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ABSTRACT

In the Text-to-speech(TTS) task, the latent diffusion model
has excellent fidelity and generalization, but its expensive
resource consumption and slow inference speed have always
been a challenging. This paper proposes Discrete Diffu-
sion Model with Contrastive Learning for Text-to-Speech
Generation(DCTTS). The following contributions are made
by DCTTS: 1) The TTS diffusion model based on discrete
space significantly lowers the computational consumption of
the diffusion model and improves sampling speed; 2) The
contrastive learning method based on discrete space is used
to enhance the alignment connection between speech and
text and improve sampling quality; and 3) It uses an effi-
cient text encoder to simplify the model’s parameters and
increase computational efficiency. The experimental results
demonstrate that the approach proposed in this paper has
outstanding speech synthesis quality and sampling speed
while significantly reducing the resource consumption of
diffusion model. The synthesized samples are available at
https://github.com/lawtherWu/DCTTS

Index Terms— Text to speech, Discrete diffusion model,
Contrastive learning, RTF, MOS

1. INTRODUCTION

Text-to-speech(TTS) aims to generate natural speech from in-
put text, which has been the focus of the audio and speech pro-
cessing research. Various TTS generative models are evolv-
ing. In terms of natural speech generation, Tacotron2 [1],
FastSpeech2 [2] and TransformerTTS [3] dominate the state
of the art performance in Mean Opinion Score (MOS). The
recently explored Diffusion Probabilistic Models (DPMs) [4]
serve as a powerful TTS generative backbone, achieving sur-
prising results [5, 6, 7]. These existing DPM-based speech
synthesis works learn the connection between text and speech
implicitly by adding a prior to the variational lower bound.
Although such a method has excellent high fidelity and gen-
eralization, the resource consumption and slow inference of
the diffusion model can not be ignored, which makes it diffi-
cult to use the diffusion model in practical usage scenarios.
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These problems come from the high-dimensional raw
speech features(e.g. spectrogram) and an excessive amount
of diffusion steps. Although there are many improved meth-
ods to speed up the sampling of the diffusion model, they fail
to address the underlying issues. Most work applies diffusion
models to the continuous latent space, but much less studies
apply them to the discrete space. Compressing data space is
the fundamental way to solve the above problems.

This paper proposes a Discrete Diffusion Model with
Contrastive Learning for Text-to-Speech Generation (DCTTS).
This model will avoid the expensive cost of raw speech fea-
tures prediction and generate natural speech with fewer diffu-
sion steps. Specifically, the contributions of this paper are as
follows:

1. Propose a TTS diffusion model based on discrete space,
compressing the data dimension of the diffusion model and
increasing the computational efficiency;

2. Propose contrastive learning method based on dis-
crete space to enhance the alignment connection between text
and speech. We design the Text-wise Contrastive Learning
Loss(TCLL). The addition of TCLL enables the diffusion
model to generate high fidelity speech samples with fewer
diffusion steps;

3. Introduce an efficient text encoder to further reduce the
model parameters and computational consumption.

2. METHOD

In this section, we present the details of the proposed DCTTS
model whose architecture overview is shown in Figure 1.
DCTTS consists of three parts, including a spectrogram VQ
model, a text encoder and a discrete contrastive diffusion
model. We first pre-train the spectrogram VQ model to com-
press the high-dimensional raw spectrogram into the discrete
space. Then, the text encoder extracts text features from
the input text. The conditional diffusion model is used to
predict the discrete token sequence conditioned on the text
features. Finally, the discrete token sequence is decoded into
the mel-sepctrogram by the spectrogram VQ decoder.
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Fig. 1. Overview of the proposed method. Our framework includes two major components: a Spectrogram VQ model (top)
and a discrete conditional diffusion as generative model (bottom). The figure intuitively shows the forward process and reverse
process of the discrete diffusion model. In the reverse process, we illustrate the proposed text-wise constrastive learning loss.

2.1. Spectrogram VQ Model

Reducing the computational cost of the diffusion model can
be obtained by reducing the dimension of the data. There-
fore, we propose to map the raw spectrogram to the discrete
space. To achieve this, we introduce the Spectrogram VQ
model[8, 9] for vector quantization. As shown in the up-
per part of Figure 1, a spectrogram can be represented by a
group of spectrogram tokens. Thus, the spectrogram genera-
tion transfers to predicting a sequence of discrete tokens. This
method not only greatly reduces computational consumption,
but also enhances the generalization of the TTS model[10].
Later, the diffusion model can be performed on the discrete
space, largely avoiding the expensive raw spectrogram pre-
diction.

The Spectrogram VQ Model is trained to approximate
a spectrogram input using a compressed intermediate rep-
resentation, retrieved from a discrete codebook. It con-
sists of an encoder Evq , a decoder G and a codebook
Z = {zk}Kk=1 ∈ RK×d containing a finite number of em-
bedding vectors, where K is the size of the codebook and d
is the dimension of codes. Given a spectrogram s ∈ RF×L

where F and L represent frequency dimension and time di-
mension respectively, the input s is firstly encoded into a
small-scale representation z ∈ Evq(s) ∈ Rf×l×d where f × l
represents the reduced frequency and time dimension. The
f × l is usually much smaller than F × L . The d represents
the embedding dimension. Then, we use a spatial-wise quan-
tizer Q(.) which maps each spatial feature zij ( for all (i, j)

in (f, l) ) into its closest codebook entry zk to obtain a spatial
collection of spectrogram tokens zq .

zq = Q(z) :=
(
argminzk∈z ∥zij − zk∥22

)
(1)

Then the spectrogram can be faithfully reconstructed via
the decoder i.e. ŝ = G(zq). To preserve the reconstruction
quality when upsampled from a smaller-scale representation,
we follow the setting of VQGAN [8], which adds an addi-
tional discriminator module. The GAN structure enhances
the reconstruction ability of the VQ model. In the next work
of this paper, the parameters of the VQ model are frozen and
will not be trained.

2.2. Text Encoder

The text encoder aims to extract text representation from the
input text. In previous works[11, 12], large pre-trained mod-
els are widely used as the text encoders, such as CLIP and
BERT, which leads to huge model parameters and expensive
computation. In this paper, we proposed an efficient text en-
coder.

The current EfficientSpeech[13] employs a fastspeech2-
like network structure, which achieves efficient and high-
quality speech synthesis. Inspired by the architecture of
EfficientSpeech, our efficient text encoder is proposed, which
consists of a phoneme encoder and an acoustic features ex-
tractor. The phoneme encoder extracts content features from
the input phoneme obtained by g2p[14]. The acoustic features



extractor predicts the Energy: ye, Pitch: yp and Duration: yd
from the content features. Instead of predicting the acoustic
features in series [2], the acoustic features extractor gener-
ates them in parallel which contributes to faster inference.
The content features and acoustic features are concatenated
together as the text features and input to the diffusion model.

2.3. Discrete Diffusion Model with Contrastive Learning

Since the data dimensions are compressed using the VQ
model, the process of inference can be achieved by training
the diffusion model to predict discrete token sequences con-
ditional on text features. This can greatly increase the speed
of inference.The training of diffusion model includes the for-
ward process and the reverse process, as shown in the lower
part of Figure 1.

Given the text-spectrogram pair, we obtain the discrete
spectrogram token sequence z ∈ ZN with the pretrained
Spectrogram VQ Model, where N = f × l represents the
sequence length of tokens. Suppose the size of codebook is
K, the spectrogram token zi at location i takes the index that
specifies the entries in the codebook, i.e. zi ∈ {1, 2, ..., k}.

For forward phase, we corrupt the spectrogram tokens
with Mask-and-replace diffusion strategy[12]. The diffu-
sion strategy follows a Markov chain and is defined as fol-
lows: each token has a probability of γt to be masked by the
[MASK] token and has a probability of Kβt to be resampled
uniformly over all the K categories, leaving the probability
of αt = 1− kβt − γt to be unchanged, whereas the [MASK]
tokens always keep fixed.

For reverse phase, the transformer DPM block is trained
to predict and recover the corrupted token sequences based on
condition input. The condition c is the text features from the
text encoder. The overall text-to-speech framework can be re-
garded as maximizing the conditional transition distribution
q (x | c). The network pθ(xt−1|xt, y) is trained to estimate
the posterior transition distribution qθ(xt−1|xt, x0). The op-
timization objective of this network is to minimize the varia-
tional lower bound[12].

For the text-to-speech task, the correspondence between
text and speech is very important, which is directly related to
the quality of synthesized speech. Misalignment between text
and speech will lead to mispronunciation, such as repeating
and dragging. Therefore, we hope that the text features main-
tain a good correspondence with the discrete spectrogram to-
kens. In this paper, we introduce the contrastive learning to
help enhance the alignment connection.

We seek to enhance the connection between c and the
generated data z0 by maximizing their mutual information,
defined as I (z0; c) =

∑
z0
pθ (z0, c) log

pθ(z0|c)
pθ(z0)

. We intro-
duce a set of negative discrete spectrogram sequences Z ′ =
{z1, z2, ..., zN}, quantified from N negative samples X ′ =

{x1, x2, ...xN}. We define f(z0, c) = pθ(z0|c)
pθ(z0)

and calcu-
late the similarity of text features to control the degree of

contrastive learning because similar texts should have simi-
lar spectrogram tokens. Our proposed Text-wise Contrastive
Learning Loss (TCLL) is:

LTCLL := −E

log
f (z0, c)

f (z0, c) +
∑

zj∈Z′ {f(zj , c) (1 − sim(c, cj))}


(2)

where sim(c, cj) indicates the Cosine similarity between c
and cj . Optimization of this loss leads to maximization of
I(z0; c). We add the TCLL to the optimization of the diffu-
sion model by referring to Step-Wise Parallel Diffusion[15].

3. EXPERIMENTAL AND RESULTS

3.1. Dataset and Evaluation Metric

The dataset used for training is LJSpeech[16] that is made of
13,100 audio clips with corresponding text transcripts. The
training of model uses 12,588 clips while 512 clips are re-
served for testing. The phoneme sequence is generated by the
open-source tool g2p[14] which convert English grapheme to
phoneme. The waveform is transformed into mel spectrogram
with window and FFT lengths of 1,024, hop length of 256 and
sampling rate of 22,050. The mel spectrogram has 80 chan-
nels. Montreal Force Alignment (MFA) is used to obtain the
target phoneme duration. Pitch and energy ground truth val-
ues are computed using STFT and WORLD vocoder[17] re-
spectively. Note that in order to exclude the influence of the
vocoder, we uses the Griffin-Lim algorithm[18] to convert the
generated mel-spectrogram into waveform audio.

The DCTTS evaluation focuses on the generated speech
quality. Moreover the evaluation gives priority to the num-
ber of parameters, amount of computations as measured by
floating point operations (FLOPS), and sampling speed.

For Mean Opinion Score (MOS) estimation, we synthe-
sized 20 sentences from the test split with each model. The
assessors were asked to estimate the quality of synthesized
speech on a nine-point Likert scale, the lowest and the high-
est scores being 1 point and 5 points with a step of 0.5 point.

The number of parameters refers to the amount of mem-
ory used in inference phase. GFLOPs reflects the number
of floating point operations needed to complete an inference.
GFLOPs increases with the text sequence length. In our ex-
periment, GFLOPs is measured using 128 randomly sampled
texts from the test split. The inputs to each model are same.

Sampling speed is usually measured in terms of Real-
Time Factor(RTF is how many seconds it takes to generate
one second of audio). However, The RTF leads to small frac-
tional numbers that are less intuitive to interpret. We intro-
duced mel spectrogram real-time-factor (mRTF) to measure
the speed of DCTTS intuitively. mRTF is the number of sec-
onds of speech divided by the mel spectrogram generation
time[13].



3.2. Implementation Details

Text Encoder: The phoneme sequence xphone ∈ RN×d is an
embedding of the input phonemes, where N is the sequence
length and d =128 is the embedding size. The phoneme en-
coder is made of 2 transformer blocks. Each block is made
of a depth-wise separable convolution, a Self-Attention layer
and a typical transformer FFN[19] . In the FFN, we add an
additional convolution layer and use the GeLU[20] activation
between two linear layers. Layer Normalization is applied af-
ter Self-Attention and FFN. Both Self-Attention and FFN use
residual connection for fast convergence. The acoustic fea-
tures extractor consists of 2 blocks. Each block includes a
Convolution layer, Layer Normalization and a ReLU activa-
tion. The prediction of Energy: ye, Pitch: yp and Duration:
yd are generated respectively by three extractors with same
architecture.

Spectrogram VQ Model: In this study, we follow VQ-
GAN, adopting similar network architecture for the VQ-VAE
encoder Evq , decoder G, and discriminator D. To preserve
more timedimension information, we set a downsampling fac-
tor of 2 along the time axis, and a downsampling factor of 20
along the frequency axis. For the codebook Z, the dimension
of each code vector nz is set as 128, and the codebook size K
is set as 128. The learning rate is fixed and determined as a
product of a base learning rate, the number of GPUs used and
the batch size.

Discrete contrastive diffusion model: We built a 12-
layer 8-head transformer with a dimension of 128 for the dif-
fusion model. Each transformer block contains a full-context
attention, a linear fusion layer to combine conditional features
and a feed-forward network block. For the default setting, we
set the total timesteps T = 100. The current timestep t is added
into the network with adaptive layer normalization operator.
For the diffusion forward process, we linearly increase γt and
βt from 0 to 0.9 and 0.1, respectively.

3.3. Comparison with Baseline

We compare the results with the baseline models [1, 2, 5]
which were evaluated based on official implementations.
Note that we set the inference steps of Grad-TTS to 100(Grad-
TTS-100), keeping the same inference steps as our DCTTS.

Table 1 shows the MOS evaluation metric as evaluated by
10 participants with high English listening comprehension.
The synthesized speech samples are from the test split. Our
results have great competitiveness in terms of audio quality,
which indicates that our approach models the speech features
effectively .

Not only that, our model is also very outstanding in ef-
ficiency, it has fewer parameters and GFlOPs that are used
at inference phase. The effect of the small number of pa-
rameters and GFLOPS is faster mel spectrogram generation,
reaching mRTF of 73.9 on a single NVIDIA 1080Ti GPU
as shown in Table 2. The speed is more evident on an In-

tel CPU where DCTTS reaches mRTF of 17.6 which is 44.0×
faster compared to Grad-TTS. For mel-spectrogram genera-
tion, Tacotron and Grad-TTS are unable to run with satisfac-
tory mRTF on a single CPU.

Table 1. The comparison of parameters, GFlOPs and MOS.
Model Params ↓ GFlOPs ↓ MOS ↑
GT(mel) - - 3.86± 0.05
FastSpeech2 24.5m 15.87 3.58± 0.06
Tacotron2 28.2m 16.20 3.68± 0.05
Grad-TTS 14.8m 9.42 3.74± 0.07
DCTTS 12.4m 7.23 3.64± 0.05

Table 2. The comparison of mRTF. The benchmarks were
based on a single NVIDIA 1080Ti and a single Intel Xeon
2.50GHz.

Model
mRTF
GPU ↑

ES Relative
Speed Up

mRTF
CPU ↑

ES Relative
Speed Up

DCTTS 73.9 - 17.6 -
Grad-TTS 1.9 38.9 × 0.4 44.0 ×
Tacotron2 5.5 13.4 × 1.3 13.5 ×

3.4. Ablation Study

we conduct ablation experiments to study the contribution of
the TCLL in our full model.

As shown in Table 3, by comparing the CMOS[21] of
DCTTS(w/o TCLL) and DCTTS, it is shown that the TCLL
has a positive effect on the quality of generated speech.

Table 3. Comparison between DCTTS and DCTTS(w/o
TCLL) in CMOS. TCLL refers to the Text-aware Contrastive
Learning Loss

Model CMOS ↑
DCTTS 0
DCTTS ( w/o TCLL) -0.14

4. CONCLUSION

By combining discrete diffusion model with contrastive learn-
ing, our method synthesizes natural speech with satisfactory
inference speed. Besides, our model has fewer parameters
and computational consumption. The proposed method pays
inadequate attention to the emotional information in the input
text. Future work will focus on extracting emotion features
from text context and adding emotion features to speech gen-
eration.
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