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Abstract

This paper targets the task with discrete and periodic
class labels (e.g., pose/orientation estimation) in the con-
text of deep learning. The commonly used cross-entropy or
regression loss is not well matched to this problem as they
ignore the periodic nature of the labels and the class simi-
larity, or assume labels are continuous value. We propose to
incorporate inter-class correlations in a Wasserstein train-
ing framework by pre-defining (i.e., using arc length of a
circle) or adaptively learning the ground metric. We extend
the ground metric as a linear, convex or concave increasing
function w.r.t. arc length from an optimization perspective.
We also propose to construct the conservative target labels
which model the inlier and outlier noises using a wrapped
unimodal-uniform mixture distribution. Unlike the one-hot
setting, the conservative label makes the computation of
Wasserstein distance more challenging. We systematically
conclude the practical closed-form solution of Wasserstein
distance for pose data with either one-hot or conservative
target label. We evaluate our method on head, body, vehi-
cle and 3D object pose benchmarks with exhaustive abla-
tion studies. The Wasserstein loss obtaining superior per-
formance over the current methods, especially using con-
vex mapping function for ground metric, conservative label,
and closed-form solution.

1. Introduction

There are some prediction tasks where the output labels
are discrete and are periodic. For example, consider the
problem of pose estimation. Although pose can be a con-
tinuous variable, in practice, it is often discretized e.g., in
5-degree intervals. Because of the periodic nature of pose,
a 355-degree label is closer to 0-degree label than the 10-
degree label. Thus it is important to consider the periodic
and discrete nature of the pose classification problem.

In previous literature, pose estimation is often cast as a
multi-class classification problem [49], a metric regression
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Figure 1. The limitation of CE loss for pose estimation. The
ground truth direction of the car is tj∗. Two possible softmax
predictions (green bar) of the pose estimator have the same proba-
bility at tj∗ position. Therefore, both predicted distributions have
the same CE loss. However, the left prediction is preferable to the
right, since we desire the predicted probability distribution to be
larger and closer to the ground truth class.

problem [46], or a mixture of both [37].
In a multi-class classification formulation using the

cross-entropy (CE) loss, the class labels are assumed to be
independent from each other [49, 25, 33]. Therefore, the
inter-class similarity is not properly exploited. For instance,
in Fig. 1, we would prefer the predicted probability distri-
bution to be concentrated near the ground truth class, while
the CE loss does not encourage that.

On the other hand, metric regression methods treat the
pose as a continuous numerical value [35, 28, 32], al-
though the label of pose itself is discrete. As manifested
in [36, 31, 27], learning a regression model using discrete
labels will cause over-fitting and exhibit similar or inferior
performance compared with classification.

Recent works either use a joint classification and regres-
sion loss [37] or divide a circle into several sectors with a
coarse classification that ignores the periodicity, and then
applying regression networks to each sector independently
as an ordinal regression problem [20]. Unfortunately, none
of them fundamentally address the limitations of CE or re-
gression loss in angular data.

In this work, we employ the Wasserstein loss as an al-
ternative for empirical risk minimization. The 1st Wasser-
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stein distance is defined as the cost of optimal transport for
moving the mass in one distribution to match the target dis-
tribution [51, 52]. Specifically, we measure the Wasserstein
distance between a softmax prediction and its target label,
both of which are normalized as histograms. By defining
the ground metric as class similarity, we can measure pre-
diction performance in a way that is sensitive to correlations
between the classes.

The ground metric can be predefined when the similarity
structure is known a priori to incorporate the inter-class cor-
relation, e.g., the arc length for the pose. We further extend
the arc length to its increasing function from an optimiza-
tion perspective. The exact Wasserstein distance in one-
hot target label setting can be formulated as a soft-attention
scheme of all prediction probabilities and be rapidly com-
puted. We also propose to learn the optimal ground metric
following alternative optimization.

Another challenge of pose estimation comes from low
image quality (e.g., blurry, low resolution) and the conse-
quent noisy labels. This requires 1) modeling the noise for
robust training [31, 27] and 2) quantifying the uncertainty
of predictions in testing phase [46].

Wrongly annotated targets may bias the training pro-
cess [56, 3]. We instigate two types of noise. The outlier
noise corresponds to one training sample being very distant
from others by random error and can be modeled by a uni-
form distribution [56]. We notice that the pose data is more
likely to have inlier noise where the labels are wrongly an-
notated as the near angles and propose to model it using a
unimodal distribution. Our solution is to construct a con-
servative target distribution by smoothing the one-hot label
using a wrapped uniform-unimodal mixture model.

Unlike the one-hot setting, the conservative target distri-
bution makes the computation of Wasserstein distance more
advanced because of the numerous possible transportation
plans. The O(N3) computational complexity for N classes
has long been a stumbling block in using Wasserstein dis-
tance for large-scale applications. Instead of only obtaining
its approximate solution using a O(N2) complexity algo-
rithm [11], we systematically analyze the fast closed-form
computation of Wasserstein distance for our conservative
label when our ground metric is a linear, convex, or con-
cave increasing function w.r.t. the arc length. The linear
and convex cases can be solved with linear complexity of
O(N). Our exact solutions are significantly more efficient
than the approximate baseline.

The main contributions of this paper are summarized as
• We cast the pose estimation as a Wasserstein training

problem. The inter-class relationship of angular data is ex-
plicitly incorporated as prior information in our ground met-
ric which can be either pre-defined (a function w.r.t. arc
length) or adaptively learned with alternative optimization.
•We model the inlier and outlier error of pose data using

a wrapped discrete unimodal-uniform mixture distribution,
and regularize the target confidence by transforming one-
hot label to conservative target label.
• For either one-hot or conservative target label, we sys-

tematically conclude the possible fast closed-form solution
when a non-negative linear, convex or concave increasing
mapping function is applied in ground metric.

We empirically validate the effectiveness and general-
ity of the proposed method on multiple challenging bench-
marks and achieve the state-of-the-art performance.

2. Related Works
Pose or viewpoint estimation has a long history in com-
puter vision [40]. It arises in different applications, such
as head [40], pedestrian body [49], vehicle [64] and object
class [55] orientation/pose estimation. Although these sys-
tems are mostly developed independently, they are essen-
tially the same problem in our framework.

The current related literature using deep networks can be
divided into two categories. Methods in the first group, such
as [48, 17, 65], predict keypoints in images and then recover
the pose using pre-defined 3D object models. The keypoints
can be either semantic [43, 62, 38] or the eight corners of a
3D bounding box encapsulating the object [48, 17].

The second category of methods, which are more close
to our approach, estimate angular values directly from the
image [14, 60]. Instead of the typical Euler angle repre-
sentation for rotations [14], biternion representation is cho-
sen in [4, 46] and inherits the periodicity in its sin and cos
operations. However, their setting is compatible with only
the regression. Several studies have evaluated the perfor-
mance of classification and regression-based loss functions
and conclude that the classification methods usually outper-
form the regression ones in pose estimation [38, 37].

These limitations were also found in the recent ap-
proaches which combine classification with regression or
even triplet loss [37, 64].
Wasserstein distance is a measure defined between proba-
bility distributions on a given metric space [24]. Recently, it
attracted much attention in generative models etc [2]. [16]
introduces it for multi-class multi-label task with a linear
model. Because of the significant amount of computing
needed to solve the exact distance for general cases, these
methods choose the approximate solution, whose complex-
ity is still in O(N2) [11]. The fast computing of discrete
Wasserstein distance is also closely related to SIFT [9] de-
scriptor, hue in HSV or LCH space [8] and sequence data
[54]. Inspired by the above works, we further adapted this
idea to the pose estimation, and encode the geometry of la-
bel space by means of the ground matrix. We show that the
fast algorithms exist in our pose label structure using the
one-hot or conservative target label and the ground metric
is not limited to the arc length.
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Robust training with noise data has long been studied for
general classification problems [23]. Smoothing the one-
hot label [56] with a uniform distribution or regularizing the
entropy of softmax output [45] are two popular solutions.
Some works of regression-based localization model the un-
certainty of point position in a plane with a 2D Gaussian dis-
tribution [57]. [66] propose to regularize self-training with
confidence. However, there are few studies for the discrete
periodic label. Besides sampling on Gaussian, the Poisson
and the Binomial distribution are further discussed to form
a unimodal-uniform distribution.
Uncertainty quantification of pose estimation aims to
quantify the reliability of a result e.g., a confidence distri-
bution of each class rather than a certain angle value for
pose data [46]. A well-calibrated uncertainty is especially
important for large systems to assess the consequence of a
decision [10, 18]. [46] proposes to output numerous sets of
the mean and variation of Gaussian/Von-Mises distribution
following [4]. It is unnecessarily complicated and is a some-
what ill-matched formulation as it assumes the pose label is
continuous, while it is discrete. We argue that the softmax
is a natural function to capture discrete uncertainty, and is
compatible with Wasserstein training.

3. Methodology
We consider learning a pose estimator hθ, parameterized

by θ, with N -dimensional softmax output unit. It maps a
image x to a vector s ∈ RN . We perform learning over a hy-
pothesis spaceH of hθ. Given input x and its target ground
truth one-hot label t, typically, learning is performed via
empirical risk minimization to solve min

hθ∈H L(hθ(x), t), with
a loss L(·, ·) acting as a surrogate of performance measure.

Unfortunately, cross-entropy, information divergence,
Hellinger distance and X 2 distance-based loss treat the out-
put dimensions independently [16], ignoring the similarity
structure on pose label space.

Let s = {si}N−1i=0 be the output of hθ(x), i.e., softmax
prediction with N classes (angles), and define t = {tj}N−1j=0

as the target label distribution, where i, j ∈ {0, · · · , N − 1}
be the index of dimension (class). Assume class label pos-
sesses a ground metric Di,j , which measures the semantic
similarity between i-th and j-th dimensions of the output.
There are N2 possible Di,j in a N class dataset and form a
ground distance matrix D ∈ RN×N . When s and t are both
histograms, the discrete measure of exact Wasserstein loss
is defined as

LDi,j (s, t) = inf
W

N−1∑
j=0

N−1∑
i=0

Di,jWi,j (1)

where W is the transportation matrix with Wi,j indicating
the mass moved from the ith point in source distribution
to the jth target position. A valid transportation matrix W
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Figure 2. Left: The only possible transport plan in one-hot target
case. Right: the ground matrix using arc length as ground metric.

satisfies: Wi,j ≥ 0;
∑N−1
j=0 Wi,j ≤ si;

∑N−1
i=0 Wi,j ≤ tj ;∑N−1

j=0

∑N−1
i=0 Wi,j = min(

∑N−1
i=0 si,

∑N−1
j=0 tj).

The ground distance matrix D in Wasserstein distance is
usually unknown, but it has clear meanings in our appli-
cation. Its i, j-th entry Di,j could be the geometrical dis-
tance between the i-th and j-th points in a circle. A pos-
sible choice is using the arc length di,j of a circle (i.e., `1
distance between the i-th and j-th points in a circle) as the
ground metric Di,j = di,j .

di,j = min {|i− j|, N − |i− j|} (2)

The Wasserstein distance is identical to the Earth
mover’s distance when the two distributions have the same
total masses (i.e.,

∑N−1
i=0 si =

∑N−1
j=0 tj) and using the

symmetric distance di,j as Di,j .
This setting is satisfactory for comparing the similarity

of SIFT or hue [51], which do not use a neural network op-
timization. The previous efficient algorithm usually holds
only for Di,j = di,j . We propose to extend the ground
metric in Di,j as f(di,j), where f is a positive increasing
function w.r.t. di,j .

3.1. Wasserstein training with one-hot target

The one-hot encoding is a typical setting for multi-class
one-label dataset. The distribution of a target label probabil-
ity is t = δj,j∗ , where j∗ is the ground truth class, δj,j∗ is a
Dirac delta, which equals to 1 for j = j∗1, and 0 otherwise.
Theorem 1. Assume that

∑N−1
j=0 tj =

∑N−1
i=0 si, and t is

a one-hot distribution with tj∗ = 1(or
∑N−1
i=0 si)

2, there is
only one feasible optimal transport plan.

According to the criteria of W, all masses have to be
transferred to the cluster of the ground truth label j∗, as il-
lustrated in Fig. 2. Then, the Wasserstein distance between
softmax prediction s and one-hot target t degenerates to

LDfi,j
(s, t) =

N−1∑
i=0

sif(di,j∗) (3)

1We use i, j interlaced for s and t, since they index the same group of
positions in a circle.

2We note that softmax cannot strictly guarantee the sum of its outputs
to be 1 considering the rounding operation. However, the difference of
setting tj∗ to 1 or

∑N−1
i=0 si) is not significant in our experiments using

the typical format of softmax output which is accurate to 8 decimal places.
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where Dfi,j = f(di,j). Practically, f can be an increasing
function proper, e.g., pth power of di,j and Huber function.
The exact solution of Eq. (3) can be computed with a com-
plexity of O(N). The ground metric term f(di,j∗) works
as the weights w.r.t. si, which takes all classes into account
following a soft attention scheme [26, 29, 30]. It explicitly
encourages the probabilities distributing on the neighboring
classes of j∗. Since each si is a function of the network
parameters, differentiating LDfi,j

w.r.t. network parameters

yields
∑N−1
i=0 s′if(di,j∗).

In contrast, the cross-entropy loss in one-hot setting can
be formulated as −1logsj∗ , which only considers a single
class prediction like the hard attention scheme [26, 29, 30],
that usually loses too much information. Similarly, the re-
gression loss using softmax prediction could be f(di∗,j∗),
where i∗ is the class with maximum prediction probability.

In addition to the predefined ground metric, we also pro-
pose to learn D adaptively along with our training following
an alternative optimization scheme [34].
Step 1: Fixing ground matrix D to compute LDi,j (s, t) and
updating the network parameters.
Step 2: Fixing network parameters and postprocessing D
using the feature-level `1 distances between different poses.

We use the normalized second-to-last layer neural re-
sponse in this round as feature vector, since there is no sub-
sequent non-linearities. Therefore, it is meaningful to aver-
age the feature vectors in each pose class to compute their
centroid and reconstruct Di,j using the `1 distances between
these centroids di,j . To avoid the model collapse, we con-
struct the Di,j = 1

1+α

{
f(di,j) + αf(di,j)

}
in each round,

and decrease α from 10 to 0 gradually in the training.

3.2. Wrapped unimodal-uniform smoothing

The outlier noise exists in most of data-driven tasks, and
can be modeled by a uniform distribution [56]. However,
pose labels are more likely to be mislabeled as a close class
of the true class. It is more reasonable to construct a uni-
modal distribution to depict the inlier noise in pose esti-
mation, which has a peak at class j∗ while decreasing its
value for farther classes. We can sample on a continuous
unimodal distribution (e.g., Gaussian distribution) and fol-
lowed by normalization, or choose a discrete unimodal dis-
tribution (e.g., Poisson/Binomial distribution).
Gaussian/Von-Mises Distribution has the probability den-

sity function (PDF) f(x) =
exp{−(x−µ)2/2σ2}√

2πσ2
for x ∈

[0,K], where µ = K/2 is the mean, and σ2 is the vari-
ance. Similarly, the Von-Mises distribution is a close ap-
proximation to the circular analogue of the normal distribu-
tion (i.e.,K = N−1). We note that the geometric loss [55]
is a special case, when we set ξ = 1, η = 0, K = N − 1,
remove the normalization and adopt CE loss. Since we are
interested in modeling a discrete distribution for target la-
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Figure 3. Left: the wrapping operation with a Binomial distribu-
tion (K + 1 is the number of involved classes of unimodal distri-
bution). Right: the distribution of conservative target label.

bels, we simply apply a softmax operation over their PDF.
Note that the output values are mapped to be defined on the
circle.
Poisson Distribution is used to model the probability of
the number of events, k occurring in a particular interval of
time. Its probability mass function (PMF) is:

pk =
λkexp(−λ)

k!
, k = 0, 1, 2, ..., (4)

where λ ∈ R+ is the average frequency of these events. We
can sample K + 1 probabilities (i.e., 0 ≤ k ≤ K) on this
PMF and followed by normalization for discrete unimodal
probability distributions. Since its mean and variation are
the same (i.e., λ), it maybe inflexible to adjust its shape.
Binomial Distribution is commonly adopted to model the
probability of a given number of successes out of a given
number of trails k and the success probability p.

pk =

(
n

k

)
pk(1− p)n−k, n ∈ N, k = 0, 1, 2, ..., n (5)

We set n = K to construct a distribution with K + 1 bins
without softmax normalization. Its warp processing with
K = 20 is illustrated in Fig. 3.

The conservative target distribution t is constructed by
replacing tj in t with (1−ξ−η)tj+ξpj+η 1

N , which can be
regarded as the weighted sum of the original label distribu-
tion t and a unimodal-uniform mixture distribution. When
we only consider the uniform distribution and utilize the CE
loss, it is equivalent to label smoothing [56], a typical mech-
anism for outlier noisy label training, which encourages the
model to accommodate less-confident labels.

By enforcing s to form a unimodal-uniform mixture dis-
tribution, we also implicitly encourage the probabilities to
distribute on the neighbor classes of j∗.

3.3. Wasserstein training with conservative target

With the conservative target label, the fast computation
of Wasserstein distance in Eq. (3) does not apply. A
straightforward solution is to regard it as a general case and
solve its closed-form result with a complexity higher than
O(N3) or get an approximate result with a complexity in
O(N2). The main results of this section are a series of ana-
lytic formulation when the ground metric is a nonnegative
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increasing linear/convex/concave function w.r.t. arc length
with a reasonable complexity.

3.3.1 Arc length di,j as the ground metric.
When we use di,j as ground metric directly, the Wasser-

stein loss Ldi,j (s, t) can be written as

Ldi,j (s, t) = inf
α∈R

N−1∑
j=0

|
j∑
i=0

(si − ti)− α| (6)

To the best of our knowledge, Eq. (6) was first de-
veloped in [61], in which it is proved for sets of points
with unitary masses on the circle. A similar conclusion
for the Kantorovich-Rubinstein problem was derived in
[6, 7], which is known to be identical to the Wasserstein
distance problem when Di,j is a distance. We note that
this is true for Ldi,j (but false for LDρ(s, t) with ρ > 1).
The optimal α should be the median of the set values{∑j

i=0(si − ti), 0 ≤ j ≤ N − 1
}

[44]. An equivalent dis-
tance is proposed from the circular cumulative distribution
perspective [47]. All of these papers notice that computing
Eq. (6) can be done in linear time (i.e.,O(N)) weighted
median algorithm (see [59] for a review).

We note that the partial derivative of Eq. (6) w.r.t. sn is∑N−1
j=0 sgn(ϕj)

∑j
i=0(δi,n − si), where ϕj =

∑j
i=0(si −

ti), and δi,n = 1 when i = n. Additional details are given
in Appendix B.

3.3.2 Convex function w.r.t. di,j as the ground metric
Next, we extend the ground metric as an nonnegative in-

creasing and convex function of di,j , and show its analytic
formulation. If we compute the probability with a precision
ε, we will have M = 1/ε unitary masses in each distribu-
tion. We define the cumulative distribution function of s and
t and their pseudo-inverses as follows

S(i) =
∑N−1
i=0 si; S(m)

−1
= inf {i;S(i) ≥ m}

T(i) =
∑N−1
i=0 ti; T(m)

−1
= inf

{
i;T(i) ≥ m

} (7)

where m ∈
{

1
M , 2

M , · · · , 1
}

. Following the convention
S(i+N) = S(i), S can be extended to the whole real num-
ber, which consider S as a periodic (or modulo [9]) distri-
bution on R.

Theorem 2. Assuming the arc length distance di,j is
given by Eq. (2) and the ground metric Di,j = f(di,j), with
f a nonnegative, increasing and convex function. Then

LDconvi,j
(s, t) = inf

α∈R

1∑
m= 1

M

f(|S(m)
−1 − (T(m)− α)−1|)

(8)
where α is a to-be-searched transportation constant. A
proof of Eq. (8) w.r.t. the continuous distribution was

given in [12], which shows it holds for any couple of dese-
crate probability distributions. Although that proof involves
some complex notions of measure theory, that is not needed
in the discrete setting. The proof is based on the idea that
the circle can always be “cut” somewhere by searching for
a m, that allowing us to reduce the modulo problem [9] to
ordinal case. Therefore, Eq. (8) is a generalization of the
ordinal data. Actually, we can also extend Wasserstein dis-
tance for discrete distribution in a line [59] as

1∑
m= 1

M

f(|S(m)
−1 − T(m)

−1|) (9)

where f can be a nonnegative linear/convex/concave in-
creasing functionw.r.t. the distance in a line. Eq. (9) can be
computed with a complexity of O(N) for two discrete dis-
tributions. When f is a convex function, the optimal α can
be found with a complexity of O(logM) using the Monge
condition3 (similar to binary search). Therefore, the exact
solution of Eq. (8) can be obtained with O(N logM) com-
plexity. In practice, logM is a constant (log108) accord-
ing to the precision of softmax predictions, which is much
smaller than N (usually N = 360 for pose data).

Here, we give some measures4 using the typical convex
ground metric function.
LDρi,j (s, t), the Wasserstein measure using dρ as ground

metric with ρ = 2, 3, · · · . The case ρ = 2 is equivalent to
the Cramér distance [50]. Note that the Cramér distance is
not a distance metric proper. However, its square root is.

Dρi,j = dρi,j (10)

LDHτi,j
(s, t), the Wasserstein measure using a Huber cost

function with a parameter τ .

DHτi,j =

{
d2i,j if di,j ≤ τ
τ(2di,j − τ) otherwise.

(11)

3.3.3 Concave function w.r.t. di,j as the ground metric
In practice, it may be useful to choose the ground met-

ric as a nonnegative, concave and increasing function w.r.t.
di,j . For instance, we can use the chord length.

Dchordi,j = 2r sin(di,j/2r) (12)

where r = N/2π is the radius. Therefore, f(·) can be
regarded as a concave and increasing function on interval
[0,N /2] w.r.t. di,j .

It is easy to show that Dchordi,j is a distance, and thus
LDchord(s, t) is also a distance between two probability dis-
tributions [59]. Notice that a property of concave dis-
tance is that they do not move the mass shared by the s

3Di,j+Di′,j′ < Di,j′+Di′,j whenever i < i′ and j < j′.
4We refer to “measure”, since a ρth-root normalization is required to

get a distance [59], which satisfies three properties: positive definiteness,
symmetry and triangle inequality.
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Method MAAD Method MAAD
BIT[4] 25.2◦ A-Ldi,j (s, t) 17.5◦

DDS[46]† 23.7◦ A-LD2
i,j

(s, t) 17.3◦

Ldi,j (s, t) 18.8◦ ≈ Ldi,j (s, t) 19.0◦

LD2
i,j

(s, t) 17.1◦ ≈ LD2
i,j

(s, t) 17.8◦

LDchord
i,j

(s, t) 19.1◦ ≈ LDchord
i,j

(s, t) 19.5◦

Table 1. Results on CAVIAR head pose dataset (the lower MAAD
the better).† Our implementation based on their publicly available
codes. The best are in bold while the second best are underlined.

and t [59]. Considering the Monge condition does not ap-
ply for concave function, there is no corresponding fast
algorithm to compute its closed-form solution. In most
cases, we settle for linear programming. However, the sim-
plex or interior point algorithm are known to have at best
a O(N2.5log(NDmax)) complexity to compare two his-
tograms on N bins [41, 5], where Dmax = f(N2 ) is the
maximal distance between the two bins.

Although the general computation speed of the concave
function is not satisfactory, the step function f(t) = 1t 6=0

(one every where except at 0) can be a special case, which
has significantly less complexity [59]. Assuming that the
f(t) = 1t6=0, the Wasserstein metric between two normal-
ized discrete histograms on N bins is simplified to the `1
distance.

L1di,j 6=0(s, t) =
1

2

N−1∑
i=0

|si − ti| =
1

2
||s− t||1 (13)

where || · ||1 is the discrete `1 norm.
Unfortunately, its fast computation is at the cost of losing

the ability to discriminate the difference of probability in a
different position of bins.

4. Experiments
In this section, we show the implementation details and

experimental results on the head, pedestrian body, vehi-
cle and 3D object pose/orientation estimation tasks. To il-
lustrate the effectiveness of each setting choice and their
combinations, we give a series of elaborate ablation studies
along with the standard measures.

We use the prefix A and ≈ denote the adaptively ground
metric learning (in Sec. 3.1) and approximate computation
of Wasserstein distance [11, 16] respectively. (s, t) and (s, t)
refer to using one-hot or conservative target label. For in-
stance, Ldi,j (s, t) means choosing Wasserstein loss with arc
length as ground metric and using one-hot target label.

4.1. Head pose

Following [4, 46], we choose the occluded version of
CAVIAR dataset [15] and construct the training, valida-
tion and testing using 10802, 5444 and 5445 identity-
independent images respectively. Since the orientation of
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Figure 4. Normalized adaptively learned ground matrix and polar
histogram w.r.t. the number of training samples in TUD dataset.

gaze is coarsely labeled, and almost 40% training sam-
ples lie within ±4◦ of the four canonical orientations,
regression-based methods [4, 46] are inefficient.

For fair comparison, we use the same deep batch nor-
malized VGG-style [53] backbone as in [4, 46]. Instead of
a sigmoid unit in their regression model, the last layer is set
to a softmax layer with 8 ways for Right, Right-Back, Back,
Left-Back, Left, Left-Front, Front and Right-Front poses.

The metric used here is the mean absolute angular de-
viation (MAAD), which is widely adopted for angular re-
gression tasks. The results are summarized in Table 1. The
Wasserstein training boosts the performance significantly.
Using convex f can further improve the result, while the
losses with concave f are usually inferior to the vanilla
Wasserstein loss with arc length as the ground metric. The
adaptive ground metric learning is helpful for theLdi,j (s, t),
but not necessary when we extend the ground metric to the
square of di,j .

We also note that the exact Wasserstein distances are
consistently better than their approximate counterparts [11].
More appealingly, in the training stage, Ldi,j (s, t) is 5×
faster than ≈ Ldi,j (s, t) and 3× faster than conventional
regression-based method [46] to achieve the convergence.

4.2. Pedestrians orientation

The TUD multi-view pedestrians dataset [1] consists
of 5,228 images along with bounding boxes. Its original
annotations are relatively coarse, with only eight classes.
We adopt the network in [49] and show the results in Ta-
ble 2. Our methods, especially the LD2

i,j
(s, t) outperform

the cross-entropy loss-based approach in all of the eight
classes by a large margin. The improvements in the case of
binomial-uniform regularization (ξ = 0.1, η = 0.05,K =
4, p = 0.5) seems limited for 8 class setting, because each
pose label covers 45◦ resulting in relatively low noise level.

The adaptive ground metric learning can contribute to
higher accuracy than the plain Ldi,j (s, t). Fig. 4 pro-
vides a visualization of the adaptively learned ground ma-
trix. The learned di,j is slightly larger than di,j when lim-
ited training samples are available in the related classes,
e.g., d225◦,180◦ < d225◦,270◦ . A larger ground metric value
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Method 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

CE loss[49] 0.90 0.96 0.92 1.00 0.92 0.88 0.89 0.95

Ldi,j (s, t) 0.93 0.97 0.95 1.00 0.96 0.91 0.91 0.95

A-Ldi,j (s, t) 0.94 0.97 0.96 1.00 0.95 0.92 0.91 0.96
LD2
i,j

(s, t) 0.95 0.97 0.96 1.00 0.96 0.92 0.91 0.96

CE loss(s, t) 0.90 0.96 0.94 1.00 0.92 0.90 0.90 0.95
LD2
i,j

(s, t) 0.95 0.98 0.96 1.00 0.96 0.93 0.92 0.96

Table 2. Class-wise accuracy for TUD pedestrian orientation esti-
mation with 8 pose setting (the higher the better).

Method Mean AE Accπ
8

Accπ
4

RTF[19] 34.7 0.686 0.780
SHIFT[20] 22.6 0.706 0.861

Ldi,j (s, t) 19.1 0.748 0.900

A-Ldi,j (s, t) 20.5 0.723 0.874

LD2
i,j

(s, t) 18.5 0.756 0.905

LD2
i,j
| SHIFT (s, t)G 16.4 | 20.1 0.764 | 0.724 0.909 | 0.874

LD2
i,j
| SHIFT (s, t)P 17.7 | 20.8 0.760 | 0.720 0.907 | 0.871

LD2
i,j
| SHIFT (s, t)B 16.3 | 20.1 0.766 | 0.723 0.910 | 0.875

Human [20] 9.1 0.907 0.993

Table 3. Results on TUD pedestrian orientation estimation w.r.t.
Mean Absolute Error in degree (the lower the better) and
Accπ

8
,Accπ

4
(the higher the better). | means “or”. The suffix

G,P,B refer to Gaussian, Poison and Binomial-uniform mixture
conservative target label, respectively.

may emphasize the class with fewer samples in the training.
We also utilize the 36-pose labels provided in [19, 20],

and adapt the backbone from [20]. We report the results
w.r.t. mean absolute error and accuracy at π8 and π

4 in Ta-
ble 3, which are the percentage of images whose pose error
is less than π

8 and π
4 , respectively. Even the plain Ldi,j (s, t)

outperforms SHIFT [20] by 4.4% and 3.9% w.r.t. Accπ8
andAccπ4 . Unfortunately, the adaptive ground metric learn-
ing is not stable when we scale the number of class to 36.

The disagreement of human labeling is significant in 36
class setting. In such a case, our conservative target label
is potentially helpful. The discretized Gaussian distribu-
tion (ξ = 0.1, η = 0.05, µ = 5, σ2 = 2.5) and Bino-
mial distribution (ξ = 0.1, η = 0.05,K = 10, p = 0.5)
show similar performance, while the Poisson distribution
(ξ = 0.1, η = 0.05,K = 10, λ = 5) appears less competi-
tive. Note that the variance of Poisson distribution is equal
to its mean λ, and it approximates a symmetric distribution
with a large λ. Therefore, it is not easy to control the shape
of target distribution. Our LD2

i,j
(s, t)B outperforms [20] by

6.3◦, 6% and 4.9% in terms of Mean AE, Accπ8 and Accπ4 .

4.3. Vehicle orientation

The EPFL dataset [42] contains 20 image sequences of
20 car types at a show. We follow [20] to choose ResNet-

Method Mean AE Median AE

HSSR[64] 20.30 3.36
SMMR[22] 12.61 3.52
SHIFT[20] 9.86 3.14

Ldi,j (s, t)|(s, t) 6.46 | 6.30 2.29 | 2.18

Ldi,j (s, t)|(s, t), tj∗ =
∑N−1
i=0 si

† 6.46 | 6.30 2.29 | 2.18

LD2
i,j

(s, t)|(s, t) 6.23 | 6.04 2.15 | 2.11

LD2
i,j

(s, t)|(s, t), tj∗ =
∑N−1
i=0 si

† 6.23 | 6.04 2.15 | 2.11

LD3
i,j

(s, t)|(s, t) 6.47 | 6.29 2.28 | 2.20

LDHτ
i,j

(s, t)|(s, t) 6.20 | 6.04 2.14 | 2.10

Table 4. Results on EPFL w.r.t. Mean and Median Absolute Error
in degree (the lower the better). | means “or”.† denotes we assign
tj∗ =

∑N−1
i=0 si, and tj∗ = 1 in all of the other cases.
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Figure 5. Left: The second-to-last layer feature of the 7 se-
quences in EPFL testing set with t-SNE mapping (not space posi-
tion/angle). Right: Mean AE as a function of K for the Binomial
distribution showing that the hyper-parameter K matters.

101 [21] as the backbone and use 10 sequences for training
and the other 10 sequences for testing. As shown in Table 4,
the Huber function (τ = 10) can be beneficial for noisy data
learning, but the improvements appear to be not significant
after we have modeled the noise in our conservative target
label with Binomial distribution (ξ = 0.2, η = 0.05,K =
30, p = 0.5). Therefore, we would recommend choosing
LD2

i,j
and Binomial-uniform mixture distribution as a sim-

ple yet efficient combination. The model is not sensitive to
the possible inequality of

∑N−1
i=0 ti and

∑N−1
i=0 si caused by

numerical precision.
Besides, we visualize the second-to-last layer represen-

tation of some sequences in Fig. 5 left. As shown in Fig.
5 right, the shape of Binomial distribution is important for
performance. It degrades to one-hot or uniform distribution
when K = 0 or a large value. All of the hyper-parameters
in our experiments are chosen via grid searching. We see a
27.8% Mean AE decrease from [20] to LD2

i,j
(s, t), and 33%

for Median AE.

4.4. 3D object pose

PASCAL3D+ dataset [63] consists of 12 common cat-
egorical rigid object images from the Pascal VOC12 and
ImageNet dataset [13] with both detection and pose anno-
tations. On average, about 3,000 object instances per cat-
egory are captured in the wild, making it challenging for
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backbone aero bike boat bottle bus car chair table mbike sofa train tv mean

A
c
c
π 6

Tulsiani et al. [58] AlexNet+VGG 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.8075
Su et al. [55] AlexNet† 0.74 0.83 0.52 0.91 0.91 0.88 0.86 0.73 0.78 0.90 0.86 0.92 0.82

Mousavian et al. [39] VGG 0.78 0.83 0.57 0.93 0.94 0.90 0.80 0.68 0.86 0.82 0.82 0.85 0.8103
Pavlakos et al. [43] Hourglass 0.81 0.78 0.44 0.79 0.96 0.90 0.80 N/A N/A 0.74 0.79 0.66 N/A

Mahendran et al. [37] ResNet50† 0.87 0.81 0.64 0.96 0.97 0.95 0.92 0.67 0.85 0.97 0.82 0.88 0.8588
Grabner et .al. [17] ResNet50 0.83 0.82 0.64 0.95 0.97 0.94 0.80 0.71 0.88 0.87 0.80 0.86 0.8392

Zhou et al. [65] ResNet18 0.82 0.86 0.50 0.92 0.97 0.92 0.79 0.62 0.88 0.92 0.77 0.83 0.8225
Prokudin et al. [46] InceptionResNet 0.89 0.83 0.46 0.96 0.93 0.90 0.80 0.76 0.90 0.90 0.82 0.91 0.84
Ldi,j (s, t) ResNet50 0.88 0.79 0.67 0.93 0.96 0.96 0.86 0.73 0.86 0.91 0.89 0.87 0.8735

LD2
i,j

(s, t) ResNet50 0.89 0.84 0.67 0.96 0.95 0.95 0.87 0.75 0.88 0.92 0.88 0.89 0.8832

L
DHτ
i,j

(s, t) ResNet50 0.90 0.82 0.68 0.95 0.97 0.94 0.89 0.76 0.88 0.93 0.87 0.88 0.8849

LD2
i,j

(s, t) ResNet50 0.91 0.82 0.67 0.96 0.97 0.95 0.89 0.79 0.90 0.93 0.85 0.90 0.8925

A
c
c
π 1
8

Zhou et al. [65] ResNet18 0.49 0.34 0.14 0.56 0.89 0.68 0.45 0.29 0.28 0.46 0.58 0.37 0.4818
Ldi,j (s, t) ResNet50 0.48 0.64 0.20 0.60 0.83 0.62 0.42 0.37 0.32 0.42 0.58 0.39 0.5020

Ldi,j (s, t) ResNet50 0.48 0.65 0.19 0.58 0.86 0.64 0.45 0.38 0.35 0.41 0.55 0.36 0.5052

LD2
i,j

(s, t) ResNet50 0.49 0.63 0.18 0.56 0.85 0.67 0.47 0.41 0.26 0.43 0.62 0.38 0.5086

LD2
i,j

(s, t) ResNet50 0.51 0.65 0.19 0.59 0.86 0.63 0.48 0.40 0.28 0.41 0.57 0.40 0.5126

L
DHτ
i,j

(s, t) ResNet50 0.52 0.67 0.16 0.58 0.88 0.67 0.45 0.33 0.25 0.44 0.61 0.35 0.5108

L
DHτ
i,j

(s, t) ResNet50 0.50 0.66 0.17 0.55 0.85 0.65 0.46 0.40 0.38 0.45 0.59 0.41 0.5165

M
e
d
E
r
r

Tulsiani et al. [58] AlexNet+VGG 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.59
Su et al. [55] AlexNet 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7

Mousavian et al. [39] VGG 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.15
Pavlakos et al. [43] Hourglass 11.2 15.2 37.9 13.1 4.7 6.9 12.7 N/A N/A 21.7 9.1 38.5 N/A

Mahendran et al. [37] ResNet50 8.5 14.8 20.5 7.0 3.1 5.1 9.3 11.3 14.2 10.2 5.6 11.7 11.10
Grabner et al. [17] ResNet50 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.88

Zhou et al. [65] ResNet18 10.1 14.5 30.3 9.1 3.1 6.5 11.0 23.7 14.1 11.1 7.4 13.0 10.4
Prokudin et al. [46] InceptionResNet 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0 12.2
Ldi,j (s, t) ResNet50 9.8 13.2 26.7 6.5 2.5 4.2 9.4 10.6 11.0 10.5 4.2 9.8 9.55

LD2
i,j

(s, t) ResNet50 10.5 12.6 23.1 5.8 2.6 5.1 9.6 11.2 11.5 9.7 4.3 10.4 9.47

L
DHτ
i,j

(s, t) ResNet50 11.3 11.8 19.2 6.8 3.1 5.0 10.1 9.8 11.8 9.4 4.7 11.2 9.46

LD2
i,j

(s, t) ResNet50 10.1 12.0 21.4 5.6 2.8 4.6 10.0 10.3 12.3 9.6 4.5 11.6 9.37

Table 5. Results on PASCAL 3D+ view point estimation w.r.t. Accπ
6
Acc π

18
(the higher the better) and MedErr (the lower the better).

Our results are based on ResNet50 backbone and without using external training data.

estimating object pose. We follow the typical experimental
protocol, that using ground truth detection for both training
and testing, and choosing Pascal validation set to evaluate
our viewpoint estimation quality [37, 46, 17].

The pose of an object in 3D space is usually defined as
a 3-tuple (azimuth, elevation, cyclo-rotation), and each of
them is computed separately. We note that the range of el-
evation is [0,π], the Wasserstein distance for non-periodic
ordered data can be computed via Eq. (9). We choose
the Binomial-uniform mixture distribution (ξ = 0.2, η =
0.05,K = 20, p = 0.5) to construct our conservative la-
bel. The same data augmentation and ResNet50 from [37]
(mixture of CE and regression loss) is adopted for fair com-
parisons, which has 12 branches for each categorical and
each branch has three softmax units for 3-tuple.

We consider two metrics commonly applied in literature:
Accuracy at π

6 , and Median error (i.e., the median of ro-
tation angle error). Table 5 compares our approach with
previous techniques. Our methods outperform previous ap-
proaches in both testing metrics. The improvements are
more exciting than recent works. Specifically, LD2

i,j
(s, t)

outperforms [37] by 3.37% in terms of Accπ
6

, and the re-
duces MedErr from 10.4 [65] to 9.37 (by 9.5%).

Besides, we further evaluate Acc π18 , which assesses the
percentage of more accurate predictions. This shows the
prediction probabilities are closely distributed around the
ground of truth pose.

5. Conclusions

We have introduced a simple yet efficient loss function
for pose estimation, based on the Wasserstein distance. Its
ground metric represents the class correlation and can be
predefined using an increasing function of arc length or
learned by alternative optimization. Both the outlier and
inlier noise in pose data are incorporated in a unimodal-
uniform mixture distribution to construct the conservative
label. We systematically discussed the fast closed-form so-
lutions in one-hot and conservative label cases. The results
show that the best performance can be achieved by choos-
ing convex function, Binomial distribution for smoothing
and solving its exact solution. Although it was originally
developed for pose estimation, it is essentially applicable to
other problems with discrete and periodic labels. In the fu-
ture, we plan to develop a more stable adaptive ground met-
ric learning scheme for more classes, and adjust the shape
of conservative target distribution automatically.
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