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Abstract—We consider the problem of setting up a multicast the first asynchronous approach. The asynchronous algorith
connection of minimum cost using network coding. It is well- proposed in [5] addresses the problem of setting up a network
known that this can be posed in the form of a convex program. .,qe and is therefore orthogonal to our approach, as we are
Our contribution is an asynchronous algorithm for solving the . s . -
optimization problem, in analogy to the well-known distributed concerned with providing and a”oca“”g a .mlnlm.al set of
asynchronous Bellman-Ford algorithm for routing. Furthermore, ~network ressources, before network coding is carried out on
we provide extensive simulation results showing fast convgence top of these ressources.
despite the lack of any central clock in the network and  The motivations for seeking asynchronous solutions are
robustness with respect to link- or node failures. two-fold. Firstly, in large networks the assumption of hayi
a clock that is available at each node is unrealistic or regui
a significant amount of communication overhead. The funda-

For multicasting in networks random linear network codinghental limits of clock synchronization across a network are
is a capacity achieving scheme [1]. For a given multicadiscussed in [6] and the references therein. Secondly,anktw
session it is often desirable to find a solution that can fyatigransmissions often have a non-negligible loss- or errt&. ra
the demands while minimizing ressource consumption in thghen the algorithm requires synchronous round of updates
network, such as bandwith or energy. This is equivalent &uch losses of messages can seriously impair convergence. A
identifying a subnetwork that, fully utilized, can accomaiate asynchronous algorithm as the one we suggest, on the other
the demands. The authors in [2] have suggested posing Hahd, can easily deal with lost update messages due to the
subgraph selection problem as a linear or convex programinimal requirements it poses on the update schedule.
depending on which resource usage is to be minimized.The main idea of our work is to apply a block-coordinate
Furthermore, they propose distributed algorithms for isglv ascent algorithm to the convex program that describes the
the resulting optimization problems, subgradient optaticn multicast connection. This algorithm, as we show by means of
for the linear case and a primal-dual algorithm for the cosimulations, has fast convergence compared to the priomll-d
vex case. These algorithms assign to each network nodalgorithm in [2] and is very robust with respect to randomly
processor and find the optimal solution by solely exchangingcurring node updates. Even in the presence of link falure
update messages between processors that are neighboes inhié algorithm continues updating and eventually converges
network. without the need of a restart.

Such a distributed operation is highly desirable in pragtic The rest of the paper is organized as follows. In Section I,
as otherwise the whole network topology has to be collecteg review the network model and the problem formulation of
at a special “fusion center” which carries out the compatati the convex program. In Section Ill, we derive the asynchusno
and then the calculated link- and injection rates have #igorithm and prove its convergence, while the experinienta
be communicated across the network, leading to significaekults are presented in Section IV. Finally, in Section V we
overhead. Still, one central assumption in these algostiam conclude the paper.
that in every time slot the updates at all nodes are carriéd ou
simultaneously, as if triggered by a central clock signg) [2 !l- NETWORK MODEL AND OPTIMIZATION PROBLEM
[3]. The contribution of our work is to relax this assumption The network is represented by a directed gréph (V, A),
and instead propose asynchronouslgorithm for solving the whereV is the set of vertices andl is the set of directed
problem. As we show, our approach gets by with very smaltcs. A multicast sessiofs, 7, R) is a triple consisting of a
restrictions on the update schedule, even a completelyorandsource nodes a destination sef C V and a rateR. Let T
sequence of node updates will converge, as long as each ndédeote the cardinality of . All destinations are interested in
is chosen with non-zero probability. the same information from the origin at rae(as opposed to a

Distributed asynchronous algorithms have been proposediti-level multicast problem, where some sources neeg onl
and used for routing, the most prominent example being thesubset of the information [7]). Another extension which is
distributed Bellman-Ford algorithm, which has both a symather straightforward is multi-source multicasting, wheve
chronous and an asynchronous variation [4, Section 5Ro#]. have several sources, but every destination is interestétki
network coded traffic and the particular optimization pesbl entire information originating aéverysource. This extension
associated with it [2] this is, to the best of our knowledgdias been pursued in [8]. For each destinatiom 7 we

I. INTRODUCTION



index the associated flow (and later price) variables with tlare convex and differentiable, they are stitctly convex. This

superscript. can be seen by settin@f? = x5, Vte 7. Forthelog-sum-
The following convex program [2] establishes a singlexpfunction, this leads ta}; = LlogT +z;;, which is linear
multicast connection in a network at rate in z;; and therefore not strictly convex. Replaciag with z;;

we can define a modified cost functidfy; according to

minimize Z fij(zij)

(4,5)€A @
subject to Fij(a;) = fij | Llog Z exp (% /L) . (1)

teT

=0

— (D D » ; ; ;
Z RO Z 5 M yie VieT. () wherez,; = (xij s eees Tij ).F” (gij) is (strictly) convex if

e Tij e gt v fi;(+) is (strictly) convex and monotonically increasing. In this
J)eA OHeA work, we shall assume all cost functioffi () to be strictly
0<z¥ < Zij, V(i,j) e AteT, (2) convex and monotonically increasing, thus giving rise to a
K strictly convex objective function. With this transforriuat
(2ij)jiiyea €Ci Vi€V, (3) the problem is reformulated as a standard convex multi-
where commodity flow problem, where the flows are coupled only
via the cost function and the constraints are separable [12,
R i=s, Section 8.3]. The primal optimization problem takes on the
o = -R i=t, (4) form
0 else minimize Z
andC; is a convex subset of the positive orthant containing (i,j)€A

the origin. The equations in (1) establish flows at rde  subject to

from the source to all multicast sinks. Constraint (2) means

that the actual link usage is the maximum value of the flows

traversing it. This is where network coding enters the p&gtu Z Z m
with routing the actual link usage would be simply the sum?:
of flows going across. Finally, (3) models the physical layer 0< CUS) <cy,  V(i,j)€AteT. 9)
capacity regiorC; at nodei, and can be given by a wireline

network capacity constraint or an arbitrary broadcast ohkn  INfroducing a Lagrange multipligs; * for every constraint
9. in (8), we form the Lagrangian

=0, VieV,teT, (8)

1/ )

i,j)EA j:(4,5) €A

IIl. DECENTRALIZED ASYNCHRONOUSALGORITHM
L(z,p) = (10)

In this section we apply a block coordinate ascent algorithm

to the convex program (1)-(3) resulting in an, as we show, — Z Fij(zi;) (11)
decentralized and asynchronous operation. To be concrete, (h7)€A
assume that the capacity regiafisare given byz;; € [0, ¢;;],
where the link capacities; are fixed constants, as for example + Z Zp mg) - Z 5? - 01@ (12)
in wireline networks. More complicated models have been teTicv j:(i,5)eA §:(G,i)EA
studied in [8].

Since the functiory;; = max;er :cfj) is not differentiable, = Z (E-j (z;;) + Z (:cf? (pgt) pS”))) (13)
it poses a challenge for gradient-type optimization aljons. (i,5)€A teT
One approach is to replace this relation withodt-maximum Z Zp(t) ,(t) (14)

that is differentiable and that approximates the maximum
function. Two common approximations are thag-sum-exp
function [10] and thd,-norm [11], given by

aw)= Y giulp,—p,) - SN e,
= Llog (Zexp( (t) )) ,

i€AteT
The dual function valug(p) at a price vectop is

(5) (i,5)€A icAteT

teT whereg;;(-) is defined as
and
1/p
2ij = (Z( 5;)) ) ; ®)  9iilp,—p) =
teT
respectively. Both functions converge to the maximum func- = 0<l§nf<c_ { i (i) + Z ( W ( “ (t)))} , (15)
tion, for L — 0 and forp — oo, respectively. Although they A teT



andg_az_ = p(-l), ...,pET) . The solution of the dual uncon- and requires the price vectors of the neighboring nodes only

(2

strained optimization problem As this optimization is convex, it can be solved with stamdar
algorithms like SQP [14] or a Projected Gradient method
max ¢(p) [13]. Owing to the simple constraints oﬁj) the orthogonal
p projection can be implemented easily. Nodegathers the
is equivalent to the solution of the primal problem as undezg-)(p) from adjacent edges to compute the gradient with
our assumptions there is no duality gap. We suggest solvirgspect top", ..., p{" in the following way

the dual by a block coordinate ascent method. To that end,
consider the|V| variable blocksp . At the k-th iteration a

blockgi is selected and the maximization as carried out with Z Iz(-gl-)(P) - Z 552)(27) - 051)
respect to the variablq_gt. We defer the discussion of how to J:(i,4)EA J:(4, ) €A
select blocks in order to achieve convergence to the endeof th v, = : ,
section. The update takes on the form T T T
P > oaPw- Y e -
J:(i,5)€A j:(j,i)eA (20)
p; [k+1] = and updates the prices according to
t t
argmax Y gi;(p,[F = p,[k]) = D > pf[kloy.
2 (i j)ea JEAET p. =p. +aV,. (21)
(16) - =

How this maximization can be carried out is an intricate To prove convergence of the described algorithm we need to

issue, since, in general,(-) is not available in closed form specify the sequence in which the variable blocks are ugddate

/ . Consider the following definition [15]:
ly f h 15). Th h
but only from the expression (15). There is, however, SOMEH efinition 1: We speak of gpartially asynchronous order

structure that we can exploit. The key is the following Lemmaf h ist i tas f hich dinat
which is a special case of [13, Prop. 6.1.1] if there exists positive constaif for which every coordinate

Lemma 1:Let z(p) be the unique minimizer of the La- is chosen at least once for relaxation between iteratiozsd
grangian at a price vector, i.e. r+ K, r=0,1,.... Furthermore, at any iteration the varibales
used to compute the update are at mi@ssteps old.
. Remark 3:For the choice ofK = |V| this leads to a
z(p) = argflmL(x’p)' (17) cyclical update rule, while fok large it comes close to a
random choice of the current block of variables.
Under such an order, [15, Proposition 5.2] has proven the
convergence of block coordinate ascent.
Proposition 1: If the function ¢(p) is continuously differ-
entiable, the gradient satisfies a Lipschitz-conditiom, ampar-
5 tially asynchronous update order is adopted block cootdina
99 _ ® 0y ®y _ ) ascent converges for a stepsize sufficiently small.
opt Z iy (P) Z i) o (18) Remark 4:The algorithm converges (under some more
technical conditions) even in the case that an arbitrargetds
Remark 1:In other words, the derivative is given by thegirection is used in place of the gradient [15, Section 7.5].
flow divergence out of nodé for each session The stepsizer can be determined by standard line search algo-
Remark 2:Linear constraints and strictly convex objec- rithms like Backtracking [10] or the Golden Section Method
tive function (as we have assumed throughout) imply t"EH;B] . Note, that (19) is a very low dimensional problem -
uniqueness of the Lagrangean minimizer and therefore ¢ dimension is the number of multicast sin€s- and can
validity of the Lemma. Mere convexity is not sufficient, inhe solved readily a number of times. The complexity of a
general. node update scales proportionally to the complexity of (19)
An update at node takes on the following form. With the number of adjacent edgesioéind the number of steepest
every edge adjacent towe associate a processor that solvegscent iterations carried out.
problem (15) and computes the minimizer. For an e9#)  From the algorithm description, we see that all steps, i.e.
this becomes the computation of the resulting flow for a fixed price vector
(19), the computation of the gradient (20) and the price tepda
(21) require solely information that can be gathered ina-
z;;(p, — Bj) = hop neighborhood of the updating node. This gives rise to the
decentralized operation of the algorithm. If combined véth
= argmin {E'j (z;) + Z (IES) (pgt) pj(vt)))} , (19) essentially cyclic update order, assuming a large congtant
0sijSeis teT we also conclude asynchronous convergence.

Then, the dual functiory(p) is everywhere continously
differentiable and its derivative in thgf-coordinate is given
by the constraint function evaluated @&fp), in our case this
is

j:(i,5)eA j:(4,0)eA
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Fig. 2. Progress of the asynchronous block descend algofitift), synchronous primal-dual algorithm (center) arsgrechronous primal-dual algorithm
(right). We measure convergence with respect to the flowf which the optimal value i9.3.

plot the value of the Lagrangian for the primal-dual aldworit

of [2], when updated in synchronous rounds. In Figs. 3(d) and
3(e), we show the primal convergence for two selected flows.
Note, that the dual optimum is approximated much faster than
the primal, a result consistent with [2], [3].

Finally, we investigate the behaviour under dynamic con-
ditions, when a link in the network suddenly fails. Figure 4
shows the reaction of the algorithm to the failure of one edge
Since the price variablgs are unconstrained, every value can
be used as a starting point of the algorithm. Consequehty, t
coordinate ascent algorithm converges in the event of rré&two
Fig. 1. A network where the top node multicasts to the twodmthodes. changes without any modifications, particularly withoue th
need of a restart.

IV. PERFORMANCEEVALUATION V. CONCLUSION

To assess empirically the performance of our approach weWe have proposed a fully decentralized and asynchronous
conduct a series of experiments. The link cost functionkerta algorithm for the minimum-cost multicast problem. Simula-
to be throughout:;; exp(z;;), wherea;; is a positive coeffi- tions show fast convergence as compared to previously known
cient. First, we illustrate a case where, owing to asynobusn approaches and robustness as no assumption on network
updates, the primal-dual algorithm of [2] fails to convergeynchronization is made. This holds even in the presence of
but our algorithm, as theory suggests, converges. Consi@@sology changes such as link failures. A worthwhile dii@ct
Fig. 1, and the convergence curves in Fig. 2. The primal-dusfl further work would be to investigate the potential for
algorithm converges correctly if applied synchronouslyt b carrying out some of the update steps in parallel and thexefo
fails to converge if updated asynchronously (the updates apeeding up the algorithm even further.
carried out in cyclical order, oK = 4). Another interesting
observation is that coordinate ascent and synchronousprim REFERENCES
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Fig. 3. Top: Network topology (left) and corresponding floafser convergence (right). The source is red, sinks are &haegreen. The network coded flow
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