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Abstract

Point cloud is an important type of 3D representation.
However, directly applying convolutions on point clouds
is challenging due to the sparse, irregular and unordered
data structure. In this paper, we propose a novel Interpo-
lated Convolution operation, InterpConv, to tackle the point
cloud feature learning and understanding problem. The key
idea is to utilize a set of discrete kernel weights and inter-
polate point features to neighboring kernel-weight coordi-
nates by an interpolation function for convolution. A nor-
malization term is introduced to handle neighborhoods of
different sparsity levels. Our InterpConv is shown to be
permutation and sparsity invariant, and can directly han-
dle irregular inputs. We further design Interpolated Con-
volutional Neural Networks (InterpCNNs) based on Inter-
pConv layers to handle point cloud recognition tasks in-
cluding shape classification, object part segmentation and
indoor scene semantic parsing. Experiments show that
the networks can capture both fine-grained local structures
and global shape context information effectively. The pro-
posed approach achieves state-of-the-art performance on
public benchmarks including ModelNet40, ShapeNet Parts
and S3DIS.

1. Introduction
Point cloud is an important data format obtained by 3D

sensors and has shown extensive usage in many real-world
tasks including autonomous driving [7], robotics [32], etc.
Efficient learning from point cloud data remains a challenge
to the research community, given the fact that point clouds
are usually irregular, unordered and sparse.

In view of the great success of convolutional neural net-
works (CNNs) on 2D images, many endeavors have been
made to adapt the convolution operation to 3D point clouds.
Currently there are two main approaches to tackle this prob-
lem. The first type of attempts [24] is to directly ras-
terize irregular point clouds into regular voxel grids, and
adopts standard 3D convolutions to learn shape features.
However, the transformation of irregular inputs leads to a
loss of geometric information, and convolutions on dense
voxel grids lead to heavy computational burden. Other ap-

(a) 3D convolutions with rasteri-
zation

(b) Graph neural networks

(c) InterpConv with trilinear in-
terpolation

(d) InterpConv with Gaussian in-
terpolation

Figure 1. Illustration of different types of convolutions on point
clouds. Red points denote point clouds and green points denote
spatially-discrete kernel weights. Green lines in (b) denote contin-
uous convolutional kernels. Our InterpConv directly takes irreg-
ular point clouds as inputs and interpolates point features to the
neighboring kernel weights by an interpolation function.

proaches [43, 45, 28, 49, 34, 20, 46, 39] build local graphs
in the neighborhood of each point in the Euclidean or fea-
ture space, then a continuous convolutional kernel is ap-
plied on each edge of the graph to learn geometric features.
Continuous kernels are commonly modeled by Multi-layer
Perceptrons (MLPs). These graph-based methods are able
to directly process irregular data structure but have some
drawbacks. The construction of local graphs is not sparsity
invariant. Namely, different point cloud densities sampled
from the same object surface lead to different neighborhood
selections, thus it may produce various graph construction
results. Besides, compared with discrete convolutions, uti-
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lizing MLPs to learn an arbitrary continuous function does
not work well in practice [49].

In this paper, we propose a novel Interpolated Convo-
lution operation (InterpConv) to address the existing prob-
lems in graph and 3D convolutional neural networks. Key
to our approach is the use of discrete convolutional kernels
and an interpolation function to explicitly measure geomet-
ric relations between input point clouds and kernel-weight
coordinates. Unlike 3D convolutions which have to trans-
form inputs into regular grids, our InterpConv directly takes
irregular point clouds as inputs. Each n × n × c convolu-
tional kernel is split into n2 kernel weights, each of which
has a 1 × c weight vector and its own coordinate p′ rela-
tive to the kernel center. The center of discrete convolu-
tional kernels can be placed at any location in the 3D space
and then the kernel-weight absolute coordinates can be de-
termined for each kernel. Input points are interpolated to
neighboring kernel-weight coordinates by an interpolation
function. To guarantee InterpConv to be sparsity invariant,
normalization on points is adopted in the neighborhood of
each kernel weight vector. Finally, weighted convolutions
can be calculated between kernel weight vectors and point
cloud features that are associated to them. With spatially-
discrete convolutional kernel weights and an explicitly de-
fined interpolation function, our approach performs better
than graph-based methods, which use continuous functions
as convolutional kernels and implicitly learn geometric re-
lations. See Figure 1 for illustration.

We further propose Interpolated Convolutional Neural
Networks (InterpCNNs) based on InterpConvs. The clas-
sification network is composed of multi-layer and multi-
receptive-field InterpConv blocks, which can capture both
fine-grained geometric structures and context information.
The segmentation network explores a deeper architecture
to predict semantic labels for all input points. We evalu-
ate our networks on several benchmark datasets, including
ModelNet40 [5], ShapeNet Parts [50] and S3DIS [1]. Ex-
periments show that our approach achieves state-of-the-art
performances on those datasets.

The key contributions of our work are as follows:

• We propose a novel Interpolated Convolution opera-
tion (InterpConv) to effectively deal with point cloud
recognition problems. Such an operation is permuta-
tion and sparsity invariant, and can directly handle ir-
regular point clouds;

• We design Interpolated Convolutional Neural Net-
works based on InterpConvs. The networks perform
better than Graph Neural Networks (GNNs) and 3D
Convolutional Neural Networks (3D ConvNets) on
point cloud recognition and segmentation problems.

2. Related Work
Our approach is closely related to other deep learning

methods on point clouds. We introduce literatures on point

cloud feature learning by regular grids and irregular inputs.
Learning from point clouds by regular grids. When

facing irregular point clouds as inputs, an intuitive way is
to transform this irregular data structure into regular grids.
Some approaches [15, 37, 40] transform 3D objects or point
clouds into 2D regular grids, namely, images by multi-view
projection, then 2D CNNs are utilized to learn from these
images. Those methods work well owing to the great suc-
cess of 2D CNNs on images. However, not all the geometric
information is kept during projection, and those approaches
are usually inefficient and time-consuming when handling
sparse point cloud data.

An alternative approach is to rasterize point clouds into
3D regular grids. VoxNet [24] transforms original point
cloud data into occupancy grids, which store binary values
to indicate whether the spaces are occupied. Then a 3D
CNN is applied to learn from these voxel grids. The raster-
ization process loses some fine-grained geometric features,
and 3D convolutions are both time and memory consuming.
OctNet [30] exploits the sparsity of voxel grids and uses un-
balanced octrees to hierarchically partition the space, which
saves much memory. Some other efforts [21, 42, 29] have
also been made to ease the computational burden but still
cannot solve the loss of geometric information during ras-
terization.

Compared with the above-mentioned approaches, our
approach directly takes irregular point clouds as inputs
without rasterization, which is time-saving and accurate.

Learning from point clouds by irregular inputs. Re-
cently there are many works trying to directly process ir-
regular point cloud data. Pioneering work PointNet [25]
utilizes shared MLPs and a maxpooling layer, which is per-
mutation invariant, to tackle unordered inputs and learn
a global representation. PointNet++ [27] exploits local
structures by grouping and sampling point clouds, then a
PointNet is applied in each group to aggregate local fea-
tures. However, how to effectively partition and select
point clouds remain a challenge. Many approaches [16,
14, 12, 19] explore new grouping and sampling strategies.
In [23, 8], new modules are added to original PointNet++ in
order to gain a better performance.

Graph Neural Networks (GNNs) [33] have been widely
used to deal with irregular data structure. There are also a
bunch of works trying to apply GNNs to solve point cloud
processing problem. Those approaches [43, 45, 28, 22, 49,
34, 20] usually build local graphs in the neighborhood of
the Euclidean or feature space, utilize MLPs as continuous
convolutional kernel functions, and aggregate local features
by weighted sum or pooling from neighborhood to center.
DGCNN [45] proposes an EdgeConv operation which con-
catenates central and neighboring point features and learns
new features by MLP and maxpooling. 3DGNN [28] ap-
plies gated graph neural networks [22] on semantic segmen-
tation task. SpiderCNN [49] defines a continuous kernel
function as a product of step function and a Taylor polyno-



mial. KCNet [34] proposes a kernel correlation and graph
pooling layer to exploit local structures. PointCNN [20] ap-
plies χ-transform operator on local graphs.

GNN-based methods still have some problems. First, the
graph construction process based on K-nearest neighbors
(KNN) is sensitive to point cloud density. Second, using
MLPs to directly learn from point coordinates is inefficient,
as it ignores some explicitly defined geometric relations.
Different from those methods, our approach is not sensi-
tive to point cloud density due to the proposed normaliza-
tion term, and geometric relations between discrete kernel
weights and point clouds are explicitly defined by an inter-
polation function.

3. Method
In this section, we first revisit convolutions on different

types of point sets. We then introduce our proposed Interpo-
lated Convolution operation (InterpConv) and key elements
of the InterpConv algorithm. Finally, we show details for
our network architectures for 3D object recognition and se-
mantic segmentation.

3.1. Convolutions on Point Sets
Standard 2D and 3D convolutions have achieved great

success in handling regularly-arranged data such as images
and voxel grids. When it comes to sparse and irregular point
sets such as 3D point clouds, multiple variants of convolu-
tions have been proposed. In this section, we review those
convolutions to motivate the design of our InterpConv op-
eration.

Considering a standard 3D convolution, let 3D voxel
grids or features be denoted by F : Z3 → Rc, and the
convolutional kernel weights W be a series of 1× c weight
vectors, where c is the number of channels. Standard con-
volution at location p̂ can be formulated as

F ∗W (p̂) =
∑
p′∈Ω

F (p̂+ p′) ·W (p′), (1)

where Ω = {p′ ∈ Z3 : (−n,−n,−n), · · · , (n, n, n)} is
the set of kernel weight vectors’ coordinates relative to the
kernel center. The kernel size is assumed to be 2n+ 1, and
· denotes dot production between two vectors.

When it comes to irregular inputs, points are no longer
regularly-arranged and distances between points become
irregular. Some approaches [43, 46] adopt a continuous
weight function W (pδ), which takes relative coordinates pδ
of neighboring points p̂+pδ to the central point p̂ as inputs,
to predict the convolutional weights. The continuous func-
tionW (pδ) is no longer a 1×cweight vector but a mapping
R3 → Rc commonly implemented by MLPs. Then the con-
tinuous convolution can be formulated as

F ∗W (p̂) =
∑
pδ

F (p̂+ pδ) ·W (pδ). (2)

It is worth noting that applying graph neural networks [45,
49, 34] to handle point clouds essentially shares the same
idea with continuous convolutions.

Replacing discrete kernel weights W (p′) with contin-
uous functions W (pδ) remains some problems. Simply
learning continuous functions by MLPs cannot always work
in practice [49]. The predicted parameters might be too
many, and the learning process is inefficient and sometimes
unstable. Knowledge on the great success of discrete ker-
nels in images cannot be transfered to point clouds recogni-
tion tasks as well.

3.2. Interpolated Convolution for 3D Point Clouds
In our approach, we adopt the design of discrete con-

volutional weights while maintaining the characteristics of
continuous distances, by decoupling W (pδ) into two parts:
spatially-discrete kernel weights W (p′) ∈ Rc and an in-
terpolation function T (pδ, p

′). We note that a spatially-
discrete kernel weightW (p′) is a 1×c vector, which can be
initialized and updated during training, and p′ is the relative
coordinate of this kernel weight vector to the kernel center.
The interpolation function T (pδ, p

′) : R3 × R3 → R takes
the coordinate of a kernel weight vector p′ and a neighbor-
ing input point pδ as inputs, and computes a weight by cer-
tain interpolation algorithm. Our approach takes every input
point in the neighborhood of a kernel weight vector into ac-
count. In order to make convolutions sparsity invariant, a
density normalization term Np′ , which sums the interpola-
tion weights or number of input points in the neighborhood
of p′, is needed for each kernel weight vector W (p′). Fi-
nally, our InterpConv centered at location p̂ can be formu-
lated as

F ∗W (p̂) =
∑
p′

1

Np′

∑
pδ

T (pδ, p
′)F (p̂+pδ) ·W (p′). (3)

We note that unlike standard convolutions, where kernel
weights are regularly-arranged, kernel-weight coordinates
p′ in InterpConvs can be set flexibly or even learned during
training.

There are three key parts of our proposed InterpConv
operation: spatially-discrete kernel weights W , an interpo-
lation function T , and a normalization term N . We first
discuss those three parts separately, and then introduce the
complete algorithm.

Discrete kernel weights. In 2D convolution [17], one
kernel can be represented as an n × n × c tensor, where n
denotes the kernel size and c denotes the number of chan-
nels. In [6, 9], one kernel is split into n× n weight vectors,
each of which is of size 1× c. By doing so, kernel weights
no longer have to be regularly-arranged, but can be flexibly
placed on 2D grids.

In our approach, we further improve this idea by defining
a set of kernel weight vectors for each convolutional ker-
nel in the 3D Euclidean space. Each kernel weight vector
W (p′) has a 3D coordinate p′ to store its location relative to



the kernel center, and its weights are stored in a 1×c vector,
which will be initialized and updated during training. The
vector coordinate p′ can either be fixed or updated during
training. To simplify the problem, we fix kernel-weight co-
ordinates in most experiments and organize them as a cube,
namely, kernel weight vectors are arranged at 3× 3× 3 3D
regular grids if the total number of kernel weight vectors is
27. We note that this is an analogy of standard 3 × 3 × 3
discrete convolutions while kernel weight vectors can theo-
retically be placed at arbitrary locations in the 3D space.

As we arrange kernel weight vectors as a cube, we define
two important hyperparameters: the kernel size n × n × n
and kernel length l. The coordinate set of spatially-discrete
kernel weight vectors can be formulated as

Φ =
{

(x′, y′, z′)
∣∣∣x′, y′, z′ = kl,

k ∈
{
− n− 1

2
, · · · , n− 1

2

}}
,

(4)

where p′ = (x′, y′, z′). Similar to the definition of kernel
size in standard convolutions, kernel size n × n × n ∈ Z3

means that there are n kernel weight vectors on each edge
of one kernel, and the total number of kernel weight vec-
tors is n3. Kernel length l ∈ R is the distance between two
adjacent weight vectors. It determines the actual 3D size
of a kernel in the Euclidean space and is defined to control
the receptive field, from which one convolutional kernel can
“see” input point clouds. If l is small, the convolutional ker-
nel is able to capture fine-grained local structures, otherwise
it encodes more global shape information.

Interpolation functions. One problem to apply dis-
crete kernels on irregular point clouds is that kernel weight
vectors’ spatial locations generally do not align with in-
put points. Naively rasterizing point clouds into regular
grids [24, 11] solves part of the problem, but at the cost of
losing local structures. In our approach, we solve this prob-
lem while keep all fine-grained structures by adopting an
interpolation function. Namely, we first find a set of input
points near each kernel weight vector, and then interpolate
their features to be assigned to the kernel weight vectors for
convolution. We propose two interpolation functions: tri-
linear interpolation and Gaussian interpolation.

Trilinear interpolation is a commonly-used method to
approximate the value of an intermediate point in a 3D
grid by values of adjacent lattice points. The intermedi-
ate point’s value is calculated by a weighted sum of lattice
points’ values, and the weights characterize closeness be-
tween intermediate and lattice points. In our approach, we
adopt the inverse process of trilinear interpolation. Namely,
we first compute the weights that lattice points (kernel-
weight coordinates) contribute to the intermediate point (in-
put point) and then we inversely assign the input point
feature to adjacent kernel-weight coordinates with those
weights.

For trilinear interpolation, we find 8 adjacent kernel-
weight coordinates p′ for each input point pδ in the kernel,

and then we normalize input point and kernel weights into a
unit-length cube. Finally we compute the trilinear interpo-
lation weights by

Ttr(pδ, p
′) = (1−|xδ−x′|)(1−|yδ−y′|)(1−|zδ−z′|), (5)

where input point pδ = (xδ, yδ, zδ) is the relative point co-
ordinate to the kernel center, and kernel-weight coordinate
p′ = (x′, y′, z′). We further note that Eq. (5) is a simpli-
fied format for normalized points. One property of trilin-
ear interpolation is self-normalization, namely, all 8 weights
which an input point assigns to can sum up to 1.

In Gaussian interpolation, we assign each input point pδ
to each kernel weight vector at p′ with a weight factor cal-
culated by the following Gaussian function,

TG(pδ, p
′) = e−

(xδ−x
′)2+(yδ−y

′)2+(zδ−z
′)2

2σ2 , (6)

where the hyperparameter σ controls the decay rate. To save
computation, if a 3D point is 3σ away from a weight vec-
tor, its assignment coefficient to the vector is directly set to
0 and will not be calculated. It is worth noting that other
functions, for example, linear basis functions, can also be
adopted as the interpolation function.

Normalization terms. Given the fact that we take all
neighboring points of a kernel weight vector into calcula-
tion, normalization is necessary to keep convolutions invari-
ant to points density. There are two ways of normalization.
We can aggregate and normalize the point features by

faggregate =

∑N
i=1 tifi
N

, (7)

where N is the number of neighboring points, fi is the ith
point feature, and ti denotes its interpolation weight. Apart
from normalizing according to the number of points, we can
also normalize the sum of interpolation weights:

faggregate =

∑N
i=1 tifi∑N
i=1 ti

. (8)

We can perform normalization either on each kernel
weight vector or on the whole convolutional kernel. We ar-
gue that normalization on each kernel weight vector is more
accurate, since input points are not uniformly distributed in
the whole kernel.

The InterpConv Algorithm. An InterpConv operation
takes point cloud coordinates and their features as input, and
outputs new point coordinates and features. We note that
output point coordinates can be set as the same as the input
points, or downsampled from input point clouds. The cen-
ter of convolutional kernels is placed at each output point
coordinate, and kernel-weight coordinates are further deter-
mined by the relative coordinates of the weight vectors fol-
lowing Eq. (4). We calculate interpolation weights between
kernel weight vectors and adjacent input points, and then



Algorithm 1 The InterpConv Algorithm
Input: point coordinates p ∈ R3, point features f ∈ Rc
Output: output coordinates p̂ ∈ R3, new features f̂ ∈ Rc′

Parameter: c′ kernels with n weight vectors w ∈ Rc and
shared weight coordinates p′ ∈ R3 in each kernel
1: Sample p̂ from p or p̂ ← p
2: for each p̂ do
3: for each p′ do
4: for each neighboring p, feature fp do
5: pδ ← p− p̂
6: t ← T (p′, pδ)
7: fi ← fi + tfp

8: fi ← Normalize(fi)

9: F ← [f1, · · · , fn]
10: for each kernel k do
11: Wk ← [wk1 , · · · , wkn]
12: vk ← F ·Wk

13: f̂ ← [v0, · · · , vc′ ]
14: return p̂, f̂

aggregate feature by the weighted sum of all neighboring
point features. The aggregated features are further normal-
ized to keep it sparsity invariant. Finally dot production is
applied between the normalized features and kernel weight
vectors. A convolutional kernel sums all the results and c′

kernels constitute a 1 × c′ new feature vector at the output
coordinate. See the InterpConv algorithm for details.

3.3. Network Architectures
In this section, we introduce details for two deep archi-

tectures based on our InterpConv approaches. We explore
embedding mutli-scale context features in the classification
network and a deep encoder-decoder architecture in the seg-
mentation network. See Figure 2 for details.

The classification network consists of a series of Inter-
pConv blocks which is mainly composed of three Interp-
Conv layers. In the InterpConv block, the first and last layer
are of kernel size 1 × 1 × 1 and the middle layer has a
kernel size 3 × 3 × 3. The first InterpConv layer reduces
channel dimensions and the last InterpConv layer increases
channel dimensions, leaving the middle InterpConv layer
with relatively small input and output channels. One Batch-
Norm [13] and ReLU [48] layer also follow each Interp-
Conv layer in the block.

Apart from this, we propose the PointInception module
to encode multi-scale geometric features. Similar to the In-
ception module [38] in 2D CNNs, our PointInception mod-
ule also concatenates multi-branch features. However, we
design each branch as one InterpConv block with a differ-
ent kernel length l. The hyperparameter l determines the
distances between adjacent kernel weight vectors in the Eu-
clidean space and controls the receptive field of the convo-
lution. So the PointInception module is able to capture both

fine-grained local structures and shape context information
by combining multi-branch outputs. We further explore a
deeper model by stacking two PointInception modules.

In the segmentation network, we share the similar spirit
as U-Net [31] and build a deep encoder-decoder architec-
ture. We stack multiple 3 × 3 × 3 InterpConv layers in the
encoder, and in each layer output points are downsampled.
In the first 3 × 3 × 3 InterpConv layer, we set the kernel
length l as a small value in order to capture fine-grained
geometric structures, which is important in semantic seg-
mentation. We then gradually enlarge the kernel length l in
the following blocks to capture context information. For the
upsampling layers in the decoder, we utilize feature propa-
gation layers following [27]. Skip connections are added
between layers that have the same number of output points.
The decoder outputs are then fed into an InterpConv layer
with kernel size 1× 1× 1 to obtain the final predictions.

4. Experiments
In this section, we evaluate the efficacy of Interpolated

Convolutional Neural Networks on multiple tasks, includ-
ing shape classification, object part segmentation and in-
door scene semantic parsing. In all experiments, we im-
plement the models using CUDA and PyTorch on NVIDIA
TITAN X GPUs, and we use the Adam optimizer. We
first demonstrate the performances of our approach on those
tasks. Then we discuss key components of our method in
ablation study.

4.1. Shape Classification
Dataset. We evaluate the 3D shape classification per-

formance of our network on the benchmark dataset Model-
Net40 [5]. ModelNet40 is composed of 12,311 CAD mod-
els which belong to 40 categories with 9,843 for training
and 2,468 for testing. We use the point cloud conversion
of ModelNet40, where 2,048 points are sampled from each
CAD model. We further sample 1,024 points for training
and testing following [25].

Implementation details. We adopt the classification
network in Figure 2(a). We use Gaussian interpolation as
our interpolation function and fix the Gaussian bandwidth
3σ to 0.1 in all InterpConv blocks. Point clouds are down-
sampled to half of the input number after each 3×3×3 Inter-
pConv layer. The input point clouds are randomly scaled by
a factor ranging from 0.8 to 1.2, then jittered by a zero-mean
Gaussian noise with 0.02 standard deviation. We trained the
network for 480 epoches with initial learning rate 0.001 and
decay rate 0.7 every 80 epoches with batch size 16.

Results. We report the overall accuracy on this dataset.
In Table 1, we compare our InterpCNN with other ap-
proaches. We demonstrate that the deep architecture based
on InterpConvs performs much better than graph-based and
voxel-based counterparts, with 0.8% improvement on the
best graph-based network DGCNN [45]. Our approach per-
forms even better than Point2Seq [23] and 3DCapsule [8]
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(b) Segmentation network

Figure 2. Interpolated Convolutional Neural Networks (InterpCNNs). Gray boxes indicate the size of input and output data, and other
boxes are all network layers. In the classification network (a), we extend the idea of Inception module [38] and stack two multi-branch,
multi-receptive-field PointInception modules to capture both local and context geometric information. We note that kernel length l varies
at different branches. In the segmentation network (b), we share similar spirit as U-Net [31] and build an InterpConv-based deep encoder-
decoder architecture. Kernel length l begins with a small value and becomes larger as the network goes deeper.

Input Acc.
Subvolume [26] voxels 89.2%
VRN Single [4] voxels 91.3%

OctNet [30] hybrid grid octree 86.5%
ECC [35] graphs 87.4%

PointwiseCNN [11] 1024 points 86.1%
PointNet [25] 1024 points 89.2%

PointNet++ [27] 1024 points 90.7%
PointNet++ [27] 5000 points+normal 91.9%
Kd-Network [16] 1024 points 91.8%

ShapeContextNet [47] 1024 points 90.0%
KCNet [34] 1024 points 91.0%

PointCNN [20] 1024 points 92.2%
DGCNN [45] 1024 points 92.2%
SO-Net [19] 2048 points 90.9%

SpiderCNN [49] 1024 points+normal 92.4%
Point2Seq [23] 1024 points 92.6%
3DCapsule [8] 1024 points 92.7%
PointConv [46] 1024 points+normal 92.5%

InterpCNN (ours) 1024 points 93.0%

Table 1. Classification results on ModelNet40. Overall accuracy is
reported.

in which many modules and model compacity are added on
top of PointNet++ [27] to gain a better performance.

4.2. Object Part Segmentation
Dataset. We evaluate our segmentation network on the

part segmentation dataset ShapeNet Parts [50]. ShapeNet
Parts consists of 16,880 models from 16 shape categories,
with 14,006 for training and 2,874 for testing. Each model
is annotated with 2 to 6 parts and there are 50 different parts
in total. Each point sampled from the models is annotated
with a part label.

Implementation details. We use the segmentation net-

Cat. Ins.
mIOU mIOU

PointNet [25] 80.4% 83.7%
PointNet++ [27] 81.9% 85.1%

FCPN [29] - 84.0%
SyncSpecCNN [51] 82.0% 84.7%

SSCN [10] 83.3% 86.0%
SPLATNet [36] 83.7% 85.4%
SpiderCNN [49] 81.7% 85.3%

SO-Net [19] 81.0% 84.9%
PCNN [2] 81.8% 85.1%

KCNet [34] 82.2% 83.7%
ShapeContextNet [47] - 84.6%

SpecGCN [41] - 85.4%
3DmFV [3] 81.0% 84.3%
RSNet [12] 81.4% 84.9%

PointCNN [20] 84.6% 86.1%
DGCNN [45] 82.3% 85.1%
SGPN [44] 82.8% 85.8%

PointConv [46] 82.8% 85.7%
Point2Seq [23] - 85.2%

InterpCNN (ours) 84.0% 86.3%

Table 2. Segmentation results on ShapeNet Parts. Mean IoU over
categories (Cat.) and instances (Ins.) are reported.

work in Figure 2(b). During training we randomly sam-
ple 2,048 points from each object and use the original point
clouds for testing. Different from the classification network,
we utilize a trilinear interpolation function with a smaller
kernel length l, which is shown to perform much better. The
kernel length l starts with 0.05 in the first InterpConv layer
and doubles in the following layers. We use a minibatch of
32 in each GPU and 4 GPUs to train a model. We set the
initial learning rate to be 0.005. Data augmentation is the
same as classification.



Figure 3. Visualization of object part segmentation results on
ShapeNet Parts. The first row is ground truth and the second row
is our predictions. From left to right are cars, motorbikes, lamps
and chairs.

Overall Cat.
Accuracy mIOU

PointNet [25] 78.5% 47.6%
ShapeContextNet [47] 81.6% 52.7%

RSNet [12] - 56.5%
PointCNN [20] 88.1% 65.4%
DGCNN [45] 84.1% 56.1%
SGPN [44] 80.8% 50.4%

SPGraph [18] 85.5% 62.1%
InterpCNN (ours) 88.7% 66.7%

Table 3. 6-fold validation results on S3DIS. Overall accuracy and
mean IOU over categories are reported.

Results. We report mean IOU over categories and in-
stances in Table 2. It is worth noting that mean IOU over
instances is more realistic. Our approach performs better
than compared methods on mean IOU over instances.

4.3. Indoor Scene Segmentation

Dataset. S3DIS [1] is an indoor sence semantic parsing
dataset which contains 271 rooms in 6 areas. Each room is
scanned by Matterport scanners and every point in the scan
is annotated with one semantic label from 13 categories. We
follow [25] and split rooms into 1m × 1m blocks for train-
ing and testing.

Implementation details. Similar to the part segmenta-
tion task we use the same architecture in Figure 2(b). The
difference is that we take 4,096 points from each 1m × 1m
block as inputs during training. We construct a 9D vector
(XYZ, RGB, and the normalized location) for each input.
Other configurations are the same as that in the object part
segmentation task.

Results. Following [25], we adpot 6-fold validations on
6 areas, and we report overall accuracy and mean IOU over
categories in Table 3. Our approach significantly outper-
forms state-of-the-art methods on both accuracy and mean
IOU.

PointNet++ DGCNN Ours Ground truth

Figure 4. Qualitative evaluation on S3DIS compared with Point-
Net++ and DGCNN.

4.4. Ablation Study
We perform ablation studies to investigate components

of our InterpCNNs on ModelNet40 and ShapeNet Parts.
Effectiveness of kernel size n and kernel length l. We

explore different settings of hyperparameter n and l for the
1st and 2nd PointInception module in Table 4 and Table 5.
We first try the setting of all InterpConvs with kernel size
1×1×1 and only use a maxpooling layer to aggregate global
features. We note that this architecture is similar to Point-
Net [25] in which the network cannot capture local struc-
tures, and the result is much worse. This indicates the great
power of InterpConvs with kernel size more than 1. Simply
replacing one 1×1×1 InterpConv with 3×3×3 for each In-
terpConv block obtains a performance gain of 3%. We also
try InterpConvs with a larger kernel size 5 × 5 × 5 but the
performance does not improve. We demonstrate that utiliz-
ing 3 × 3 × 3 InterpConvs is sufficiently effective and this
also reduces model parameters compared with the 5×5×5
counterparts. We also explore different kernel lengths and
we show that this hyperparameter has a significant effect
on the final performance. Either too small or too large the
kernel length l will harm the accuracy.

Effectiveness of interpolation functions. We try both
Gaussian and trilinear interpolation functions in all tasks.
In Table 6, the results show that Gaussian interpolation per-
forms better in classification while trilinear interpolation is
better in segmentaion. We argue that trilinear interpolation
can capture fine-grained geometric structures better than
Gaussian counterpart, which is more important for segmen-
tation. Gaussian interpolation is able to obtain global shape
information more effectively.

Effectiveness of normalization methods. We try nor-
malization according to the number of neightboring points
(Eq. (7)) and the sum of interoplation weights (Eq. (8)). The
results in Table 7 indicate that both two methods are effec-
tive and show comparable performances. It is worth noting
that in extreme cases where there are only a few close points
but many far away points in the neighborhood of a kernel-
weight coordinate, normalization on the sum of interpola-
tion weights is more appropriate.



1st module 2nd module Accuracy
1× 1× 1 1× 1× 1 89.9%
3× 3× 3 5× 5× 5 92.9%
5× 5× 5 3× 3× 3 92.8%
3× 3× 3 3× 3× 3 93.0%

Table 4. Results of different kernel sizes on ModelNet40.

1st module 2nd module Accuracy
0.05− 0.1− 0.2 0.1− 0.2− 0.4 92.4%
0.1− 0.2− 0.4 0.2− 0.4− 0.8 93.0%
0.2− 0.4− 0.8 0.4− 0.8− 1.6 91.9%

Table 5. Results of different kernel lengths on ModelNet40.

Interpolation function ModelNet40 ShapeNet Parts
Gaussian 93.0% 85.0%
Trilinear 92.5% 86.3%

Table 6. Results of different interpolation functions on Model-
Net40 and ShapeNet Parts.

Normalization method Accuracy
interpolation weights 92.8%

number of points 93.0%

Table 7. Results of different normalization methods on Model-
Net40.

Method Parameters Accuracy
Subvolume [26] 16.6M 89.2%
PointNet [25] 3.5M 89.2%

PointNet++ (MSG) [27] 12M 90.7%
InterpCNN (ours) 12.8M 93.0%

Table 8. Model parameters and performance comparisons on Mod-
elNet40.

Method Inference time Accuracy
PointNet++ (MSG) [27] 26.8ms 90.7%

DGCNN [45] 89.7ms 92.2%
InterpCNN (ours) 31.4ms 93.0%

Table 9. Inference time comparisons on ModelNet40.

Model parameters analysis. We report the number of
parameters in our classification network on ModelNet40.
Results in Table 8 show that even with the comparable
model parameters, PointNet++ still performs much worse
than our approach. InterpCNNs also have fewer parameters
than other 3D convolution methods.

Runtime analysis. We summarize average inference
time based on the classification network with batch size 16,
1024 points on an NVIDIA TITAN X GPU, and compare
it with pioneering work PointNet++ and DGCNN under the
same settings. In Table 9, average inference time of our ap-

Chair Monitor Car Guitar Bottle Airplane

Kernel #3

Kernel #5

Kernel #19

Kernel #29

Figure 5. Visualization of feature activations learned by different
InterpConv kernels on ModelNet40.

Ground
truth

Failure
cases

More parts Less parts Unclear boundaries Confusing annotations

Figure 6. Visualization of failure cases on ShapeNet Parts.

proach is slightly slower than PointNet++, but much faster
than graph-based approach DGCNN.

Visualization. We visualize activations by different ker-
nels in the first 3 × 3 × 3 InterpConv layer in Figure 5 and
some failure cases in Figure 6.

5. Conclusion
We propose a novel convolution InterpConv and Inter-

polated Convolutional Neural Networks (InterpCNNs) for
3D classification and segmentation. Experiments on Mod-
elNet40, ShapeNet Parts and S3DIS show promising results
compared with existing methods. For future work, we plan
to explore new deep architectures based on learnable kernel-
weight coordinates, and apply our approach on other point
cloud processing tasks including 3D detection and instance
segmentation.
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