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Abstract—This paper suggests a new memory partitioning
scheme that can enhance process lifecycle, while avoiding Low
Memory Killer and Out-of-Memory Killer operations on mobile
devices. Our proposed scheme offers the complete concept of
virtual memory nodes in operating systems of Android devices.

I. INTRODUCTION

Recent mobile phone users can use not only the built-in
applications that the manufacturers included into the mobile
phone, but also the third-party applications obtained from
various app-markets. In these systems, due to the memory
consumption of the third-party applications, there are frequent
situations that the available memory space is insufficient to run
those applications efficiently. Especially, in low-end mobile
devices that do not have sufficient memory capacity, memory
shortage may occur more frequently.

In this paper, we introduce a new memory partitioning
scheme to get enhanced application performance during pro-
cess lifecycle [1]], while avoiding Low Memory Killer (LMK)
and Out-of-Memory Killer (OOMK) operations on mobile de-
vices. We propose a complete memory partitioning framework
at the operating system level.

The rest of this paper is organized as follows. In Section
II, several technical issues on process lifecycle are described.
The new memory partitioning scheme for improving process
lifecycle is suggested in Section III. Section IV shows the
evaluation results of the proposed scheme. Finally, Section V
concludes the paper.

II. MEMORY MANAGEMENT IN ANDROID PLATFORM

The operating system generally supports page reclamation
[2]l, swap in/out [3]], cgroups [4], and OOMK [5] to settle the
memory shortage problem.

The page reclamation mechanism is useful to obtain avail-
able memory in the system. However, the mechanism always
finds victim processes heuristically among the processes in the
memory.

The mobile device manufacturers do not use the swap
in/out technology in their commercial products because of the
throughput issues of their applications.
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Although the cgroups provides a mechanism for aggre-
gating/partitioning the set of tasks into several hierarchical
groups, this mechanism does not prevent memory fragmenta-
tions because of the logical memory partitioning with private
LRU of structure page cgroup per page.

The OOMK attempts to recover memory shortage from the
OOM condition by killing low-priority processes [2] [5] which
will most likely be the first victim. But, the operation of the
OOMK results in the performance damage of new applications
because of the thrashing occurred due to the limited memory
resource of the mobile devices.

Android platform supports process lifecycle mechanism to
classify the processes based on the importance of the processes
so that new applications can get the needed memory properly
even when it reaches the situation of memory shortage. It
controls the memory usage of each application via user-
space components (Activity manager, Dalvik) and kernel-
space components (LMK, OOMK) [1]] [5] to secure available
memory stably.

Even under the system with large memory, memory shortage
can happen when high-capacity and high-performance user
applications come to run. Therefore, it is very important to
secure as large available memory as possible. In Section III,
we will describe our approach to solve this memory shortage
problem on mobile devices.

III. VIRTUAL NODES TO AVOID LMK OPERATIONS

Figure [I] shows the overall architecture of the new memory
partitioning technique for improving process lifecycle of the
Android platform with the physically limited memory space.
Our proposed memory partitioning technique mainly consists
of three components as follows:

1) vnode_setup_memblock: sets up a memory node virtu-

ally from the start address to the end address.

2) vnode_generation: generates a physical memory con-
figuration that maps between the virtual node and the
physical memory address, and determines the size of
the physical distance table.

a) virtual node is a communication channel for log-
ically partitioned memory access between the vir-
tual memory and the physical memory.

b) physical distance table is a map to get the physi-
cally separated memory block.

3) vnode_set_cpumask: allocates specific CPU masks for
mapping between each CPU and each virtual node.
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Fig. 1.

The architecture of proposed memory partitioning

Our design has two advantages in Android-based mobile
devices: (1) limiting the memory consumption of untrust-
worthy applications by partitioning the memory space into
two areas, virtual node (VNODE) 0 for reliable applications
(official market) and virtual node (VNODE) 1 for unreliable
applications (black market), (2) avoiding LMK and OOMK
operations which happen under physical memory shortage.

The arrows of Figure [T|represent the operations on the CPU
and memory when an administrator sets the virtual memory
nodes of the operating system from a physical memory on
Android devices. For example, we run some critical appli-
cations only in VNODE 0. Also, we run other applications
in VNODE 1. Through this approach, the operating system
manages applications to avoid reaching the memory shortage
even in a long running system.

Our memory partitioning scheme prevents an application
from exhausting the entire memory by executing critical
applications only in VNODE 0. Accordingly, these critical ap-
plications will stay in the memory of VNODE 0 continuously
until a user terminates the critical application.

The key idea is that non-critical applications run in the
physically partitioned specific memory area. This operation
helps the system to avoid reaching no free memory. These
non-critical applications only return their allocated memory
with the page reclamation algorithm of Linux.

The proposed system completely offers virtual memory
nodes at the operating system level for enhanced process
lifecycle in Android devices. This equipment supports scalable
system infrastructure as follows:

 Virtually separated memory space.

o Operating system level memory isolation.

o Advanced page reclamation based on virtual nodes.

o Memory controller interface at boot time.

IV. RESULTS

We ported the latest Android Ice Cream Sandwich 4.0.4 and
Busybox 1.18 to Samsung SENS R60+ (CPU: Intel Core2Duo,
MEM: DDR?2 2G) laptop to verify that our technical approach
can be effective on the Android mobile platform. We also
booted the Android Ice Cream Sandwich including our new
memory partitioning scheme based on Linux kernel 3.0 as
a test bed for the Android tablet platform. We configured the
system by creating two virtual memory nodes in different size,
“VNODE 0 of 1.5 GB and VNODE 1 of 0.5 GB”.
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Fig. 2. The available memory result with virtual memory node

We evaluated and compared the memory consumption of the
existing approach (before) and the proposed approach (after)
when we executed the sequential file I/O operation with the
raw contents of the size of 1.5 GB into VNODE 1 for 2 days.
Figure |Z| shows the available memory size, the result of LMK,
and the status of the OOMK after running the sequential file
I/O operations.

From our experiments, we gained the additional free mem-
ory of 670 MB and the reduced Phone application execution
time of 1,015 milliseconds over the existing systems. Since the
test workload on VNODE 1 can use only 0.5 GB memory,
Linux kernel executes many page reclamation operations in
VNODE 1. Through our approach, the proposed system does
not meet the operation of LMK and/or OOMK which oper-
ates on free memory shortage, 335 MB in our experimental
environment. The frequencies of the execution of memory
killers, both LMK and OOMK, were improved dramatically
after adjusting the virtual nodes based on the new memory
partitioning scheme.

V. CONCLUSION

We proposed a virtual memory node technique for memory
partitioning. It focuses on the page reclamation operation of
non-critical applications and the non-page reclamation opera-
tion of critical applications. Also, our approach supports vir-
tual memory isolation to separately run applications of black
markets and applications of official markets in the Android
platform based on discontiguous memory access model. These
approaches prevent LMK and OOMK from Kkilling processes
because of the memory shortage of the system.

In conclusion, our approach innovatively overcomes the
poor performance of applications incurred due to the oper-
ations of LMK and OOMK, without any physical memory
extension.
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