
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Heo, Jun Wook, Ramachandran, Gowri, & Jurdak, Raja
(2023)
PPoS: Practical Proof of Storage for Blockchain Full Nodes.
In Proceedings of the 5th IEEE International Conference on Blockchain
and Cryptocurrency (ICBC).
Institute of Electrical and Electronics Engineers Inc., United States of
America, pp. 1-9.

This file was downloaded from: https://eprints.qut.edu.au/238319/

© 2023 IEEE

Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribu-
tion to servers or lists, or reuse of any copyrighted component of this work in other works.

License: Creative Commons: Attribution-Noncommercial 4.0

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/ICBC56567.2023.10174897

https://eprints.qut.edu.au/view/person/Heo,_Jun_Wook.html
https://eprints.qut.edu.au/view/person/Ramachandran,_Gowri.html
https://eprints.qut.edu.au/view/person/Jurdak,_Raja.html
https://eprints.qut.edu.au/238319/
https://doi.org/10.1109/ICBC56567.2023.10174897


PPoS : Practical Proof of Storage for Blockchain
Full Nodes

1st Jun Wook Heo
Trusted Networks Lab

School of Computer Science
Queensland University of Technology

Brisbane, Australia
junwook.heo@hdr.qut.edu.au

2nd Gowri Ramachandran
Trusted Networks Lab

School of Computer Science
Queensland University of Technology

Brisbane, Australia
g.ramachandran@qut.edu.au

3rd Raja Jurdak
Trusted Networks Lab

School of Computer Science
Queensland University of Technology

Brisbane, Australia
r.jurdak@qut.edu.au

transparency among the nodes. Bitcoin is one of the most
well-known cryptocurrencies in which blockchain technology
plays a crucial role in security and decentralisation. There are
tens of thousands of applications using blockchain technology,
but in terms of distributed and decentralised storage, their
architectures are similar to Bitcoin’s design, where full nodes
store the entire ledger in their own storage.

There are two types of clients in Bitcoin: full nodes and
lightweight nodes. Storing the entire history of transactions
and blocks, full nodes can independently validate all transac-
tions and blocks. On the other hand, lightweight nodes, known
as simplified-payment-verification (SPV) clients, access full
nodes to fetch transactions for validation. As the size of the
ledger grows, a full node requires enormous resources such
as computing power, network bandwidth, or storage space.
Nevertheless, full nodes are not rewarded for their contribution
to the Bitcoin network, while mining nodes are rewarded for
processing transactions and generating new blocks [1]. The
lack of incentives for full nodes creates a risk of full nodes
withdrawing from the network or not maintaining their own
full copies of stored data.

As blockchain networks rely on a healthy population of full
nodes, reducing the number of full nodes can compromise
security and decentralisation [2]. Full nodes on a peer-to-peer
network have a risk of not only being unable to connect to
the network due to network problems or various attacks but
also being unable to provide data due to storage problems.
Therefore, the number of full nodes can significantly affect
data availability. In addition, the reduction in the number of
full nodes can lead to a concentration of traffic, which reduces
the degree of decentralisation and increases the probability of
a single-point failure.

To keep blockchain networks healthy, it is important that
each full node stores its own copy of the ledger in dedicated
physical storage. However, there are three types of attacks
on storage nodes: Sybil attacks, outsourcing attacks, and
generation attacks [3]:

• Sybil Attacks : A malicious node could create multiple
fake identities and pretend to store multiple copies of the
entire ledger for each fake identity. However, it stores
only a single copy of the ledger.
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I. INTRODUCTION

Blockchain is a distributed and immutable ledger managed
in a decentralised manner. The ledger is made up of blocks
linked to previous blocks using cryptographic hashes and is
shared among all participants so the ledger is secure and
immutable. As blockchain is a publicly distributed database
managed by nodes that do not fully trust each other, various
consensus protocols are utilised to validate and update the
ledger to maintain transparency. Thus, transparency of the
distributed ledger underpins the blockchain to be reliable.
Full nodes, which locally store the entire ledger, play a key
role in transaction and block verification to maintain data



• Outsourcing Attacks : A malicious node could pretend to
store data on its local storage by fetching data from other
storage nodes and serving it.

• Generation Attacks : A malicious node could generate
and serve data that the node does not store in its own
storage.

These attacks have fueled research into decentralised algo-
rithms that can verify the integrity and availability of ledger
copies on full nodes. In general, Proof-of-storage (PoS), which
verifies the integrity of remotely stored data, represents a
combination of Provable Data Possession (PDP) and Proof of
Retrievability (POR) [3], [9]. PDP allows users to verify the
integrity of data outsourced to cloud storage without retrieving
it [4], whereas POR allows users to retrieve outsourced data
to cloud storage, so the users can recover the data [6].
However, PDP and POR cannot address Sybil, outsourcing,
and generation attacks mentioned above. The work in [3]
introduces Proof-of-Replication (PoRep), which ensures that
a remote storage provider stores data in a uniquely dedicated
physical storage, and Proof-of-Spacetime (PoSt), which lets
that a remote storage provider spends its resources, time, and
storage space, to store data in a uniquely dedicated physical
storage.

To prevent the three attacks listed above, PoRep utilises
iterative encryption and decryption schemes where it inten-
tionally takes a long time to construct distinct replicas (phys-
ically independent copies). A Sybil attacker creating n-fake
identities, for instance, has to perform n-times encryption and
also store n-copies of data, requiring huge resources. Due to
the time-consuming process of generating unique replicas for
each node, it is difficult to mount outsourcing and generation
attacks as the attackers cannot respond to users’ requests
for data within a short amount of time. Building on these
advancements, Filecoin is a decentralised storage service that
implements PoRep and PoSt to prove that storage providers
are storing data on their own physical storage. However, it
takes around 5 ∼ 10 minutes for a 1 MByte file for Filecoin
to store in a physically unique storage [10]. In addition,
PoRep has long latency for decryption because an iterative
block cipher is also used to decrypt data. The long decryption
time can have a negative effect on system performance when
storage providers respond to data requests from users, affecting
throughput and latency (or response time). Particularly, full
nodes in blockchain frequently communicate with other nodes
to provide blockchain ledger data. As a result, it is difficult
to adapt existing PoS schemes to blockchain full nodes to
ensure that they store the entire ledger in their own storage.
The symmetric nature of PoRep in terms of the prolonged
encryption and decryption time is therefore prohibitive for use
in blockchain full nodes.

In this paper, we introduce a Practical PoS scheme with
Asymmetric Performance and Chained Architecture of en-
cryption and decryption for blockchain full nodes, addressing
Sybil, outsourcing, and generation attacks. Specifically, our
approach prolongs encryption time for resilience against these
attacks, while ensuring decryption remains fast for high re-

sponsiveness. To create a unique replica for each full node,
we use F (x) = x2 over Galois fields [11] GF (2n) for
x ∈ GF (2n) and its inverse operation to encrypt and decrypt
blocks where the inverse operation takes much longer than
calculating F (x) = x2. As blockchain keeps generating new
blocks periodically, a previously encrypted block is used to
encrypt the next block as an encryption key, which links
encrypted blocks to each other. This link of encrypted blocks
makes it difficult for malicious nodes to generate their unique
replica. The major contributions of this paper are:

• We propose Practical Proof of Storage (PPoS), as the first
PoS solution for blockchain ledger data to prove that a
full node stores a unique replica of the ledger in its own
unique physical storage. Therefore, the number of full
nodes can mean that the same number of replicas of the
ledger is available on the network.

• We analyse PPoS and show that its asymmetric design
of encryption and decryption significantly increases re-
sponsiveness to data access requests while maintaining
resilience against key distributed storage attacks. The fast
decryption can improve data retrieval performance when
full nodes process users’ requests.

• We evaluate PPoS in simulation and testbed experiments
to confirm its performance benefits of up to 25-fold
reduction in decryption time while maintaining a high
degree of decentralisation. In terms of security, by using
previously encrypted blocks as keys to encrypt the next
blocks, it is nearly impossible to properly encrypt a block
without its previous encrypted blocks. Therefore, PPoS
resilience increases for longer chains, as the encryption
time increases if the node does not store previously
encrypted blocks.

The rest of the paper is organised as follows. Section II dis-
cusses related work on PoS. Section III outlines the details of
PPoS including the architecture, proof processes and security.
Section IV presents evaluation results in the aspects of per-
formance, decentralisation, and security. Section V concludes
the paper.

II. RELATED WORK

As many applications are relying on outsourced storage
services with the widespread use of cloud computing, PoS
is attracting attention as a method of measuring the quality of
outsourced storage services. The quality of outsourced storage
services includes not only data availability and integrity but
also the trustworthiness of the storage providers [12]. PDP
and POR are introduced to provide data availability and
integrity but cannot address the three aforementioned attacks.
Therefore, Filecoin introduces PoRep to mainly address these
attacks.

PDP is proposed to prove that a storage server possesses the
outsourced data without retrieving it [4], [5]. The data owner
locally stores pre-processed metadata to verify a proof that
is generated by a storage provider to convince the data owner
that the provider stores the original data. The owner repeatedly
sends a challenge to the storage provider. To prove the data



TABLE I
A SUMMARY OF PROOF OF STORAGE SOLUTIONS

Solution Countermeasure Blockchain-Compatible
Sybil Attack Outsourcing Attack Generation Attack Decentralisation Low Decryption Latency

[4] ✗ ✗ ✗ ✗ −
[5] ✗ ✗ ✗ ✗ −
[6] ✗ ✗ ✗ ✗ −
[7] ✗ ✗ ✗ ✗ −
[3] ✓ ✓ ✓ − ✗
[8] ✓ ✓ ✓ ✓ ✗

PPoS ✓ ✓ ✓ ✓ ✓

possession, the storage provider then responds to the request
with a proof which is generated with the original data and
the challenge. However, PDP does not provide data recovery
for data corruption, so it is difficult to recover damaged data,
limiting data availability.

In addition to data integrity for remote data, POR provides
data recovery using error correcting codes [6], [7]. POR
embeds sentinels, which are sets of check blocks with random
values, into the encrypted data. A verifier asks a prover for
the sentinel values associated with the sentinels specified by
the verifier as a challenge. Using the error-collecting codes,
POR can recover the original data against a small portion of
corruption. However, a prover cannot properly respond to a
verifier’s requests if significant portions of the original data
have been modified or deleted.

PoRep [3] is introduced as a new type of Proof-of-Storage,
which can prove that replicated data is stored on the uniquely
dedicated physical storage. This is resistant to Sybil, outsourc-
ing, and generation attacks. To achieve replication, PDP and
POR schemes need to generate a set of encrypted replicas and
manage the mapping of secret keys and those replicas, which
is expensive and inefficient. To solve this problem, PoRep pro-
poses a time-bounded replication construction called sealing.
The original data is repeatedly encrypted with AES-256 to
intentionally increase the sealing time. This expensive sealing
time plays a key role in preventing malicious attackers from
generating the replica. A malicious prover who does not store
a replica needs to seal the data to respond to a verifier’s
request, but the computation is expensive, so the response time
is highly likely to exceed the required time limit. However,
unsealing to reconstruct the original data is also expensive
due to the repeated decryption of AES-256.

PoSt is a scheme for proving that a prover has spent
time and storage resources to store a replica. PoSt entails
unpredictable and frequent challenges to convince a verifier
that a prover has correctly stored the data for the challenge
period. Otherwise, a prover can cheat by retrieving the data
from other outsourced storage in advance of the challenges
due to infrequent or predictable challenges. However, frequent
interactive validation can compromise network and computa-
tional efficiency. To solve this issue, PoSt proposes a non-
interactive validation scheme where challenges and proofs are
periodically generated and stored in chronological order. As
the sequence of challenges and proofs called proof-chain is a

verifiable record, a verifier can verify them at once without
interactive communication each time [6]. However, PoSt like
PoRep, is also based on iterative encryption and decryption
and requires an auditable storage such as a blockchain to
record proofs that provers generate periodically.

Filecoin [8] is a decentralised storage service implement-
ing PoRep and PoSt with Zero-Knowledge Succinct Non-
Interactive Arguments of Knowledge (zk-SNARKs). A unique
physical copy of data is generated by sealing which encrypts
data with a unique key. Storage miners repeatedly generate
proofs of the replications to ensure they are storing the data.
For the non-interactive proof, the zk-SNARK scheme consists
of the following steps [13].

• KeyGen : In this step, a proving key and a verification
key for a prover and verifier are generated with a security
parameter and a function. The function is converted into
an arithmetic circuit that consists of AND, OR, and NOT
gates. The proving key is used as an input by a prover
to generate a proof while the verification key is used by
a verifier to verify a proof. In this step, Filecoin also
generates a replica of the original data with a sealing
key.

• Prove : A prover generates a proof by using the proving
key, witness, and input x in this step. Since the input x is
public, a prover and verifier share it, whereas the witness
is secret, so the prover must prove that they know it.
For Filecoin, the public input x corresponds to a random
challenge and the witness corresponds to the replica.

• V erify : In this step, a verifier can validate the proof
which is generated by a prover in the proof stage by
using the public input x and the verification key.

PoRep of Filecoin is mainly focused on addressing three
PoS attacks by using iterative encryption to lengthen the
generation time of a unique copy for each prover. A malicious
node cannot immediately prove the data storage by outsourcing
attacks unless the node stores its own copy. Therefore, the long
encryption time plays a key role in preventing outsourcing at-
tacks, but the repeated encryption in Filecoin leads to increased
decryption time. The long decryption time is prohibitive for
blockchain full nodes, as we describe next.

Full nodes maintain an entire copy of the blockchain ledger.
Without any external reference, they can verify transactions
and blocks with the entire data, which is stored in their own
dedicated storage, maintaining the system’s decentralisation.



Based on the period of time designed to generate new blocks
in Bitcoin, they receive and store a new block in their dedicated
storage every 10 minutes. When a full node receives requests
to verify transactions or blocks, it has to retrieve its own ledger.
If a full node uses PoRep, the encrypted data involved in
verification must also be decrypted. Therefore, slow decryption
can lead to degrading the performance of the entire blockchain
network, indicating that PoS for blockchain full nodes requires
fast decryption but slow encryption.

Table I shows the summary of PoS solutions. PDP and POR
solutions cannot handle Sybil, outsourcing, and generation
attacks and these solutions are not suited for blockchain full
nodes. PoRep and PoSt of Filecoin can prevent these three
attacks but they are not suitable solutions to be adopted
for blockchain full nodes due to their poor decryption per-
formance. We propose PPoS which not only handles these
attacks, but also has a fast decryption time for blockchain full
nodes.

III. PRACTICAL PROOF OF STORAGE

In this section, we discuss details of encryption and de-
cryption, and the method of proof generation and verification
employed by PPoS. Fig. 1 illustrates the process of PPoS. Each
full node generates an encrypted block when it receives a new
block from the network (Step 1). Each full node encrypts the
new block with its own address and its previously encrypted
block as encryption keys then the full node stores the unique
encrypted block in its own storage (Step 2). A verifier who
is randomly selected among full nodes requests a prover to
generate a proof in order to verify that the prover is storing
its own data in its own storage (Step 3). We refer to Treq as the
time the request is sent. The prover generates a proof (Step 4)
and replies to the request at time Tres with the proof (Step 5)
that consists of hashes of n-consecutive encrypted blocks, their
merkle root and randomly selected encrypted blocks among
them. The selected encrypted blocks from the n consecutive
blocks are determined based on the value of the merkle root.
Because the merkle root is unforeseeable, it can be used as a
random seed to select the encrypted block [14], [15]. Tproof

is the maximum allowable time from Treq to Tres to prevent
outsourcing attacks.

Then, the verifier verifies the proof using the prover’s
address and non-encrypted blocks (Step 6). The verifier first
decrypts its encrypted blocks corresponding to the encrypted
blocks in the proof. The verifier can then compute encryption
or decryption using it in the same way that the prover has
done using the encrypted blocks, non-encrypted blocks, and
the prover’s address. The n consecutive hashes and the merkle
root are used to verify the results of the computation. Since
encryption is much more expensive than generating a proof,
a quick response from a prover is an essential prerequisite to
convince a verifier of the prover’s possession of data.

The rest of this section is organised as follows. Section
III-A outlines how encryption and decryption of PPoS achieve
asymmetric performance within a chained architecture. Then,
Section III-B and III-C illustrates how a prover generates

a proof and a verifier verifies it in a decentralised manner,
respectively. Lastly, Section III-D and III-E discuss security
and decentralisation.

A. Encryption and Decryption

In this paper, we use two strategies to improve decryption
performance while guaranteeing long encryption time to ad-
dress Sybil, outsourcing and generation attacks: (i) asymmetric
encryption and decryption times; and (ii) using a previously
encrypted block as a key for encrypting the next block. Asym-
metric encryption and decryption use the square of elements
and its inverse in a finite field for asymmetric performance of
encryption and decryption. Use of encrypted blocks to encrypt
the next block as an encryption key ensures that a block cannot
be properly encrypted without a previously encrypted block.
As shown in Fig. 2, a function F (x) = x2 for x ∈ GF (2n)
is used for decryption while the inverse of F (x) is used for
encryption, where Bk is the k− th block, CBk is the k− th
encrypted block and P.Address is a unique node address
for each node. For encryption, P.Address makes encrypted
blocks unique for each node, whereas CBk−1, the previously
encrypted block, makes it difficult for a malicious attacker to
generate a properly encrypted block. Therefore, PPoS XORs
Bk, the current block, P.Address and the encrypted previous
block CBk−1 before applying F−1. Based on Fermat’s little
theorem [16], the inverse of F (x), F−1, is given by:

F−1(x) = {x ∈ GF (2n) : xp/2} (1)

Where p is 2n over GF (2n) [17]. Decryption is much
faster than encryption because computing x2 is much faster
than computing its inverse in a similar way to encryption and
decryption for MiMC [18]. Before computing the inverse of
the square for encryption, division is performed between the
inputs and feedback of the previous output of the sequence of
the encrypted block if the feedback is non-zero, so the encryp-
tion can be slow and non-parallelisable. Non-parallelisation
can improve the security of PPoS because malicious attackers
cannot speed up the encryption process through parallelisation.
On the other hand, there is no feedback for decryption, so
decryption can be sped up by parallelisation. In addition, it
also performs an XOR between each block and the address of
each full node to create unique encrypted blocks that the full
node stores in its own storage. Next, we detail PPoS’s proof
generation process, followed by its proof verification process.

B. Proof Generation

There are two types of participants in the proof process.
Provers must prove that they store their unique copy in their
own storage by generating a proof while verifiers must verify
the proof generated by a prover. All full nodes can be a prover
and verifier. Since full nodes know the non-encrypted blocks,
they can use encryption or decryption to verify the integrity
of an encrypted block when they receive it.

A prover starts to generate a proof when it receives the
request from a verifier as outlined in Algorithm 1. First, the
prover lists up the hashes of the n-consecutive encrypted



Fig. 1. Overview of Practical Proof of Storage

(a) Encryption

(b) Decryption

Fig. 2. Encryption and Decryption

blocks in its own storage and computes their merkle root.
Using the merkle root as a pseudo-random seed, the prover
selects k encrypted blocks among the n-consecutive blocks.
Finally, the prover sends the verifier the proof which consists
of the merkle root and hash list of the n-consecutive blocks,
and k encrypted blocks.

Algorithm 1 Proof Generation
Input: n and the hash of the start block
Output: PROOF

/* List up the n blocks */
HASHs = (hash(EB0),hash(EB1), ...hash(EBn−1))
/* Compute a merkle root */
ROOT = MerkleRoot(HASHs)
/* Select k encrypted blocks using the merkle root */
EBs = (EB0,EB1, ...EBk−1)
return PROOF[HASHs,ROOT,EBs]

C. Proof Verification

PPoS supports two modes of proof verification: forward and
backward verification, where a verifier can move forward or
backward through the chain of blocks to verify the prover’s

encrypted blocks. Fig. 3 shows forward and backward verifica-
tion where CBk is the k− th encrypted block that is received
from a prover. A verifier can know Bk and Bk+1 which are
k − th and k + 1 − th non-encrypted blocks. For forward
verification, a verifier can generate the prover’s CBk+1 by
encrypting it, and for backward verification, the verifier can
also generate the key data by decrypting CBk which the prover
has used to generate CBk. Backward verification is much
faster than forward verification because decryption is faster
than encryption.

(a) Forward Verification (b) Backward Verification

Fig. 3. Verification

Since new blocks are generated continuously, it is extremely
difficult to verify all blocks every time. In addition, the proof
block cannot be selected among all existing blocks because the
size of the hash list keeps increasing. Therefore, PPoS limits
the range of verifiable blocks to n-consecutive blocks. The
large size of consecutive blocks makes attacks difficult while
increasing the size of proof and computing time to generate
a proof. A verifier randomly selects n-consecutive blocks and
requests that a prover generates a proof for these blocks.

When the verifier receives the proof, the verifier can verify it
using forward or backward verification as shown in Algorithm
2. Tproof must be less than the time that a malicious attacker
can generate encrypted blocks. Thus, provers can convince
verifiers that they store their own encrypted blocks in their
own storage. For verification, the verifier first needs to decrypt
the block corresponding to the encrypted block. Then the
verifier decrypts the encrypted block received from a prover for
backward verification or encrypts it for forward verification.



Finally, the verifier calculates the hash of the encrypted block
and compares it with the received hash. As forward verification
performs encryption and decryption once each while backward
verification performs decryption twice, forward verification is
much longer than backward verification. These forward and
backward verifications are performed for each encrypted block
in the proof.

Algorithm 2 Proof Verification
Input: PROOF = [HASHs, ROOT, EBs]
Output: TRUE or FALSE

/* Check timestamp */
if Treq − Tres > Tproof then

return FALSE
end if
/* Compute a merkle root */
ROOT.v = MerkleRoot(HASHs)
if ROOT.v != ROOT then

return FALSE
end if
/* Verify each EB in EBs */
for EBk in EBs do

/* Backward Verification */
Bk = decrypt(CBk,CBk−1)
EBk−1.v = decrypt(EBk,Bk)
hash.v = hash(EBk−1.v)
if HASHs[k] != hash.v then

return FALSE
end if
/* Forward Verification */
Bk+1 = decrypt(CBk+1,CBk)
EBk+1.v = encrypt(EBk,Bk+1)
hash.v = hash(EBk+1.v)
if HASHs[k] != hash.v then

return FALSE
end if

end for
return TRUE

D. Security Analysis

The long encryption time to generate a unique replica is
key for PPoS to address Sybil, outsourcing, and generation
attacks. We discuss PPoS’s resilience to these attacks below.
Sybil attacks: Thanks to the long encryption time for gener-
ating unique replicas, a Sybil attacker would need enormous
computational power and storage space to generate and store
a unique replica for each fake identity.
Generation attacks: It is virtually impossible for a genera-
tion attacker to generate a unique copy without the original
ledger, given the significant computational resources and time
involved in PPoS’s block encryption.
Outsourcing attacks: There are several possible outsourcing
attacks for proof of storage in the blockchain. For instance,
a malicious attacker who has no encrypted blocks wants
to outsource the encrypted blocks to generate a proof. The

attacker has no hashes of n-consecutive encrypted blocks, so
the attacker should generate n-consecutive blocks first, but
it takes too much time to generate n encrypted blocks. The
other example of an outsourcing attack is that an attacker
had generated encrypted blocks correctly then they deleted
the blocks except for their hashes. In this case, the attacker
can calculate the merkle root of n-consecutive hashes and also
know the k encrypted blocks which are included in the proof.
However, without the previously encrypted blocks, the attacker
cannot generate the k correct encrypted blocks. Even if the
attacker has the previous blocks, we can determine Tproof to
be shorter than the time for the attacker to generate the k
encrypted blocks, given the long encryption time.

E. Decentralisation

PPoS is decentralised by randomly selecting validators,
provers, and encrypted blocks. Verifier selection is randomised
by the hash of a new block which is broadcasted by miners
[19]. When a full node receives a new block, it determines the
verification by comparing the hash of the new block with its
own address. The selected verifier randomly selects a prover
which has to generate a proof to convince the verifier that
it is storing its own blockchain ledger. Therefore, proof and
verification are expected to be performed evenly across all full
nodes. In addition, encrypted blocks that are to be verified are
also randomly selected by a prover using the merkle root of the
hashes of n-consecutive encrypted blocks which are selected
by a verifier. Verifier selection is randomised by a hash of a
new block. However, calculations can be implemented in many
ways, and be customised by system designers according to
different application requirements. Similarly, prover selection
approaches can be customised for specific applications, and
are beyond the scope of this paper.

IV. EXPERIMENT AND EVALUATION

This section evaluates the encryption and decryption perfor-
mance compared with a baseline approach that uses iterative
encryption and decryption with AES-256, as used by Filecoin.
We implement a simulator written in Go language and run it on
Raspberry Pi 4 and measure the performance with 720 Bitcoin
blocks. Note that the real BitCoin blocks were downloaded
and used within the simulator for the evaluation. The size of
the total blocks is 736,583,544 Bytes and the average block
size is 1,023,033 Bytes. Table II shows parameters for the
experiment. To measure the performance of encryption and
decryption, we perform encryption and decryption for 720
blocks in a sequence on Raspberry Pi 4. On the other hand,
to measure the performance of proof and verification, and the
level of decentralisation, we simulate PPoS with 8 nodes and
60 seconds of mining period. Since 60 seconds is 10 times
faster than Bitcoin’s mining time, it is expected that PPoS can
be adopted for blockchains with fast throughput. The number
of consecutive blocks is 4 for the experiment, but the number
can be customised by system designers according to different
application requirements. However, the range of blockchain
nodes is wide and their performance varies. Additionally, there



are various factors that cause network latency. Since we are
primarily targeting IoT blockchains, we only experimented
with the Raspberry Pi in this paper.

TABLE II
EXPERIMENT PARAMETERS

Parameter Value
GF GF(232)

Tproof 2 Seconds
# consecutive blocks 4

# proof blocks 1
# full nodes 8

# Bitcoin blocks 720
Mining period 60 Seconds

A. Performance

1) Encryption and Decryption: Table III shows the latency
of encryption and decryption per megabyte of data. The
baseline approach shows similar performance in encryption
and decryption, whereas decryption in PPoS is about 25 times
faster than encryption. For instance, it takes about 10 seconds
to encrypt and decrypt 1 MByte with the baseline, but it takes
about 0.42 seconds to decrypt it for PPoS. For blockchain full
nodes which need to provide ledger data, a long decryption
time can degrade overall system performance, so the fast
decryption time can lower the barrier to PoS adoption on
blockchains.

TABLE III
LATENCY OF ENCRYPTION AND DECRYPTION PER MBYTE

Encryption[Second] Decryption[Second]
Baseline 10.411 10.383

PPoS 10.631 0.420

2) Proof and Verification: Fig. 4 shows the average time of
generating proof as well as forward and backward verification
on a logarithmic scale. Since forward verification is based on
one encryption operation and a decryption operation, while
backward verification is based on two decryption operations,
forward verification is approximately 12.4 times slower than
backward verification. Compared to verification, proof gen-
eration is much faster because no encryption or decryption
is required. In terms of proof size, the size of the proof
mainly depends on the size of the block since the size of the
encrypted block is much larger than the size of n-consecutive
hashes in the proof. Table IV shows the performance of PPoS
compared to SNARKs. The average proof size is similar to the
average block size, which is significantly larger than the one of
SNARKs. Compared to SNARKs, the average proof genera-
tion time is much shorter, whereas the average verification time
is longer. We can determine that Tproof is 2 seconds which
is long enough to generate a proof and short enough to detect
an outsourcing attack for the experiment. When verifying an
encrypted block using both forward and backward verification,
a verifier can ensure that a prover generates the encrypted
block with an appropriate previous key and generates the next

encrypted block with the encrypted block. To achieve the same
level of security using only backward verification, the verifier
requires two consecutive encrypted blocks, increasing proof
size but reducing the computational resources compared to
forward encryption.

(a) Average Time of Proof and Verification

(b) Average Size of Proof

Fig. 4. Average Time and Size for Each node

TABLE IV
PERFORMANCE COMPARISON BETWEEN PPOS AND SNARKS

Proof Verification
Solution Size Time Forward Backward

PPoS 965.40KB 5.12ms 10431.40ms 841.99ms
SNARKs [20] 288 Bytes 2.3s 10ms

B. Decentralisation

An important requirement for a proof-of-storage algorithm
for blockchain is its degree of decentralisation. To quantify
decentralisation, we adopt the following metrics:

• Fairness index is proposed to measure the fairness level
of resource allocation schemes [21]. Fairness index can
quantify decentrality as,

FI(p) =
(
∑i=N

i=1 pi)
2∑i=N

i=1 p2i
(2)

where pi is the total number of proof or verification
by a node i and where N is the number of full nodes.
Normalised fairness index is also defined as, [22].

NF (p) =
FI(p)− 1

N

1− 1
N

(3)



• As entropy represents the quantification of uncertainty or
randomness, we use normalised entropy to measure the
decentrality of the PPoS scheme. Normalised entropy is
defined as,

NE(p) =

∑i=N
i=1 −pi · log2(pi)

log2(N)
(4)

where pi is the total number of proof or verification by
a node i and where N is the number of full nodes [22].

In the remainder of this section, we use these metrics for
quantifying PPoS’s decentralisation of node selection for proof
and verification.

We randomise the selection of the prover and verifier
using the hash of new blocks to evenly perform proof and
verification for each node. Fig. 5 shows the number of proofs
and verifications for each node. We evaluate the decentrality
level using normalised fairness index and normalised entropy
[22] as shown in Table V. A decentralisation value close
to 1 means decentralised, while a value close to 0 means
centralised. All decentralisation indices are greater than 0.97,
which means that the system is predominantly decentralised.

Fig. 5. The number of proof and verification for each node

TABLE V
DECENTRALISATION OF PROOF AND VERIFICATION

Decentralisation Index Proof Verification
Normalised Fairness Index 0.993 0.976

Normalised Entropy 0.999 0.995

C. Security

PPoS is resistant to the three attacks, forcing full nodes
to generate their own replicas through a lengthy encryption
process. In the case of a Sybil attack, a malicious node has to
perform encryption for all the blocks, from the genesis block
to the latest block, and store the encrypted blocks for each
fake identity. Figure 6 shows encryption and decryption time
by the height of blocks, highlighting the progressive increase
in encryption time with increased block height. For instance,
it takes 127.6 minutes to encrypt 720 blocks. Sybil attacks,
therefore, require enormous computational power and storage
space, becoming increasingly difficult over time as the chain
grows longer.

Fig. 6. Encryption and decryption time by height

In terms of outsourcing and generation attacks, an honest
prover must provide its proof to the verifier within Tproof

and Tproof must be less than the time for a malicious node
to generate encrypted blocks. There are two considerations
to determine an appropriate Tproof . If Tproof is too short,
an honest prover cannot respond to a verifier’s request in
time, whereas if Tproof is too long, a verifier would not be
able to detect outsourcing attacks. To safely increase Tproof

to account for network delay, it is possible to increase the
number of encrypted blocks in the proof. However, increasing
the number of encrypted blocks also increases the proof size.
Since the size of encrypted blocks is the majority of a proof,
increasing the number of encrypted blocks n times also in-
creases the size of a proof produced by honest provers as well
as the time to generate the encrypted blocks by outsourcing or
generation attacks by approximately n times. These parameters
can be chosen by system designers to customise the approach
to their application to balance its security requirements and
responsiveness.

V. CONCLUSION

This paper proposed a decentralised PPoS for blockchain
full nodes with chained architecture and asymmetric perfor-
mance of encryption and decryption. Decryption is about 25
times fast than encryption and previously encrypted blocks
are used to encrypt the next blocks. Therefore, it takes long
enough to generate a unique replica of a blockchain ledger
to prevent Sybil, outsourcing, or generation attacks while
the fast decryption leads to minimisation of the performance
degradation for blockchain full nodes. The proof process
proposed is also decentralised. As a result, PPoS can be
adopted for blockchain full nodes to improve security and
decentralisation. To the best of our knowledge, PPoS is the first
proof-of-storage protocol dedicated to blockchain full nodes.
An interesting direction for future work is the design of a
non-interactive proof protocol with the zero-knowledge proof
to enhance security and to reduce the proof size.
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