follow the two-stage downsampling in Real-ESRGAN [16],
the image is first down-sampled to 2562 and then upsampled
to 5122. The production of super-resolution images from the
pretrained temporal super-resolution [12] via StyleGAN [23].
The keypoints are estimated by Hopenet structure [24].

https://www.youtube.com/watch?v=B_-3F51QmKE&t=1s


Methods
AKD↓ PSNR↑ SSIM↑ FID↓ AED↓USER↑

(×10−2) (→ 1) (×10−2 ) (→ 5)
TalkingHead-1KH Dataset [7]

Face-Vid2Vid [7] 2.070 0.244 0.710 0.691 0.109 2.1
TPS-Motion [6] 5.041 0.187 0.645 0.799 0.130 1.7
SadTalker [13] – 0.181 0.684 0.775 0.145 1.5

Our 1.116 0.270 0.783 0.652 0.098 3.2
CelebV-HQ Dataset [22]

Face-Vid2Vid [7] 2.197 0.271 0.725 0.617 0.097 2.0
TPS-Motion [6] 5.277 0.182 0.670 0.662 0.114 1.7
SadTalker [13] – 0.193 0.710 0.728 0.137 1.5

Our 1.308 0.279 0.790 0.614 0.102 3.1

Table 1. Quantitative comparison with the baseline methods.
The ↓ (↑) indicate that lower (higher) values are indicative of
better performance, respectively. The best result are bold.

Baseline Methods. For the fairness, we compare our method
with the state-of-the-art methods, which include Face-Vid2Vid
[7], TPS-motion [6] and SadTalker [13]. For those methods
that use an independently trained super-resolution module for
post-processing, we only keep the previous portrait synthe-
sis. We regret not being able to include MetaPortrait [12],
because its custom video processing part is not public.

3.2. Quantitative Evaluation

Quantitative Metrics. Here we mainly focus on three parts,
(1) the accuracy of facial motion, (2) the quality of the syn-
thesized images and (3) identity perserving. For the (1), we
adopt the average keypoint distance (AKD) [5]. We measure
the PSNR, SSIM and FID for the image quality in (2). The
average euclidean distance (AED) [5] is for the identity of (3).
Evaluation Results. The evaluation results are shown in Ta-
ble 1. Our method achieves the best performance on the met-
rics of variety terms, especially on the image quality assess-
ment metrics (PSNR, SSIM and FID), which is due to the
adaptive encoder to extract more detailed textures. For the
AED metric, our method is able to maintain the best identity
information as Face-Vid2Vid [7], although slightly lower in
TalkingHead-1KH dataset pretrained. Furthermore, we find
that our method was able to achieve the most accurate facial
motion in AKD (1.116&1.308).

3.3. Qualitative Evaluation

Visualization. We conduct qualitative evaluations to high-
light the distinctive advantages of our method over the base-
line approaches. We perform our experiments on the same
set of facial/head poses or corresponding synchronized audio
as the template input with randomly selected source images,
which are not involved in training. The qualitative results
are visualized in Fig. 2, and the detail of the inner mouth
is zoomed in to the right. The portraits generated using
our approach exhibit superior teeth quality. In addition, our
method has the most accurate head pose than baseline meth-
ods (shown in the red arrow in the Fig. 2). We also present
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Fig. 3. The visualization of features from each layers in gen-
erator w/wo adaptive high-frequency encoder E. The Feature-
Layer-1 and 2 are the features before deformation, Feature-
Layer-3 and 4 are the features after deformation.

the supplementary video12 for dynamic comparison.
User Study. We conduct a user study on generated videos,
involving 10 participants and a set of 20 videos. In that, we
present one video clip and asked participants to respond to
the statement “The video looks real to me” at a time, on a
5-point Likert scale (1-5, from strongly disagree to strongly
agree). The scores as USER in Table 1. The user study re-
veals that our method receives the highest ratings, affirming
its effectiveness in human evaluations.

3.4. Ablation Study

Features Visualization. We visualize the features of the
w/wo adaptive high-frequency encoder E and the results are
shown in Fig. 3. For wo E, we apply the encoder from the
Face-Vid2Vid [7] and do not use cross-resolution training.
We find that with E, the captured features contain more high-
frequency information (shown in red arrow in Fig. 3), whether
it is before or after being deformed. It is able to incorporate
more texture features than low-frequency noise, please zoom
in for more details.
Quantitative Evaluation. The quantitative results can refer
to Table 1 (with Face-Vid2Vid [7]), it can be found that af-
ter the introduction of high-frequency encoder, the obtained
image quality is greatly improved on several metrics (PSNR,
SSIM and FID).

4. CONCLUSION

In this work, we introduce an adaptive super-resolution ap-
proach within the one-shot talking-head video generation
domain. Leveraging a simple but effective designed struc-
ture, our method is capable of capturing high-frequency de-
tails from low-quality images. This allows for the synthesis
of high-quality videos without resorting to additional pre-
trained modules or a postprocessing. Extensive quantitative
and qualitative evaluations on large-scale datasets confirm
that our methodology surpasses existing state-of-the-art tech-
niques in high-quality drivable face video generation.

1Youtube: https://www.youtube.com/watch?v=B -3F51QmKE&t=1s
2BiliBili: https://www.bilibili.com/video/BV1314y1r7XB/

https://www.youtube.com/watch?v=B_-3F51QmKE&t=1s
https://www.youtube.com/watch?v=B_-3F51QmKE&t=1s
https://www.bilibili.com/video/BV1314y1r7XB/
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