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ABSTRACT

In this work, we seek to build effective code-switched (CS) auto-
matic speech recognition systems (ASR) under the zero-shot set-
ting where no transcribed CS speech data is available for training.
Previously proposed frameworks which conditionally factorize the
bilingual task into its constituent monolingual parts are a promising
starting point for leveraging monolingual data efficiently. However,
these methods require the monolingual modules to perform language
segmentation. That is, each monolingual module has to simultane-
ously detect CS points and transcribe speech segments of one lan-
guage while ignoring those of other languages – not a trivial task.
We propose to simplify each monolingual module by allowing them
to transcribe all speech segments indiscriminately with a monolin-
gual script (i.e. transliteration). This simple modification passes the
responsibility of CS point detection to subsequent bilingual modules
which determine the final output by considering multiple monolin-
gual transliterations along with external language model informa-
tion. We apply this transliteration-based approach in an end-to-end
differentiable neural network and demonstrate its efficacy for zero-
shot CS ASR on Mandarin-English SEAME test sets.

Index Terms— code-switched ASR, zero-shot ASR, CTC

1. INTRODUCTION

In order to build multilingual automatic speech recognition (ASR)
systems that are robust to code-switching (CS), practitioners must
tackle both the long-tail of possible language pairs [1] and the rela-
tive infrequency of intra-sententially CS examples within collected
training corpora [2]. Therefore, a preeminent challenge in the CS
ASR field is to build effective systems under the zero-shot setting
where no CS ASR training data is available. Recent advancements
in multilingual speech recognition have demonstrated the impres-
sive scale of cross-lingual sharing in neural network approaches [3–
10], and these works have shown that jointly modeling ASR with
language identity (LID) grants some intra-sentential CS ability [9–
11]. However, most of these large scale models skew towards high-
resourced languages [7] and do not seek to directly optimize for
intra-sentential CS ASR between particular language pairs.

A more promising direction towards zero-shot CS ASR can be
found in prior works which seek to incorporate monolingual data
directly to improve CS performance [12–22]. In particular, there
are several works which achieve joint modeling of CS and monolin-
gual ASR by conditionally factorizing the overall bilingual task into
monolingual parts [23–25]. By using label-to-frame synchroniza-
tion, this conditionally factorized approach can make a CS predic-
tion given only the predictions of the monolingual parts [23] – the-
oretically these conditionally factorized models can model CS ASR
without any CS data, but this has not been previously confirmed.

Fig. 1. Examples showing the difference between language segmen-
tation targets Y M/E

SEG obtained via masking (§2.2) vs. transliteration
targets Y M/E

TRA obtained via cross-lingual pseudo-labeling (§3.1).

In this work, we seek to build CS ASR systems under two zero-
shot data conditions: 1) monolingual speech and CS text data are
available, 2) only monolingual speech and text data are available. In
particular, we are interested in exploring the zero-shot capability of
conditionally factorized joint CS and monolingual ASR models.

We first re-formulate the initial monolingual stage of these con-
ditionally factorized models in terms of their language segmentation
burden, showing that prior works expect each monolingual module
to perform CS point detection and transcription in tandem. Any er-
rors in CS point detection are thus propagated downstream to the
final bilingual stage which attempts to stitch multiple monolingual
predictions into an output which may or may not be CS. To improve
model robustness towards zero-shot CS ASR, we propose an alter-
native formulation of the monolingual stage such that each module
is an indiscriminate transliterator, transcribing all speech using a
monolingual script without any regard for potential CS points. As
a result we delay CS point detection until the final bilingual stage,
allowing our models to condition this critical decision on multiple
monolingual inputs and incorporate additional information from ex-
ternal language models. Our transliteration-based method yielded 5
absolute error-rate reduction in our zero-shot CS ASR experiments.

2. BACKGROUND AND MOTIVATION

In this section, we examine the language segmentation role of the
monolingual modules in previously proposed conditionally factor-
ized models [23], motivating our transliteration-based approach (§3).

2.1. Joint Modeling of Code-Switched and Monolingual ASR

Let us take the Mandarin-English bilingual pair as an example for
the following formulations. Bilingual ASR, where speech may or
may not be CS, is a sequence mapping from a T -length speech fea-
ture sequence, X = {xt ∈ RD|t = 1, ..., T}, to an L-length label



sequence, Y = {yl ∈ (VM ∪ VE)|l = 1, ..., L} consisting of Man-
darin VM and English VE . The conditionally factorized framework
[23] decomposes this bilingual task into three sub-tasks: 1) recogniz-
ing Mandarin, 2) recognizing English, and 3) composing recognized
monolingual segments into a bilingual sequence.

The basis of this approach is to model the label-to-frame align-
ments. For each T -length observation sequence X and L-length
bilingual label sequence Y there are a number of possible T -length
label-to-frame sequences Z = {zt ∈ VM ∪VE∪{∅}|t = 1 . . . T},
where ∅ denotes a blank symbol as in Connectionist Temporal Clas-
sification (CTC) [26] or RNN-T [27]. Further consider that for each
bilingual Z there are two corresponding monolingual label-to-frame
sequences ZM = {zMt ∈ VM ∪ {∅}|t = 1 . . . T} and ZE =
{zEt ∈ VE ∪ {∅}|t = 1 . . . T}. The label posterior, p(Y |X), can
thus be represented in terms of bilingual, p(Z|X), and monolingual,
p(ZM |X) and p(ZE |X), label-to-frame posteriors as follows:

p(Y |X) =
∑
Z∈Z

∑
ZM∈ZM

∑
ZE∈ZE

p(Z,ZM , ZE |X) (1)

where Z and ZM/E denote sets of all possible bilingual and mono-
lingual label-to-frame alignments for a given Y . Eq. (1) is the exact
joint bilingual and monolingual ASR likelihood which can be further
factorized using independence assumptions to obtain the form:

p(Y |X) ≈
∑
Z

p(Z|ZM , ZE)︸ ︷︷ ︸
Bilingual Posterior

∑
ZM

p(ZM |X)
∑
ZE

p(ZE |X)︸ ︷︷ ︸
Monolingual Posteriors

(2)

From Eq. (1) to Eq. (2), the first assumption is that given ZM and
ZE , no other information from the observation X is required to
determine Z, allowing for conditional modeling of the bilingual
posterior p(Z|ZM , ZE ,��X) given only monolingual information.
The second assumption is that given X , ZM and ZE are inde-
pendent, allowing for separate modeling of monolingual posteriors
p(ZM |��ZE , X) and p(ZE |��ZM , X). Note we abbreviate this pair of
separate monolingual modules as p(ZM/E |X) in future sections.

2.2. Modeling p(ZM/E |X) with Language Segmentation

What should be the behavior of the monolingual Mandarin module
p(ZM |X) when encountering a segment of English speech and vice
versa? Monolingual modules in prior works [23–25] determine each
label-to-frame alignment zM/E

t by first determining the language
identity of each speech frame LID(xt) [28]. If the speech frame
xt is from a foreign language then the module will ignore it by emit-
ting a special <NULL> token, otherwise it will transcribe using its
monolingual vocabulary. This monolingual language segmentation
decision is defined as follows (shown for Mandarin):

zMt =


argmax

m∈VM∪{∅}
p(zMt = m|X, zM1:t−1) if LID(xt) is M

argmax
m∈{<NULL>,∅}

p(zMt = m|X, zM1:t−1) if LID(xt) is E

(3)

Note that the frame-wise LID(xt) is not a separate module, but
rather an implicit decision within the posterior maximization over
the <NULL> augmented monolingual label-to-frame alignments
ZM/E = {zM/E

t ∈ VM/E ∪ {∅, <NULL>}|t = 1 . . . T}. This

language segmentation behavior is learned by optimizing likelihoods
of <NULL> masked label targets Y M

SEG and Y E
SEG (e.g. in Figure 1).

It follows that the bilingual p(Z|ZM , ZE) (Eq. (2)) behaves as:

zt =


m if m ∈ VM ∧ e = <NULL>

e if e ∈ VE ∧m = <NULL>

b otherwise
(4)

where m and e are the arguments maximizing p(zMt |X, zM1:t−1)
and p(zEt |X, zE1:t−1) respectively and b is the argument maximizing
p(zt|ZM , ZE , z1:t−1). If either monolingual module predicts a CS
point by emitting <NULL> then the bilingual module defaults to
the prediction of the other monolingual module – in other words,
the first two cases of Eq. (4) expect that the language segmentation
in Eq. (3) is mistake-free. The third fall-back case is considered
for ambiguous language segmentation, such as if m and e are both
<NULL> or both non <NULL>. This case-by-case bilingual de-
cision is an adverse design for our zero-shot objective – models are
likely to become over-reliant on the first two cases during training.
Language segmentation while training on purely monolingual ut-
terances boils down to an over-simplified utterance-level language
identification task which may not generalize to intra-sententially CS
test utterances. If CS point detection is expected to be tricky, then a
more robust strategy should always expect ambiguous monolingual
inputs to the final bilingual decision as in the third case of Eq. (4).

3. PROPOSED FRAMEWORK

In this section, we propose to completely remove language segmen-
tation from monolingual modules using a transliteration-based for-
mulation of p(ZM/E |X). We then present a neural model of our
modified conditionally factorized approach for zero-shot CS ASR.

3.1. Modeling p(ZM/E |X) with Transliteration

Rather than detecting CS points at the monolingual stage in order to
know which speech segments to transcribe vs. which to ignore, we
propose to simply allow each monolingual module to transcribe ev-
erything. This means that for speech of a foreign language the mono-
lingual modules are producing transliterations, mapping sounds to
phonetically similar units within their monolingual vocabularies VM

and VE . In other words, the monolingual modules simplify from
Eq. (3) to the following form (shown for Mandarin):

zMt = argmax
m∈VM∪{∅}

p(zMt = m|X, zM1:t−1) (5)

where the speech X may contain any language. This form com-
pletely removes any sense of frame-wise language identity LID(xt).

To see why this modification is advantageous for zero-shot CS
ASR, consider the corresponding change to the bilingual module:

zt = argmax
b∈VM∪VE∪{∅}

p(zt = b|ZM , ZE , z1:t−1) (6)

Note that this new bilingual form in Eq. (6) never defaults to the pre-
diction of one monolingual module as in the first two cases of the
previously proposed bilingual form in Eq. (4), reducing the risk of
propagating errors made in the monolingual stage. In other words,
the bilingual decision now determines each zt by directly consider-
ing the conditional likelihood p(zt|ZM , ZE , z1:t−1) (Eq. (2)). This
modification effectively delays CS point detection from the monolin-
gual stage (where we would have to simultaneously transcribe and



perform frame-wise language identification per §2.2), to the bilin-
gual stage (where transcription information is already given).

To train monolingual modules to transliterate speech segments
of a foreign language, we obtain transliteration targets Y M

TRA and Y E
TRA

using cross-lingual pseudo-labeling.1 For instance, we pass mono-
lingual English speech XM to a monolingual Mandarin ASR model
ASRM (·) for inference and vice versa as follows:

Y M
TRA ← ASRM (XE) (7)

Y E
TRA ← ASRE(XM ) (8)

where ASRM/E(·) denote generic label-to-frame models – if we use
the same architecture for pseudo-labeling as we do for our mono-
lingual modules then these transliteration targets are cross-lingual
semi-supervisions [30–33].2 Swapping the language segmentation
targets Y M

SEG and Y E
SEG (§2.2) for these transliteration targets Y M

TRA and
Y E

TRA is the only modification required to realize our desired mono-
lingual and bilingual module behaviors in Eq. (5) and (6).

3.2. Conditional CTC with External LM Architecture

Finally, let us consider how to construct a neural architecture for
our modified conditionally factorized framework. Monolingual and
bilingual label-to-frame posteriors (§2.1) may be modeled using
CTC or RNN-T networks as demonstrated by prior works [23–25].
However for zero-shot CS ASR, the conditional independence as-
sumption of CTC vs. the internal language modeling of RNN-T is a
critical difference. A RNN-T based model may require internal lan-
guage model (LM) adaptation [27, 35, 36] to alleviate monolingual
biases while a CTC based model can be directly applied to CS test
sets with optional shallow external LM fusion [37].

We therefore model monolingual, p(ZM |X) and p(ZE |X),
and bilingual likelihoods, p(Z|ZM , ZE), using CTC networks,
PM CTC(·), PE CTC(·), and PB CTC(·), as follows:

PM CTC(z
M
t |X,���zM1:t−1) = SOFTMAXOUTM (hM

t ) (9)

PE CTC(z
E
t |X,�

��zE1:t−1) = SOFTMAXOUTE(hE
t ) (10)

PB CTC(zt|hM ,hE ,���z1:t−1) = SOFTMAXOUTB(hM
t + hE

t ) (11)

where speech encoders, ENCODERM and ENCODERE , map the
speech signal, X , to latent monolingual representations, hM =
{hM

t ∈ RD|t = 1, ..., T} and hE = {hE
t ∈ RD|t = 1, ..., T} fol-

lowed by softmax normalized linear projections to monolingual or
bilingual vocabularies. Then addition fusion yields a bilingual latent
representation which is finally fed to the bilingual CTC. These three
CTC networks are jointly optimized with an interpolated multi-task
objective: L = λ1LB CTC + (1− λ1)(LM CTC + LE CTC)/2.

During decoding, we first merge all CTC likelihoods, PM CTC(·),
PE CTC(·), and PB CTC(·), following the interpolation procedure de-
scribed in Eq. (6) of [25]; we denote this merged CTC likelihood
as PCTC(Z|X). We then jointly decode PCTC(·) with an external
bilingual LM, PB LM(Y ), using the time-synchronous beam search
described in [37], which approximates the following decision:

argmax
Y ∈{VM∪VE}∗

λ2(
∏
Z∈Z

logPCTC(·)) + (1− λ2) logPB LM(·) (12)

1Unlike text-based transliteration [29], pseudo-labeling relies solely on
the resources presumed to be available in our zero-shot CS ASR settings.

2We can apply transliteration to CS speech by stitching predictions corre-
sponding to forced aligned [34] foreign segments between true native targets.

Fig. 2. Conditional CTC architecture consisting of monolingual and
bilingual CTC’s plus an external bilingual LM. Red lines indicate
joint decoding via time-synchronous beam search.

where {VM ∪ VE}∗ denotes the set of all possible bilingual out-
puts.3 This architecture, which we refer to as Conditional CTC, is
depicted by the block-diagram in Figure 2. The monolingual mod-
ules of these Conditional CTC models can perform either language
segmentation (§2.2) or transliteration (§3.1) depending on which set
of monolingual targets (e.g. Figure 1) is used during training. For
transliteration, we obtain Y M

TRA and Y E
TRA (Eq. (7) and (8)) by greed-

ily decoding monolingual CTC models (Eq. (9) and (10)) and then
applying repeat and blank removal.

4. DATA AND EXPERIMENTAL SETUP

Data: We split SEAME [38] training data into CS and monolingual
(Mandarin + English) parts to create two zero-shot settings. The first
setting allows 204h of monolingual labeled speech data (for ASR
training) and 89k lines of unpaired CS or monolingual text data (for
LM training). The second fully zero-shot setting removes the CS
unpaired text data, leaving 49k lines of unpaired monolingual text
data. Monolingual CTC’s trained on the English and Mandarin only
SEAME splits were used for cross-lingual pseudo-labeling §3.1.
Models: Models are trained using ESPnet [39]. We apply speed per-
turbations to up-sample training data by 3x. We combine 4000 Man-
darin characters with 4000 English BPE [40] units to form the output
vocabulary. Conditional CTC models have two conformer encoders
[41, 42] with 12 blocks, 4 heads, 15 kernel size, 2048 feed-forward
dim, 256 and attention dim. Vanilla CTC baselines with only one
encoder use 512 attention dim, so all models have about 80M param-
eters. All models are initialized with encoder(s) pre-trained on 150h
of Mandarin AISHELL-1 [43] and/or 118h of English TED-LIUM-
v1 [44]. We set λ1 = 0.7 (§3.2) during training for 40 epochs. We
set λ2 = 0.8 (§3.2) during decoding with beam size 10. We use
RNN-LMs with 4 layers and 2048 dim trained for 20 epochs.
Evaluation: Systems are evaluated on the full SEAME test sets (de-
vman and devsge) and also scored individually on the CS and mono-
lingual portions of these sets. We measure mixed error-rate (MER)
that considers word-level English and character-level Mandarin.

5. RESULTS

Table 1 presents results in three horizontal partitions where 1) all
SEAME training data is allowed 2) CS speech data is removed and
3) CS speech and text data are removed; the latter two settings emu-
late practical zero-shot scenarios. When CS speech data is available,
language segmentation is reliable and thus the transliteration-based
method is not necessary (A2 vs. A3). However, once CS speech
data is removed the language segmentation approach degrades 13

3For language segmentation variants of Conditional CTC, we do not ex-
pand hypotheses with the special <NULL> token to avoid corrupt outputs.



Table 1. Results comparing Conditional CTC models with transliteration-based monolingual modules to their language segmentation coun-
terparts and Vanilla CTC baselines. The 1st horizontal partition shows top-line results when CS ASR training data is available. The 2nd
and 3rd partitions show zero-shot results when only monolingual ASR training data is available. Performances on the full, CS only, and
monolingual only splits of the SEAME test sets are measured by % mixed error rate (MER ↓). All models use CTC + LM decoding.

ASR LM DEVMAN DEVSGE
ID Model Monolingual Behavior Data Data Full CS M Full CS M

A1 Vanilla CTC [37] No Monolingual Modules CS + M CS + M 18.8 18.2 21.5 26.2 23.7 29.8
A2 Conditional CTC [24, 25] Language Segmentation CS + M CS + M 17.1 16.5 19.9 23.5 21.4 26.5
A3 Conditional CTC (Ours) Transliteration CS + M CS + M 17.3 16.9 19.1 24.0 22.1 26.7

B1 Vanilla CTC [37] No Monolingual Modules M CS + M 36.6 38.9 27.0 42.5 47.0 36.1
B2 Conditional CTC [24, 25] Language Segmentation M CS + M 30.1 32.0 22.0 35.7 39.7 30.1
B3 Conditional CTC (Ours) Transliteration M CS + M 25.2 26.0 21.9 31.0 31.5 30.2

C1 Vanilla CTC [37] No Monolingual Modules M M 39.1 41.6 28.4 44.8 50.0 37.3
C2 Conditional CTC [24, 25] Language Segmentation M M 32.2 34.4 23.0 37.8 42.6 31.1
C3 Conditional CTC (Ours) Transliteration M M 27.3 28.5 22.6 32.7 34.0 30.8

Table 2. Ablation study examining the relative importance of mono-
lingual CTC, bilingual CTC, and bilingual LM modules during de-
coding as measured by % mixed error rate (MER ↓) on the devman
test set. Bilingual modules are shown in blue and the most severely
degraded combination (with no bilingual modules) is bolded.

# Model Decoding Likelihoods MER(↓)

1 Cond. CTC w/ Trans. PM CTC, PE CTC, PB CTC, PB LM 25.2
2 − Bilingual LM PM CTC, PE CTC, PB CTC 27.4
3 −Monolingual CTCs PB CTC, PB LM 25.7
4 − Bilingual LM PB CTC 27.9
5 − Bilingual CTC PM CTC, PE CTC, PB LM 26.0
6 − Bilingual LM PM CTC, PE CTC 48.1

absolute MER on both full test sets; as a result the transliteration
approach outperforms by 5 absolute MER, a wide margin, owing
primarily to superior performance on CS utterances (B2 vs. B3).
When CS text data is also removed both variants of Conditional CTC
degrade only by an additional 2 absolute MER and the gap between
remains (C2 vs. C3). In all three data settings both Conditional CTC
models outperform Vanilla CTC baselines.

5.1. Ablations on the Conditional CTC Model

Our Conditional CTC models consist of three types of modules:
monolingual CTC’s (PM CTC and PE CTC), bilingual CTC (PB CTC),
and bilingual LM (PB LM). In Table 2, we examine the relative con-
tributions of these modules by removing each from model B3 of
Table 1 during joint decoding (described in §3.2). Removing the
bilingual LM (line 2) degrades performance more than removing
the bilingual CTC (line 5), showing the importance of utilizing CS
textual data when available. Further, note that monolingual CTCs do
contribute (line 3), but are insufficient on their own (line 6). Finally,
the fact performance is still reasonable without the bilingual CTC
(line 5) suggests that separately trained monolingual CTCs may be
directly applied to CS ASR if a CS LM is available – this direction
may offer a high degree of scalability towards the long-tail of possi-
ble CS pairs and towards CS between three or more languages.

5.2. Relaxing the Zero-Shot Setting

How much CS ASR training data do we need for the originally pro-
posed language segmentation method (§2.2) to be sufficient? The

Fig. 3. Analysis on the amount of CS ASR training data required for
conditional CTC with language segmentation to outperform condi-
tional CTC with transliteration. MER(↓) on devman is shown.

answer depends on the proximity of the particular language pair and
characteristics of the dataset being used, but in our experimental
setup we find that the answer is 2h of CS speech data (see Fig-
ure 3). The decreasing effectiveness of our transliteration method
for increasing amounts of CS ASR training data suggests that the
cross-lingual pseudo-labels are noisy to a degree. Future investiga-
tions into improving pseudo-labeling quality (e.g. via constrained
decoding) may benefit this work and other related techniques which
employ cross-lingual semi-supervision [30–33].

6. CONCLUSION

We identify that the promising conditionally factorized joint CS and
monolingual ASR framework has an acute weakness which limits its
applicability to zero-shot CS ASR; the original formulation expects
that each monolingual module can cleanly transcribe native speech
while ignoring foreign speech. We propose a simple modification via
cross-lingual pseudo-labeling to allow the monolingual modules to
instead produce transliterations of foreign speech, thereby avoiding
error propagation of frame-wise LID decisions. We demonstrate the
effectiveness of our transliteration-based method using Conditional
CTC models deployed for zero-shot Mandarin-English CS ASR. In
future work, we will extend to other languages, scale beyond bilin-
gualism, and refine our pseudo-labeling technique.

This work was supported by JSALT 2022 at JHU via Amazon, Microsoft
and Google. Brian and Shinji are also supported by the HLTCOE at JHU.
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