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Abstract—The linear minimum mean-squared error (MMSE) 
detector for direct-sequence code-division multiple-access (DS-
CDMA) systems relies on the inverse of the covariance matrix of 
the received signal. In multiuser environments, when few samples 
are available for the covariance estimation, the matrix ill-
conditioning may produce large performance degradation. In 
order to cope with this effect, we propose a modified MMSE de-
tector based on the covariance matrix tapering (CMT). This 
regularization technique modifies the estimated covariance ma-
trix, thereby reducing its eigenvalue spread. Two different taper-
ing matrices are introduced. The performance comparison with 
other regularization techniques is carried out by simulations, 
which show the effectiveness of the proposed technique. 

Keywords-CDMA; multiuser detection; MMSE; regularization; 
covariance matrix tapering 

I. INTRODUCTION 
Multiuser detection techniques [1] have the capability of 

reducing the multiple-access interference in direct-sequence 
code-division multiple-access (DS-CDMA) systems. Among 
the multiuser receivers proposed in the literature (see [1] and 
the references therein), the linear minimum mean-squared error 
(MMSE) detector offers a good trade-off between performance 
and complexity [2]. Indeed, the MMSE detector, implemented 
as a Wiener filter at the chip level, is moderately complex be-
cause it does not require the knowledge of the interfering users’ 
parameters (spreading codes, channels, and timing) [2]. Spe-
cifically, the Wiener MMSE filter is obtained by multiplying 
the inverse of the covariance matrix of the received signal with 
the signature waveform vector of the user of interest [1]-[3], 
and therefore the interfering users’ parameters are implicitly 
contained into the covariance matrix of the received signal. 

In realistic scenarios, the signature waveform vector and 
the covariance matrix are not known and they must be esti-
mated. The estimation errors, which depend on the employed 
estimation techniques, clearly become larger when a small 
sample set is used for the estimation. Examples where the de-
tector is obtained by using small data sets include: 

• transmissions of short data blocks; 
• transmissions over slowly time varying channels, 

where it is convenient to use data blocks within the 
channel coherence time. 

In multiuser CDMA environments, the covariance matrix is 
often ill-conditioned, being characterized by a high eigenvalue 
spread for high values of the signal-to-noise ratio (SNR). As a 

consequence of the high eigenvalue spread, the matrix inver-
sion contained in the MMSE detector tends to enhance the co-
variance matrix estimation errors, causing a large performance 
degradation [3]. 

Different approaches are possible in order to counteract 
such degradation. A first option is to obtain a new covariance 
matrix estimate by exploiting the estimated channels of all the 
users [4]. Indeed, by using good channel estimates, like the 
ones obtained by subspace methods [5], the covariance estima-
tion errors decrease [4]. However, this method requires the 
knowledge of channels, timing, and spreading codes of all the 
users, and therefore it is feasible in the uplink only. A second 
approach relies on regularization techniques [6], which im-
prove the conditioning by modifying the covariance matrix. 
Another alternative is based on reduced rank techniques [2], 
which project the received signal onto a lower-dimensional 
subspace, thereby resulting in a covariance matrix (of the pro-
jected received signal) with smaller eigenvalue spread. Any-
way, certain reduced rank techniques are sometimes classified 
as regularization methods [6]. 

In this paper, we focus on the regularization techniques for 
MMSE detectors. We show that the covariance matrix tapering 
(CMT), previously proposed in [7]-[9] for beamforming appli-
cations, is an effective technique also in the multiuser CDMA 
environment. In this context, we propose new tapering matri-
ces, which outperform the tapering matrix commonly used for 
beamforming. Moreover, the performance of the CMT is com-
pared by simulations to other regularization techniques. 

II. MMSE DETECTION OF CDMA SIGNALS 

A. DS-CDMA System Model 
A DS-CDMA system with K  active users is considered. 

Using a notation similar to [5], the transmitted signal of the kth 
user is expressed by 
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where P  is the number of transmitted symbols within the 
channel coherence time, sT  is the symbol duration, kA , [ ]kb i , 

( )ks t , and kτ  are the amplitude, the ith symbol, the spreading 
waveform, and the asynchronism delay of the user k, respec-
tively. The symbols { [ ]}kb i  are independent and equiprobable 
random variables drawn from the set { 1}± . The spreading 
waveform is expressed by 
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where N  is the processing gain, /c sT T N=  is the chip dura-
tion, ( )tψ  is the chip pulse shaping waveform, assumed rec-
tangular for the sake of simplicity, and [ ] { 1/ }kc j N∈ ±  is the 
(j+1)th value of the short spreading code assigned to the kth 
user. The transmitted signal ( )kx t  passes through a slowly time 
varying multipath channel, assumed to be constant during the 
transmission of the P  symbols, and characterized by an im-
pulse response expressed by 
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where kQ  is the number of paths, ,q kβ  and ,q kτ  are the com-
plex gain and the propagation delay of the qth path of the kth 
user channel, respectively, and ( )δ τ  is the Dirac delta func-
tion. Denoting with ( )n t  the additive white Gaussian noise 
(AWGN) at the receiver side, the received signal ( )r t , ex-
pressed by 
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is firstly filtered by a chip-matched filter, and successively 
sampled at the chip rate 1/ cT , thus obtaining 

 
( 1)

[ ] ( ) ( )s c

s c

lT n T

n s clT nT
r l r t t lT nT dtψ

+ +

+
= − −∫  (5) 

  
1

,
1 0

[ ] [ ] [ ]
K P

k n k n
k i

b i h l i n l
−

= =

= − +∑∑ , (6) 

   
1

, , ,
1 0

[ ] [ ] ( ( ) )
kQ N

n k q k k k s c q k k
q j

h i A c j R iT n j Tψβ τ τ
−

= =

= + − − −∑∑ , (7) 

 
( 1)

[ ] ( ) ( )s c

s c

lT n T

n s clT nT
n l n t t lT nT dtψ

+ +

+
= − −∫ , (8) 

where ( )Rψ τ  is the autocorrelation function of the chip pulse 
shaping waveform ( )tψ . By setting  0 1[ ] [ [ ],..., [ ]]T

Nr l r l r l−= , 
 0 1[ ] [ [ ],..., [ ]]T

Nn l n l n l−= ,  1[ ] [ [ ],..., [ ]]T
Kb l b l b l= , and by defin-

ing  [ ]H l  as the N K×  matrix with elements 
 , 1,[ [ ]] [ ]n k n kH l h l−= , (6) can be rearranged as 
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Taking into account that the K  channels have a finite impulse 
response, with memory   , ,max ( ){ }/q k q k k sL Tτ τ= +    symbol 
intervals, it follows that  [ ] N KH l ×= 0  when 1l L≥ + . Assum-
ing that the receiver window spans M  symbol intervals, we 
obtain 
 [ ] [ ] [ ]l l l= +r Hb n , (10) 

where the column vectors   [ ] [ [ ] ,..., [ 1] ]T T Tl r l r l M= + −r  and 
  [ ] [ [ ] ,..., [ 1] ]T T Tl n l n l M= + −n  have dimension MN , 

2{ [ ] [ ] }H
MNE l l σ=n n I ,   [ ] [ [ ] ,..., [ 1] ]T T Tl b l L b l M= − + −b  is a 

column vector of size ( )L M K+ , and H  is the 
( )MN L M K× +  block Toeplitz channel matrix expressed by 
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B. MMSE Detection with Estimated Covariance Matrix 
For the adopted binary phase-shift keying (BPSK) modula-

tion, the decision rule of a linear receiver is expressed by 

 ˆ [ ] sign( Re( [ ]))H
k kb l l= w r , (12) 

where kw  is a column vector that represents the detector of the 
user k. The detector that minimizes the mean-squared error 

2{| [ ] [ ] | }H
k kE b l l− w r  can be obtained as a Wiener filter [1]-[3], 

as expressed by 
 1

MMSE,k k
−=w R h , (13) 

where 2{ [ ] [ ] }H H
MNE l l σ= = +R r r HH I  is the MN MN×  

covariance matrix of the received signal, and kh , obtained as 
the (KL+k)th column of H , is the signature waveform (i.e., the 
channel-affected spreading code) of the user k. The estimated 
version of the MMSE receiver is expressed by 

 1
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where 
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is obtained without explicit knowledge of H  and of 2σ , and 
ˆ

kh  is obtained by using a training sequence [10] or a blind 
channel estimation technique [5]. The receiver (14), obtained 
by inverting (15), is known as sample matrix inversion (SMI) 
or direct matrix inversion (DMI) detector. 

In many practical situations, the value of P  has to be kept 
small, leading to non negligible covariance matrix estimation 
errors. As an example, when P MN< , R̂  is not full rank and 
therefore not invertible. As a rule of thumb, we can assume that 
the covariance matrix estimation errors are small when 

6P MN>  [11]. However, when the system is not fully loaded, 
the matrix H  can be tall, with rank( )D = H  strictly lower than 
MN . In such a situation, the covariance matrix R  is often ill-
conditioned, especially when the SNR is high. Therefore, the 
matrix inversion contained in (14) amplifies the small covari-
ance matrix estimation errors, according to the eigenvalue 
spread of R  [3], causing significant performance degradation. 

It is noteworthy that a high eigenvalue spread of R  pro-
duces also an amplification of the possible signature waveform 
mismatch k∆h  [12][3]. Moreover, it should be pointed out that 
the problem of a small P  is exacerbated when multiple anten-
nas are used at the receiver side, since the dimension of R  in-
creases by a factor equal to the number of the receiving anten-
nas [13]. Hence, the regularization techniques introduced in the 
next section can also be applied in CDMA systems with multi-
ple receiving antennas. 

III. REGULARIZED MMSE DETECTORS 
Regularization techniques [6] deal with ill-conditioned 

problems by substituting the matrix R  with a matrix character-
ized by a smaller eigenvalue spread. Consequently, the vari-
ance of the estimation errors decreases, at the cost of introduc-
ing some bias in the detector estimate. The goal is to find a 
good trade-off between bias and variance, constructing the 
regularized matrix by judiciously modifying R̂ . 

A. Regularization by Covariance Matrix Loading 
Although not widely recognized, some regularization tech-



niques have already been used in multiuser detection. Indeed, 
the constrained minimum output energy (CMOE) receiver in 
[12][14] exploits a particular form of Tikhonov regularization 
[6] replacing the matrix R  with MNν+R I , as expressed by 

 1
CMOE,

ˆ ˆˆ ( )k MN kν −= +w R I h , (16) 

where ˆtr( )ν α= R  is a positive parameter. By using the eigen-
value decomposition (EVD) H=R UΛU , it is easy to verify 
that the CMOE detector attenuates the eigenvectors associated 
with the small eigenvalues, lowering the eigenvalue spread 
value from 2

max( ) ( ) /χ λ σ=R R  to ( )MN
χ ν+ =R I  

2
max( ( ) ) /( )λ ν σ ν+ +R , where max ( )λ R  is the largest eigen-

value of R . In the array processing literature, this detector is 
known as diagonal loaded SMI (LSMI) [11]. 

B. Regularization by Eigenvalue Decomposition Truncation 
A different regularized detector can be obtained by apply-

ing the EVD to R  and neglecting the eigenvectors associated 
with the MN r−  smallest eigenvalues. Using this kind of regu-
larization, usually referred as truncated singular value decom-
position (TSVD) [6], the reduced rank detector of the user k 
can be expressed as 
 1

TSVD,
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k r r r k
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where rU  contains only the selected r  eigenvectors. If r  is 
equal to rank( )D = H , the detector is constrained to lie in the 
signal subspace [5]. However, a choice r D<  could allow bet-
ter performance in the presence of covariance estimation errors 
[6]. In this way, the eigenvalue spread is reduced from 

2
max( ) ( ) /χ λ σ=R R  to max( ) ( ) / ( )H

r r r r
χ λ λ=U Λ U R R , where 

2( )rλ σ>R  is the rth largest eigenvalue of R . 

C. Regularization by Covariance Matrix Tapering 
In this subsection, we propose a new multiuser detector 

based on the CMT approach, originally proposed in [7]-[9] for 
robust beamforming in order to widen the nulls of the antenna 
array pattern. The basic idea of CMT is to multiply the ele-
ments of R  with different weights, attenuating those elements 
far apart from the main diagonal. In mathematical terms, the 
CMT detector can be expressed as 

 1
CMT,

ˆ ˆˆ ( )k k
−=w R T ho , (18) 

where the symbol o  represents the Hadamard (element-wise) 
product [15] between matrices, and T  is the tapering matrix 
(real, symmetric, and Toeplitz). In the following, we show that 
the CMT approach gives rise to an eigenvalue spread ( )χ R To  
smaller than ( )χ R , thus enabling the bias-variance trade-off. 

Theorem 1 (Schur product theorem) [9]: If R  and T  are 
MN MN×  positive semidefinite (p.s.d.) matrices, then R To  
is p.s.d.. Moreover, if R  is positive definite (p.d.) and T  is 
p.s.d. with no zero entries on the main diagonal, then R To  is 
p.d.. 

Proof: See [15]. 
Definition 1: An MN MN×  matrix T  is a correlation ma-

trix if T  is p.s.d. with MN MN=I T Io , i.e., with all ones on the 
main diagonal. 

Theorem 2 (Eigenvalue spread theorem): If R  is an 
MN MN×  p.d. matrix and T  is an MN MN×  correlation ma-
trix, then 

 ( ) ( )χ χ≤R T Ro , (19) 
where ( )χ R  is the eigenvalue spread of R . 

Proof: See the Appendix. 
Theorem 2 proves that the CMT certainly is a regulariza-

tion technique, but it does not guide us in the design of a suit-
able tapering matrix. In [7][8], the tapering matrix is chosen as 

 sinc, ,
sin( | |)[ ] sinc( | |)

| |m n
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−
T , (20) 

where ,[ ]m nT  is the (m,n)th element of T , and 0α >  is the 
regularization parameter. Anyway, by Theorem 2, any correla-
tion matrix can be selected. For example, the Tikhonov regu-
larization can be interpreted as a particular way to enhance the 
main diagonal of R  with respect to the other diagonals. 
Hence, a reasonable choice of the matrix T  should produce an 
attenuation that increases when moving away from the main 
diagonal. As a consequence, the elements of the tapering ma-
trix should be chosen as 
 ,[ ] (| |)m n f m n= −T , (21) 

where ( )f x  is a non increasing weighting function of x . 
It should be noted that, if α  is not too high, the second de-

rivative of the sinc function in (20) (regarded as a function of a 
continuous variable) is negative, at least for small values of the 
argument. This implies that the decreasing rate of the weight-
ing function increases with | |m n− , or, equivalently, that the 
diagonals close to the main diagonal are weighted with weights 
close to 1, which is the weight of the main diagonal. Therefore, 
in order to test different tapering matrix families, we propose a 
matrix T  whose function (21) has a second derivative equal to 
zero (i.e., the diagonals are weighted linearly), as expressed by 
 tri, ,[ ] clip(1 | |)m n m nα α= − −T , (22) 

where the clipping function clip( )x  is defined as 
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in order to guarantee that all the weights fall in the [0,1]  set. 
Furthermore, we also propose a matrix T  whose function (21) 
has a positive second derivative, as expressed by 
 | |

exp, ,[ ] m n
m n e α

α
− −=T . (24) 

In all the cases, the parameter 0α >  controls the amount of 
regularization. As it happens for the CMOE receiver, the CMT 
receiver is equivalent to the SMI receiver when the regulariza-
tion parameter is set to zero, while it tends to the RAKE re-
ceiver for high values of the regularization parameter. Indeed, 
if 0α = , the tapering matrices defined by (20), (22), and (24) 
become equal to MN MN×=T 1 , i.e., to the all-one matrix. In this 
case, no regularization is applied. On the contrary, for increas-
ing α , the tapering matrices defined by (22) and (24) tend to 
the identity matrix MNI . In this case, only the elements of the 
main diagonal of R̂  are selected, and, since these elements are 
approximately equal, the CMT receiver in (18) is practically a 
scaled version of RAKE,

ˆˆ k k=w h . When such amount of regulari-
zation is applied, the eigenvalue spread ( )χ R To  is roughly 
equal to one, but the receiver has lost all the interference sup-
pression capabilities of the MMSE receiver. 

Of course, neither 0α =  nor α → +∞  are optimal in the 



short data record case. The optimum value of α  depends not 
only on the chosen tapering matrix, but also on the scenario. 
Obviously, when P  increases, the optimum value of α  should 
decrease. Different algorithms for the automatic choice of α  
can be derived by exploiting the methods employed for other 
regularization techniques [6]. These algorithms are still under 
investigation, and therefore they are not discussed in the pre-
sent paper. 

IV. SIMULATION RESULTS 
In this section, we present some simulation results in order 

to compare the performance of the different regularized detec-
tors. We consider a downlink situation with a base station that 
transmits data to K  active users. Gold sequences of length 

31N =  have been chosen for the short spreading codes 
{ [ ]}kc j . The amplitudes of the 15kQ =  chip-spaced channel 
paths are modeled as independent zero-mean complex Gaus-
sian random variables with variance 2

,{| | } 1/q k kE Qβ = . Since 
the channel memory in symbol intervals is 1L = , the size of 
the receiving window has been fixed to 2M =  symbol inter-
vals, and therefore the dimension of R  is equal to 62MN = . 

In the first scenario, we consider 10K =  users with equal 
powers ( kA A= ) and data blocks of length 6 372P MN= = . 
The SNR is defined as 2 2SNR /A σ= . We also assume 
ˆ

k k=h h . Although the perfect channel knowledge is realistic 
only in AWGN channels (where kh  represents the user code), 
we want to focus on the effects of the covariance matrix esti-
mation errors. Fig. 1 shows the bit-error rate (BER) of the 
CMT detector (18) with exponential law (24) as a function of 
the regularization parameter α . It is evident that there exists an 
optimum value of 0.05α ≈  that minimizes the BER. This op-
timum value seems to be approximately constant over the SNR. 
Moreover, it is noteworthy that the CMT detector BER is 
smaller than the SMI detector BER (obtained by CMT with 

0α = ) for all the values of α  in the range 0 0.4α< ≤ . This 
fact implies that also a non optimal choice of α  allows im-
proved performance with respect to the SMI. Values of α  
higher than 0.4 should not be considered, since the CMT detec-
tor becomes very close to the RAKE receiver. 

Fig. 2 compares the BER of the regularized detectors ex-
pressed by (16), (17), and (18). In order to have a fair compari-
son, we have chosen the regularization parameter that gives the 
best performance for each detector. It is noteworthy that the 
two CMT detectors proposed in this paper outperform the 
CMT detector with the sinc profile (20). Among all the esti-
mated detectors, the CMT with exponential profile (24) gives 
the best performance when SNR 15 dB> , producing the same 
BER of the CMOE detector (16) at lower SNR. 

Fig. 3 shows the tapering profiles (20), (22), and (24) for 
the best α  for each CMT detector. It should be noted that all 
the three optimum profiles highly attenuate the elements of R̂  
that are very far from the main diagonal (i.e., when 
| | 45m n− ≥ ). Indeed, since the multipath channel does not 
span a whole symbol interval, the last rows of  [ ]H L  are equal 
to the all-zero matrix, and hence the exact R  contains a zero 
matrix block in the north-east (and in the south-west) corner. 

In the second scenario, we consider 5K =  equal power us-
ers and data blocks of length 8 496P MN= = . In this case, the 
signature waveform vector is simply estimated using a training 
sequence [10] of length 2.5 155B MN= = . Fig. 4 shows the 

BER performance of each optimum regularized detector. We 
omitted the CMT detector with triangular profile (22), whose 
BER for 6 /( 1)MNα = −  is the same of the exponential CMT, 
and the CMT with sinc profile (20), which performs slightly 
worse. In this scenario, none of the detectors outperforms the 
others for all SNRs. At low SNR (SNR 15 dB< ) the TSVD 
detector gives the best performance, while at medium SNR the 
CMOE detector outperforms the other ones. At high SNR 
(SNR 24 dB> ) the CMT detector slightly outperforms the 
CMOE detector, but the BER improvement is smaller with re-
spect to Fig. 2. Therefore, in order to achieve high perform-
ance, the CMT detector has to be used together with a better 
channel estimation technique, such the subspace-based one in 
[5]. Indeed, by applying the method in [5] using small values 
of P , at high SNR the covariance matrix estimation errors 
only are significant, while the signature waveform estimation 
errors are negligible [16]. 

V. CONCLUSIONS 
In this paper, we have proposed a regularized MMSE de-

tector for DS-CDMA systems with small data sets. We have 
proven that the CMT approach reduces the eigenvalue spread 
of the covariance matrix. Two new tapering matrices have been 
introduced. We have shown that the CMT detector outperforms 
other regularized detectors provided that the channel has been 
accurately estimated. The study of algorithms for the choice of 
the regularization parameter will be the subject of future works. 

APPENDIX 
In order to prove Theorem 2, we introduce the following 

theorem, whose proof can be found in [15]. 
Theorem 3 (Eigenvalue majorization theorem) [9]: If R  is 

an MN MN×  p.d. matrix and T  is an MN MN×  correlation 
matrix, then 
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where ( )iλ R  is the ith eigenvalue of R , with the eigenvalues 
ordered in non increasing order. 

By using Theorem 3 with 1n = , because of the eigenvalues 
ordering, we have 
 max max( ) ( )λ λ≤R T Ro . (26) 
Moreover, by Theorem 3 with 1n MN= − , we obtain 
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Since MN MN=I T Io , we have 
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and, combining (27) and (28), it follows 
 min min( ) ( )λ λ≥R T Ro . (29) 
Therefore, by (26) and (29), we have 

 max max

min min
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which concludes the proof. 
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Figure 1.  CMT detector BER as function of the regularization parameter. 
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Figure 2.  BER comparison in the first scenario. 
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Figure 3.  Tapering profiles of the CMT detectors in the first scenario. 
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Figure 4.  BER comparison in the second scenario. 


