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Abstract—We consider the problem of setting up a multicast
connection of minimum cost using network coding. It is well-
known that this can be posed in the form of a convex program.
Our contribution is an asynchronous algorithm for solving the
optimization problem, in analogy to the well-known distributed
asynchronous Bellman-Ford algorithm for routing. Furthermore,
we provide extensive simulation results showing fast convergence
despite the lack of any central clock in the network and
robustness with respect to link- or node failures.

I. I NTRODUCTION

For multicasting in networks random linear network coding
is a capacity achieving scheme [1]. For a given multicast
session it is often desirable to find a solution that can satisfy
the demands while minimizing ressource consumption in the
network, such as bandwith or energy. This is equivalent to
identifying a subnetwork that, fully utilized, can accommodate
the demands. The authors in [2] have suggested posing the
subgraph selection problem as a linear or convex program,
depending on which resource usage is to be minimized.
Furthermore, they propose distributed algorithms for solving
the resulting optimization problems, subgradient optimization
for the linear case and a primal-dual algorithm for the con-
vex case. These algorithms assign to each network node a
processor and find the optimal solution by solely exchanging
update messages between processors that are neighbors in the
network.

Such a distributed operation is highly desirable in practice,
as otherwise the whole network topology has to be collected
at a special “fusion center” which carries out the computation
and then the calculated link- and injection rates have to
be communicated across the network, leading to significant
overhead. Still, one central assumption in these algorithms is
that in every time slot the updates at all nodes are carried out
simultaneously, as if triggered by a central clock signal [2],
[3]. The contribution of our work is to relax this assumption
and instead propose anasynchronousalgorithm for solving the
problem. As we show, our approach gets by with very small
restrictions on the update schedule, even a completely random
sequence of node updates will converge, as long as each node
is chosen with non-zero probability.

Distributed asynchronous algorithms have been proposed
and used for routing, the most prominent example being the
distributed Bellman-Ford algorithm, which has both a syn-
chronous and an asynchronous variation [4, Section 5.2.4].For
network coded traffic and the particular optimization problem
associated with it [2] this is, to the best of our knowledge,

the first asynchronous approach. The asynchronous algorithm
proposed in [5] addresses the problem of setting up a network
code and is therefore orthogonal to our approach, as we are
concerned with providing and allocating a minimal set of
network ressources, before network coding is carried out on
top of these ressources.

The motivations for seeking asynchronous solutions are
two-fold. Firstly, in large networks the assumption of having
a clock that is available at each node is unrealistic or requires
a significant amount of communication overhead. The funda-
mental limits of clock synchronization across a network are
discussed in [6] and the references therein. Secondly, network
transmissions often have a non-negligible loss- or error rate.
When the algorithm requires synchronous round of updates
such losses of messages can seriously impair convergence. An
asynchronous algorithm as the one we suggest, on the other
hand, can easily deal with lost update messages due to the
minimal requirements it poses on the update schedule.

The main idea of our work is to apply a block-coordinate
ascent algorithm to the convex program that describes the
multicast connection. This algorithm, as we show by means of
simulations, has fast convergence compared to the primal-dual
algorithm in [2] and is very robust with respect to randomly
occurring node updates. Even in the presence of link failures,
the algorithm continues updating and eventually converges
without the need of a restart.

The rest of the paper is organized as follows. In Section II,
we review the network model and the problem formulation of
the convex program. In Section III, we derive the asynchronous
algorithm and prove its convergence, while the experimental
results are presented in Section IV. Finally, in Section V we
conclude the paper.

II. N ETWORK MODEL AND OPTIMIZATION PROBLEM

The network is represented by a directed graphG = (V ,A),
whereV is the set of vertices andA is the set of directed
arcs. A multicast session(s, T , R) is a triple consisting of a
source nodes a destination setT ⊂ V and a rateR. Let T
denote the cardinality ofT . All destinations are interested in
the same information from the origin at rateR (as opposed to a
multi-level multicast problem, where some sources need only
a subset of the information [7]). Another extension which is
rather straightforward is multi-source multicasting, where we
have several sources, but every destination is interested in the
entire information originating ateverysource. This extension
has been pursued in [8]. For each destinationt ∈ T we



index the associated flow (and later price) variables with the
superscriptt.

The following convex program [2] establishes a single
multicast connection in a network at rateR:

minimize
∑

(i,j)∈A

fij(zij)

subject to

∑

j:(i,j)∈A

x
(t)
ij −
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x
(t)
ji = σ

(t)
i , ∀i ∈ V , t ∈ T , (1)

0 ≤ x
(t)
ij ≤ zij , ∀(i, j) ∈ A, t ∈ T , (2)

(zij)j:(i,j)∈A ∈ Ci, ∀i ∈ V , (3)

where
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−R i = t,
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(4)

and Ci is a convex subset of the positive orthant containing
the origin. The equations in (1) establish flows at rateR
from the source to all multicast sinks. Constraint (2) means
that the actual link usage is the maximum value of the flows
traversing it. This is where network coding enters the picture;
with routing the actual link usage would be simply the sum
of flows going across. Finally, (3) models the physical layer
capacity regionCi at nodei, and can be given by a wireline
network capacity constraint or an arbitrary broadcast channel
[9].

III. D ECENTRALIZED ASYNCHRONOUSALGORITHM

In this section we apply a block coordinate ascent algorithm
to the convex program (1)-(3) resulting in an, as we show,
decentralized and asynchronous operation. To be concrete,
assume that the capacity regionsCi are given byzij ∈ [0, cij ],
where the link capacitiescij are fixed constants, as for example
in wireline networks. More complicated models have been
studied in [8].

Since the functionzij = maxt∈T x
(t)
ij is not differentiable,

it poses a challenge for gradient-type optimization algorithms.
One approach is to replace this relation with asoft-maximum
that is differentiable and that approximates the maximum
function. Two common approximations are thelog-sum-exp
function [10] and thelp-norm [11], given by

z′ij = L log

(

∑

t∈T

exp
(

x
(t)
ij /L

)

)

, (5)

and

z′′ij =

(
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x
(t)
ij

)p
)1/p

, (6)

respectively. Both functions converge to the maximum func-
tion, for L → 0 and forp → ∞, respectively. Although they

are convex and differentiable, they are notstrictly convex. This
can be seen by settingx(t)

ij = xij , ∀t ∈ T . For thelog-sum-
expfunction, this leads toz′ij = L log T +xij , which is linear
in xij and therefore not strictly convex. Replacingzij with z′ij
we can define a modified cost functionFij according to

Fij(xij) = fij

(

L log

(

∑

t∈T

exp
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x
(t)
ij /L

)

))

, (7)

wherexij =
(

x
(1)
ij , ..., x

(T )
ij

)

. Fij(xij) is (strictly) convex if

fij(·) is (strictly) convex and monotonically increasing. In this
work, we shall assume all cost functionsfij(·) to be strictly
convex and monotonically increasing, thus giving rise to a
strictly convex objective function. With this transformation
the problem is reformulated as a standard convex multi-
commodity flow problem, where the flows are coupled only
via the cost function and the constraints are separable [12,
Section 8.3]. The primal optimization problem takes on the
form

minimize
∑
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Fij(xij)
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(t)
ij ≤ cij , ∀(i, j) ∈ A, t ∈ T . (9)

Introducing a Lagrange multiplierp(t)
i for every constraint

in (8), we form the Lagrangian
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The dual function valueq(p) at a price vectorp is

q(p) =
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andp
i
=
(

p
(1)
i , ..., p

(T )
i

)

. The solution of the dual uncon-
strained optimization problem

max
p

q(p)

is equivalent to the solution of the primal problem as under
our assumptions there is no duality gap. We suggest solving
the dual by a block coordinate ascent method. To that end,
consider the|V| variable blocksp

i
. At the k-th iteration a

block p
i

is selected and the maximization as carried out with
respect to the variablesp

i
. We defer the discussion of how to

select blocks in order to achieve convergence to the end of the
section. The update takes on the form

p
i
[k + 1] =

argmax
p

i
[k]

∑
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gij(pi
[k] − p

j
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∑
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t∈T

p
(t)
j [k]σ

(t)
j .

(16)

How this maximization can be carried out is an intricate
issue, since, in general,gij(·) is not available in closed form
but only from the expression (15). There is, however, some
structure that we can exploit. The key is the following Lemma,
which is a special case of [13, Prop. 6.1.1]

Lemma 1:Let x(p) be the unique minimizer of the La-
grangian at a price vectorp, i.e.

x(p) = argmin
x

L(x, p). (17)

Then, the dual functionq(p) is everywhere continously
differentiable and its derivative in thept

i-coordinate is given
by the constraint function evaluated atx(p), in our case this
is

∂q

∂pt
i

=
∑

j:(i,j)∈A

x
(t)
ij (p) −

∑

j:(j,i)∈A

x
(t)
ji (p) − σ

(t)
i . (18)

Remark 1: In other words, the derivative is given by the
flow divergence out of nodei for each sessiont.

Remark 2:Linear constraints and astrictly convex objec-
tive function (as we have assumed throughout) imply the
uniqueness of the Lagrangean minimizer and therefore the
validity of the Lemma. Mere convexity is not sufficient, in
general.

An update at nodei takes on the following form. With
every edge adjacent toi we associate a processor that solves
problem (15) and computes the minimizer. For an edge(i, j)
this becomes

xij(pi
− p

j
) =

= argmin
0≤xij≤cij

{

Fij(xij) +
∑

t∈T

(

x
(t)
ij

(

p
(t)
i − p

(t)
j

))

}

, (19)

and requires the price vectors of the neighboring nodes only.
As this optimization is convex, it can be solved with standard
algorithms like SQP [14] or a Projected Gradient method
[13]. Owing to the simple constraints onx(t)

ij the orthogonal
projection can be implemented easily. Nodei gathers the
x

(t)
ij (p) from adjacent edges to compute the gradient with

respect top(1)
i , . . . , p

(T )
i in the following way
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(20)
and updates the prices according to

p
i
:= p

i
+ α∇i. (21)

To prove convergence of the described algorithm we need to
specify the sequence in which the variable blocks are updated.
Consider the following definition [15]:

Definition 1: We speak of apartially asynchronous order
if there exists positive constantK for which every coordinate
is chosen at least once for relaxation between iterationsr and
r+K, r = 0, 1, .... Furthermore, at any iteration the varibales
used to compute the update are at mostK steps old.

Remark 3:For the choice ofK = |V| this leads to a
cyclical update rule, while forK large it comes close to a
random choice of the current block of variables.
Under such an order, [15, Proposition 5.2] has proven the
convergence of block coordinate ascent.

Proposition 1: If the function q(p) is continuously differ-
entiable, the gradient satisfies a Lipschitz-condition, and a par-
tially asynchronous update order is adopted block coordinate
ascent converges for a stepsize sufficiently small.

Remark 4:The algorithm converges (under some more
technical conditions) even in the case that an arbitrary descent
direction is used in place of the gradient [15, Section 7.5].
The stepsizeα can be determined by standard line search algo-
rithms like Backtracking [10] or the Golden Section Method
[13] . Note, that (19) is a very low dimensional problem -
its dimension is the number of multicast sinksT - and can
be solved readily a number of times. The complexity of a
node update scales proportionally to the complexity of (19),
the number of adjacent edges ofi and the number of steepest
ascent iterations carried out.

From the algorithm description, we see that all steps, i.e.
the computation of the resulting flow for a fixed price vector
(19), the computation of the gradient (20) and the price update
(21) require solely information that can be gathered in aone-
hopneighborhood of the updating node. This gives rise to the
decentralized operation of the algorithm. If combined withan
essentially cyclic update order, assuming a large constantK,
we also conclude asynchronous convergence.
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Fig. 2. Progress of the asynchronous block descend algorithm (left), synchronous primal-dual algorithm (center) and asynchronous primal-dual algorithm
(right). We measure convergence with respect to the flowx, of which the optimal value is0.3.

x

Fig. 1. A network where the top node multicasts to the two bottom nodes.

IV. PERFORMANCEEVALUATION

To assess empirically the performance of our approach we
conduct a series of experiments. The link cost function is taken
to be throughoutaij exp(z′ij), whereaij is a positive coeffi-
cient. First, we illustrate a case where, owing to asynchronous
updates, the primal-dual algorithm of [2] fails to converge,
but our algorithm, as theory suggests, converges. Consider
Fig. 1, and the convergence curves in Fig. 2. The primal-dual
algorithm converges correctly if applied synchronously, but
fails to converge if updated asynchronously (the updates are
carried out in cyclical order, orK = 4). Another interesting
observation is that coordinate ascent and synchronous primal-
dual converge after a similar number of iterations; in the
primal-dual, however, during an iterationevery node in the
network performs an update, as compared to just one node
in the network for the coordinate ascent. This has two impli-
cations: Firstly, coordinate ascent needs less communication
overhead, reducing control traffic in the network. Secondly, if
for larger networks some of the updates could be carried out
in parallel, this would lead to a significant speed-up.

Figures 3(a) - 3(e) illustrate the convergence of the block co-
ordinate ascent algorithm in a larger randomly generated unit
disc graph. We see the topology in Fig. 3(a), and the flows after
convergence in Fig. 3(b). In Fig. 3(c), we plot the value of the
dual functionq(p) (normalized to 1) for the coordinate ascent
and a random selection of updating nodes. In comparison, we

plot the value of the Lagrangian for the primal-dual algorithm
of [2], when updated in synchronous rounds. In Figs. 3(d) and
3(e), we show the primal convergence for two selected flows.
Note, that the dual optimum is approximated much faster than
the primal, a result consistent with [2], [3].

Finally, we investigate the behaviour under dynamic con-
ditions, when a link in the network suddenly fails. Figure 4
shows the reaction of the algorithm to the failure of one edge.
Since the price variablesp are unconstrained, every value can
be used as a starting point of the algorithm. Consequently, the
coordinate ascent algorithm converges in the event of network
changes without any modifications, particularly without the
need of a restart.

V. CONCLUSION

We have proposed a fully decentralized and asynchronous
algorithm for the minimum-cost multicast problem. Simula-
tions show fast convergence as compared to previously known
approaches and robustness as no assumption on network
synchronization is made. This holds even in the presence of
topology changes such as link failures. A worthwhile direction
of further work would be to investigate the potential for
carrying out some of the update steps in parallel and therefore
speeding up the algorithm even further.
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