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ABSTRACT

Current multichannel speech enhancement algorithms typically as-
sume a stationary sound source, a common mismatch with reality
that limits their performance in real-world scenarios. This paper
focuses on attention-driven spatial filtering techniques designed for
dynamic settings. Specifically, we study the application of linear
and nonlinear attention-based methods for estimating time-varying
spatial covariance matrices used to design the filters. We also in-
vestigate the direct estimation of spatial filters by attention-based
methods without explicitly estimating spatial statistics. The clean
speech clips from WSJ0 are employed for simulating speech signals
of moving speakers in a reverberant environment. The experimental
dataset is built by mixing the simulated speech signals with multi-
channel real noise from CHiME-3. Evaluation results show that the
attention-driven approaches are robust and consistently outperform
conventional spatial filtering approaches in both static and dynamic
sound environments.

Index Terms— neural beamforming, speech enhancement, spa-
tial filtering, deep neural network, moving source.

1. INTRODUCTION

Microphone arrays have gradually become an indispensable sensing
front-end for future intelligent speech communication and human-
machine interaction as they capture acoustic signals and preserve
spatial information of the sound field [1, 2]. Despite the rapid pro-
gression in multichannel speech enhancement algorithms based on
microphone arrays [3, 4], recovering clean speech signals in real-
world noisy environments remains a significant challenge. Recently,
combining conventional signal processing with deep neural net-
works (DNNs) has opened new avenues to address long-standing
challenges such as sound source localization, source separation,
noise reduction, and de-reverberation [5–8].

The widely accepted assumption in speech processing tasks is
that target and interfering sources remain stationary during an utter-
ance, which often deviates from real-world scenarios. Several works
have explored the impact of the movement of sound sources or mi-
crophone arrays [9–11]. Speech enhancement employing spatial fil-
tering is particularly sensitive to the spatial location of the desired
source, as the motion complicates the estimation of time-varying
statistics of the signal and interference. To address the issues,
existing spatial filtering solutions can be broadly categorized into
three approaches: conventional, DNN-integrated, and fully learn-
able. Conventional multichannel spatial filtering methods compute
the spatial covariance matrices (SCMs) of target and interference
signals by averaging the instantaneous SCMs (ISCMs) at individ-
ual time-frequency bins [12]. Then, the obtained SCMs are applied
to compute the multichannel spatial filters. The conventional ap-
proaches cannot precisely compute highly time-varying SCMs from
sounds such as moving speakers, as the weighting is pre-determined
and independent of the signal statistics. The DNN-integrated spatial
filtering is commonly a multi-stage system [13], in which DNN tech-
nology is incorporated into the conventional spatial filtering frame-

work to enhance key modules such as feature extraction [14], sta-
tistical estimation [15], and modeling [16]. These techniques dis-
play remarkable performance for non-moving situations, but these
methods have not been evaluated on moving sources. Recent studies
incorporate the attention mechanism [17] into the mask-based beam-
forming framework to improve performance in moving source situa-
tions [18]. A neural network implemented with self-attention layers
is used to learn the attention weights, which subsequently replace the
existing SCM averaging strategies. Fully learnable spatial filters can
be constructed entirely from DNNs, eliminating the need for covari-
ance estimation and explicit filter computation [19–21]. Research
indicates that such DNN-centric systems can learn to leverage spa-
tial features implicitly and achieve competitive filtering effects [22].
The performance of attention-based methods within this framework
in dynamic scenarios, to the best of the authors’ knowledge, has not
been explored.

Motivated by the effectiveness of the attention mechanism in the
temporal sequence processing [17], this paper aims to address the
limitations of the existing approaches by focusing on the application
of the attention mechanism in spatial filtering. Our research revolves
around the minimum variance distortionless response (MVDR) fil-
tering structure. Specifically, we first explore three ways of utilizing
attention mechanisms to estimate the SCMs. 1) We use [18] as the
starting point and employ a linear attention-based (LA) module to
learn attention weights. Then such weights are used to determine
the linear combination of ISCMs for estimating the SCMs. 2) As an
extension, we utilize a nonlinear attention-based (NLA) module to
estimate the SCM freely. 3) We propose a novel method for estimat-
ing scaled inverses-of SCMs to be used in an MVDR to avoid nu-
merical instability arising from matrix inversion operations. We also
investigate a fully learnable attention-based approach that learns the
free spatial filter from the multichannel mixture, instead of estimat-
ing the SCMs. All methodologies are implemented in a framework
that operates causally and is trained in an end-to-end manner.

We evaluate the methods in scenarios involving both static and
moving sound sources. Within the DNN-integrated spatial filtering
framework, the LA method outperforms others in terms of audi-
tory evaluation metrics such as perceptual evaluation of speech qual-
ity (PESQ) [23] and short-time objective intelligibility (STOI) [24],
while the NLA method achieves the highest signal-to-distortion ra-
tio (SDR) [25]. The fully learnable spatial filtering is also proven
effective in dynamic source scenarios and outperforms conventional
spatial filtering. Notably, the performance of the attention-driven
approaches remains robust across dynamic and static environments.

2. SIGNAL MODEL

Consider a microphone array composed of M elements and a speech
source in a space that includes reverberation and background noise.
By employing the short-time Fourier transform (STFT), the observed
signal Ym(f, t) at microphone m is represented as a superposition
of the speech signal Xm(f, t) and noise Nm(f, t). The signals cap-
tured by all microphones can be represented as a vector y(f, t) =
[Y1(f, t), Y2(f, t), . . . , YM (f, t)]T , where superscript T denotes the
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Fig. 1. (a) End-to-end framework for DNN-integrated spatial filtering. (b) LA and NLA modules. (c) End-to-end framework of fully learnable
spatial filtering. Sharp-cornered rectangles represent numerical values or computations, rounded rectangles represent layers or networks with
learnable parameters.

transpose. Likewise, the speech and noise signals can be expressed
as x(f, t) and n(f, t), with y(f, t) = x(f, t)+n(f, t). The SCM of
the observed signals is defined as Φyy(f, t) = E[y(f, t)yH(f, t)],
where E[·] denotes the expected value and superscript H is the con-
jugate transpose. The SCMs for speech and noise signals are repre-
sented as Φxx(f, t) and Φnn(f, t) similarly. Speech enhancement
is done by a complex-valued linear filter h(f, t) operating as

Z(f, t) = hH(f, t)y(f, t), (1)

where Z(f, t) is the filtered estimation. Without the loss of general-
ity, we choose the speech signal on the reference microphone as the
desired signal, Xref(f, t) = uH

refx(f, t). The index of the reference
microphone is given by a one-hot vector uref of length M . Mini-
mization of the mean-squared error of the estimate of Eq. (1) under
the speech distortionless constraint leads to the MVDR filter [26],

hMVDR(f, t) =
Φ−1

nn(f, t)Φxx(f, t)

tr[Φ−1
nn(f, t)Φxx(f, t)]

uref, (2)

where tr[·] represents the trace of the matrix. The MVDR filter bal-
ances noise suppression versus speech distortion, which both are im-
portant in the perceptual quality of speech enhancement.

3. ATTENTION-DRIVEN SPATIAL FILTERING

The attention-driven spatial filtering solutions applicable to moving
sound sources can be applied in two frameworks: DNN-integrated
spatial filtering and fully learnable spatial filtering.

3.1. DNN-integrated spatial filtering

3.1.1. Framework

The DNN-Integrated spatial filtering system used in this paper is
illustrated in Fig. 1(a). Multichannel mixture signals are trans-
formed between the time domain and the time-frequency domain
via STFT/iSTFT. The pipeline consists of three key stages. First,
the single-channel mask estimation module accepts a single-channel
signal and outputs the time-frequency magnitude mask. Without the

loss of generality, we select the signal on the first channel to pre-
dict the above single-channel mask, which is applied to each chan-
nel to obtain estimated speech and noise signals. Then, we com-
pute ISCMs for speech and noise. Taking speech as an example, the
ISCM is calculated as Ψ̂xx(f, t) = x̂(f, t)x̂H(f, t), where x̂(f, t)
is the separated speech signal by single-channel masking. ISCMs of
speech and noise are computed similarly, with different masked out-
puts. The core of the second part is attention-based SCM estimation.
As shown in Fig. 1(b), two types of attention-based SCM estimation
modules are available: LA and NLA. The final stage computes the
spatial filters. The entire system is trained in an end-to-end manner
and achieves real-time causal processing during inference.

During the training phase, an oracle magnitude mask [27] is uti-
lized in the mask estimation module. For inference, a pre-trained
causal version of Conv-TasNet model [28] applied on the STFT
representation is employed. The masking operation is element-
wise multiplication. The single-channel masks used are real-valued
masks, with values between 0 and 1.

3.1.2. LA and NLA modules

Before entering the LA and NLA modules, the estimated ISCMs are
vectorized row-wise into an one-dimensional vector. Subsequently,
the real and imaginary components are represented separately and
concatenated to form the real-valued vectorized ISCM. The output
of the LA and NLA modules needs to be reshaped with the opposite
operation as the input process. The estimated vectorized SCM output
is first converted into a complex vector and then row-wise stacked
into a complex-valued matrix-shaped estimated SCM.

The LA module is designed to estimate attention weights
wx(t, τ), which are used to linearly combine ISCMs to estimate the
SCMs as

Φ̂xx(f, t) =

t∑
τ=1

wx(t, τ)Ψ̂xx(f, τ). (3)

The attention weights specify which frames to emphasize when com-
puting the SCM at a given time frame (i.e., t) across all past time
frames (i.e., τ = 1, . . . , t). The output and input of the LA mod-
ule maintain a strict linear relationship, which is also the reason for
the naming. As shown in Fig. 1(b), the main processing flow of the



Table 1. Data and Network Parameter Settings

Room Length (m) [4.0, 8.0]
Room Width (m) [4.0, 8.0]
Room Height (m) [3.0, 4.0]
RT60 (s) [0.3, 0.6]
Mic-Array Height (m) [1.0, 1.5]
Min Mic-Array Distance from Wall/Floor (m) 0.5
Sound Source Height (m) [1.5, 2.0]
Min Sound Source Distance from Wall/Floor (m) 0.5
Min Mic-Array Distance from Sound Source (m) 0.2
Number of Movement Trajectories 50
Sound Source Movement Speed (m/s) [1.0, 1.5]
SNR (dB) [0.0, 10.0]
Batch size 8
Learning rate 1× 10−4

Number of attention blocks (N ) 2
Number of attention heads 4
Dimension of attention layers 256
Dimension of feed-forward layers 2048

LA module consists of four parts: a linear layer for reducing the
dimensionality of the input vectors, a positional encoding, a stack
of core attention blocks, and a dot product computation. The linear
layer is optional but can effectively reduce the vector length, lessen-
ing redundant information and the number of network parameters.
The positional encoding is responsible for marking the temporal or-
der of the input vector sequence. Stacking N identical transformer-
encoders proposed in [17] results in the attention blocks (N ) shown
in Fig. 1(b). The transformer-encoder uses two sub-layers: multi-
head attention and a fully connected feed-forward layer. A residual
connection and layer normalization are applied after each sub-layer.
The scaled dot-product is performed as in [17].

The NLA and the LA fundamentally differ in employing the at-
tention mechanism, as the NLA is used to estimate the SCMs directly
instead of computing a linear combination of ISCMs. Similarly to
the LA, the NLA also employs the positional encoding and attention
blocks (N ). There are two differences from a network architecture
perspective: 1) In NLA, attention scores are no longer calculated af-
ter the N -th attention block. The output of the N -th attention block
is used as the output of the NLA or fed to the following linear layer.
2) If dimensionality reduction is performed using a linear layer in
NLA, it is mandatory to restore the vector length with the opposite
dimension setting after the attention blocks. Regardless of whether
a linear layer is used, the input and output of the NLA no longer
maintain a linear relationship.

To achieve a real-time causal system, a lower triangular mask
is utilized during the attention computation in the attention blocks
(N ) to eliminate information from future frames than the target one
[17]. When the LA module is adopted, substituting the estimated
Φ̂xx(f, t) and Φ̂nn(f, t) from (3) into (2) yields the LA-MVDR.
Similarly, with estimated SCMs from the NLA module and the same
substitution, the NLA-MVDR is derived.

3.2. Attention-based inverse-covariance estimation

We can relax the limitations in (2), removing the need for explicit
matrix inversion or trace calculations. Here, we use the NLA to
directly estimate the inverses of the covariance matrices, resulting in
the inverse-covariance MVDR (IC-MVDR), which is calculated as

hIC-MVDR(f, t) = Axx,NLA(f, t)Ann,NLA(f, t)uref, (4)

where Axx,NLA(f, t) and Ann,NLA(f, t) are estimates at the time-
frequency bin (f, t) obtained by the NLA module. In this case, the
NLA is used to estimate the scaled inverse of the SCMs instead of
the SCMs.

3.3. Direct spatial filter estimation

The fully learnable spatial filter (FL-SF) is implemented using the
framework shown in Fig. 1(c). This approach utilizes the NLA to
directly estimate a spatial filter. The complex-valued spectrograms
of the mixture signal obtained after STFT are vectorized row-wise
into a one-dimensional vector on each frame, and then the real and
imaginary parts are extracted and concatenated into real-valued vec-
torized spectrograms, and fed to the NLA. The output of the NLA,
once converted into complex vectors and stacked into a complex-
valued matrix, gives directly the desired time-varying spatial filter
hFL-SF. The enhanced signal is then obtained by iSTFT after linear
filtering in (1).

3.4. Averaging-based SCM estimation

As a baseline in the experiments, we use conventional spatial filter-
ing methods where the SCMs are estimated by averaging ISCMs.
The three alternative strategies are described below using the speech
signal as an example. 1) Cumulative averaging (CUM-AVG)

Φ̂xx(f, t) =
1

t

t∑
τ=1

Ψ̂xx(f, τ) (5)

weights equally all frames of the whole utterance. 2) Recursive av-
eraging (REC-AVG)

Φ̂xx(f, t) = αΦ̂xx(f, t− 1) + Ψ̂xx(f, t) (6)

uses first-order recursive filtering with forgetting factor α. 3) For
block-wise averaging (BLOCK-AVG), W latest frames are averaged
as

Φ̂xx(f, t) =
1

W

t∑
τ=t−W+1

Ψ̂xx(f, τ). (7)

In the experiments, a forgetting factor of 0.95 was applied in (6),
while a window length of 25 frames (i.e., 400 ms) was used in (7).
The parameters were set from multiple tests on the validation set.

3.5. Network complexity optimization

The parameter size of the DNNs is a significant factor in real-world
applications. We use three methods to substantially reduce the pa-
rameter size in the DNN-integrated spatial filtering system without
compromising performance significantly. 1) The ISCMs retain only
the diagonal and the lower triangular parts. In SCM matrix recon-
struction, the process is reversed. Since the ISCM is a Hermitian
matrix, the upper triangular part is reconstructed based on the lower
triangular part. 2) A single LA or NLA can be used for speech and
noise SCM estimation with different masked inputs. 3) The linear
layers in both LA and NLA modules can reduce the dimensionality
of the input.

4. EVALUATION

4.1. Dataset

To assess our system, a 5-channel dataset was synthesized. Speech
signals were from WSJ0 [29] and real-world noises were sourced
from CHiME-3 [30]. The synthesis parameters are presented in Ta-
ble 1. The process comprised three primary steps:

Step 1: Trajectories of the dynamic sound source and micro-
phone array positions were generated randomly according to the
specified parameters listed in Table 1, e.g., the source movement
speed was between 1.0 m/s and 1.5 m/s.

Step 2: Utilizing the gpuRIR toolbox [31], multichannel rever-
berant speech signals were simulated based on the randomly gener-
ated spatial parameters and speech segments from WSJ0.



Table 2. Experimental results in static situations

Methods Static sources
SDR PESQ STOI

LA-MVDR 12.9 2.32 0.94
NLA-MVDR 12.9 2.36 0.95

IC-MVDR 13.2 2.27 0.94
FL-SF 12.2 2.16 0.91

CUM-AVG-MVDR 12.2 2.11 0.91
REC-AVG-MVDR 10.9 2.07 0.92

BLOCK-AVG-MVDR 11.2 2.09 0.92

Table 3. Experimental results in dynamic situations

Methods Dynamic sources
SDR PESQ STOI

LA-MVDR 12.8 2.31 0.94
NLA-MVDR 12.4 2.19 0.92

IC-MVDR 12.9 2.24 0.93
FL-SF 11.8 2.10 0.90

CUM-AVG-MVDR 9.1 1.95 0.89
REC-AVG-MVDR 10.1 2.06 0.91

BLOCK-AVG-MVDR 9.7 2.03 0.90

Step 3: Noise segments, sourced from CHiME-3, were scaled
by the predefined SNR values in Table 1 and then mixed with the
speech signal to yield the final mixture signals.

The CHiME-3 employs a 6-element planar microphone array,
where the orientation of the second microphone contrasts with the
remaining five. During synthesis, the channel of this particular mi-
crophone was excluded. The spatial position of the microphone ar-
ray was randomly determined, focusing only on its spatial displace-
ment without rotations. Synthesized signals span between 1 and 15
seconds, sampled at 16 kHz. Segments are sampled randomly from
WSJ0 and CHiME-3 with no overlaps among the training, valida-
tion, and test sets. The resulting dataset comprises 20000 training
samples, 2000 validation samples, and 2000 test samples.

A 5-channel static dataset was synthesized using identical pa-
rameters. The only difference is that we only considered the first
positional point from the randomly generated spatial trajectories of
moving sound sources in step 2.

4.2. Experiment configurations

The Hanning window and STFT length were both configured at
1024 samples, with a hop length of 256 samples. In the training of
Conv-TasNet, hyperparameters were defined as follows: B = 256,
H = 512, X = 8, R = 4, and Sc = 256. A sigmoid function was
employed for mask activation. The Adam optimizer was utilized
with a batch size of 16 and a learning rate of 1× 10−4. Throughout
the training, the learning rate scheduler and early-stopping method-
ologies were implemented. The parameters were chosen with ref-
erence to [28]. The parameters for LA and NLA are specified in
Table 1 by referencing established practices in [17, 18]. Adam op-
timized was used. The learning rate scheduler and early-stopping
were adopted.

4.3. Training objective and evaluation metrics

We use a negative utterance-level signal-to-noise ratio (SNR) as the
loss function for end-to-end training, defined as

L(s, ŝ) = −10 · log10
(

∥s∥2

∥s− ŝ∥2

)
. (8)

Here s is the reverberant clean speech signal on the reference micro-
phone, and ŝ is the enhanced signal. Three metrics are utilized for
evaluation: SDR, PESQ, and STOI.

5. RESULTS AND ANALYSIS

Tables 2 and 3 display the results for static and dynamic sound
sources, respectively, which are averaged from the test set evalua-
tions. In Table 2, the IC-MVDR achieves the highest SDR gain,
while the NLA-MVDR attains the top PESQ and STOI. The CUM-
AVG-MVDR method outperforms both the REC-AVG-MVDR and
BLOCK-AVG-MVDR on the static sound source dataset. The FL-
SF performance falls between the two methods above.

In Table 3 for dynamic situations, the IC-MVDR still achieves
the best SDR performance, whereas the PESQ and STOI perfor-
mance of LA-MVDR is the best. Additionally, the REC-AVG-
MVDR method is good in the SDR, PESQ, and STOI metrics, while
the performance of the CUM-AVG-MVDR declines in comparison
to the static cases. Despite a performance decrease of the FL-SF with
moving sound sources, it still outperforms conventional methods

Comparing the static and dynamic results, it is clear that the con-
ventional spatial filters are sensitive to sound source movement, as
three weighting strategies exhibit noticeable performance degrada-
tion in dynamic environments. However, the attention-driven meth-
ods display robust performance in both static and dynamic tests,
where the SDR performance degradation is less than 0.5 dB.

The experimental results also provide some enlightening con-
clusions: 1) Employing DNNs for estimating time-varying statistics
in the conventional multichannel spatial filtering pipeline, such as
MVDR, results in filters with speech quality and intelligibility ad-
vantages compared to the fully learnable spatial filters. One possible
reason is that the derivation of conventional spatial filters considers
prior information from the signal model and reduces speech distor-
tion. 2) Using DNNs to directly estimate the inverses of the co-
variance matrices improved the SDR performance of the resulting
filters. 3) The fully learnable spatial filter results showed that the
errors from a spatial filtering system can be optimized in a single
step, thereby avoiding the multiple errors introduced within differ-
ent stages in the widely used multi-stage frameworks, such as mask-
based neural beamforming.

6. CONCLUSIONS

This paper investigated attention-based SCM estimation methods
and a fully learnable spatial filter for multichannel speech enhance-
ment. The attention-driven approaches showed strong robustness
across dynamic and static environments, outperforming conven-
tional spatial filtering techniques. We proposed a method that im-
plements MVDR by estimating the inverses of covariances matrices,
showing a clear SDR performance improvement over two kinds of
datasets. Additionally, the approach of weighting ISCMs using at-
tention weights to estimate SCMs outperformed the reference meth-
ods in terms of PESQ and STOI. Incorporating the attention mech-
anism into a conventional spatial filtering pipeline significantly im-
proves the overall performance compared to conventional averaging-
based methods.
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