
Interpreting Attributions and Interactions of Adversarial Attacks

Xin Wanga∗, Shuyun Lina*, Hao Zhanga, Yufei Zhua, Quanshi Zhanga†

aShanghai Jiao Tong University

Abstract

This paper aims to explain adversarial attacks in terms
of how adversarial perturbations contribute to the attack-
ing task. We estimate attributions of different image re-
gions to the decrease of the attacking cost based on the
Shapley value. We define and quantify interactions among
adversarial perturbation pixels, and decompose the en-
tire perturbation map into relatively independent pertur-
bation components. The decomposition of the perturba-
tion map shows that adversarially-trained DNNs have more
perturbation components in the foreground than normally-
trained DNNs. Moreover, compared to the normally-trained
DNN, the adversarially-trained DNN have more compo-
nents which mainly decrease the score of the true category.
Above analyses provide new insights into the understanding
of adversarial attacks.

1. Introduction
Deep neural networks (DNNs) have shown promise in

various tasks, such as image classification [37] and speech
recognition [15]. Adversarial robustness of DNNs has re-
ceived increasing attention in recent years. Previous stud-
ies mainly focused on attacking algorithms [48, 4, 28], the
detection of adversarial examples for the adversarial de-
fense [29, 12, 26], and adversarial training to learn DNNs
robust to adversarial attacks [14, 28].

Unlike previous studies of designing more powerful at-
tacks or learning more robust DNNs, in this research, we
aim to explain the signal-processing behavior behind the
adversarial attack, i.e. how pixel-wise perturbations coop-
erate with each other to achieve the attack. We develop new
methods to explain adversarial attacks from the following
perspectives.

1. Given an input image, the regional attribution to
the adversarial attack is computed to diagnose the impor-
tance of each image region to the decrease of the attacking

*Equal contribution
†Quanshi Zhang is the corresponding author. He is with the John

Hopcroft Center and the MoE Key Lab of Artificial Intelligence, AI In-
stitute, at the Shanghai Jiao Tong University, China.

(a1)

Regional
attributionsImage

(a2)

Pixel A

Pixel B

Image
Adversarial
perturbation

(b1) (b2) (b3)

Perturbation
components

Figure 1. (a) Regional attributions to the adversarial attack. Re-
gions with high attributions are important for the decrease of the
attacking cost. (b2) Perturbation pixels A and B interact with each
other and form a curve to conduct the adversarial attack; (b3) the
entire perturbation can be decomposed into several components.
Perturbation pixels within each component have strong interac-
tions, whereas perturbation pixels between different components
have relatively weak interactions.

cost, i.e. the Lp norm of the adversarial perturbation. As
Fig. 1 (a2) shows, regions of the bird’s head and neck have
high attributions to the adversarial attack. If these two re-
gions are not allowed to be perturbed, then magnitudes of
adversarial perturbations in other regions would be signif-
icantly increased for attacking. In this way, the attacking
cost may increase significantly.

The regional attribution (importance) provides a new
perspective to understand adversarial attacks. We compute
such regional attributions as Shapley values w.r.t. the at-
tacking cost.

2. Pixel-wise interactions & perturbation compo-
nents in the adversarial attack: Given a perturbation map
of the input image, we further define and quantify inter-
actions among pixel-wise perturbations in the perturbation
map, termed perturbation pixels. I.e. we aim to explore how
perturbation pixels cooperate to achieve the attack. Accord-
ing to [46], the adversarial power of a single pixel mainly
depends on the context around the pixel, rather than rely
on each perturbation pixel independently. For instance, in
Fig. 1 (b2), perturbation pixelsA andB do not directly con-
tribute to the attack. Instead, they interact with each other
to form a curve to fool the DNN.

The interaction among perturbation pixels can be defined
based on the game theory. Given a DNN g trained for clas-
sification and an adversarial image x′ = x + δ ∈ Rn,
y = g(x′) ∈ R denotes the scalar output of the DNN (or one
dimension of the vectorized network output). Let φi denote
the importance (attribution) of the i-th perturbation pixel of

ar
X

iv
:2

10
8.

06
89

5v
1

 [
cs

.L
G

]
 1

6
A

ug
 2

02
1

δ w.r.t. the output y, which is implemented as the Shapley
value. The attribution values of all perturbation pixels sat-
isfy g(x′)−g(x) =

∑n
i=1 φi. Let φS denote the overall im-

portance of all perturbation pixels in S, when perturbation
pixels in S collaborate with each other. Then, the interac-
tion is defined as the change of the importance of S, when
we ignore the collaboration between perturbation pixels and
simply sum up the importance of each individual-working
perturbation pixel in S, i.e. φS −

∑
i∈S φi quantifies the in-

teraction. If φS −
∑
i∈S φi > 0, it indicates that perturbation

pixels in S cooperate with each other, and exhibit positive
interactions. If φS −

∑
i∈S φi < 0, it indicates that perturba-

tion pixels in S conflict with each other, and exhibit negative
interactions.

Furthermore, based on the pixel-wise interactions among
perturbation pixels, as Fig. 1 (b3) shows, we can decompose
the effect of the adversarial attack into several perturbation
components, which provides a new perspective to analyze
how perturbation pixels cooperate with each other. To this
end, we develop a method to extract groups of perturbation
pixels with strong interactions as perturbation components.
Perturbation pixels in the same component have strong in-
teractions with each other. Whereas, perturbation pixels in
different components have relatively weak interactions.

Using the Shapely value for explanation and its ad-
vantages: We define the regional attribution and inter-
actions among perturbation pixels based on the Shapley
value [40]. Though explanation methods in previous stud-
ies, such as Grad-CAM [39] and GBP [45], can measure the
importance of input elements, the Shapley value is proved
to be the unique attribution satisfying four desirable prop-
erties, i.e. the linearity property, the dummy property, the
symmetry property, and the efficiency property [30]. The
four properties can be considered the solid theoretic sup-
port for the Shapley value. The scientific rigor of the Shap-
ley value makes the attribution analysis and the interaction
defined on the Shapley value more trustworthy than other
explanation methods. Please see section A in supplemen-
tary materials for more discussion.

We have analyzed regional attributions and pixel-wise
interactions on different DNNs. The analysis of regional
attributions has demonstrated that important image regions
for the L2 attack and those for the L∞ attack were simi-
lar, although L2 perturbations and L∞ perturbations were
significantly dissimilar. Furthermore, our research has pro-
vided new insights into adversarial perturbations by inves-
tigating the property of perturbation components.
• Our research has provided a game-theoretic view to ex-
plain and verify the phenomenon that adversarailly-trained
DNNs mainly focus on foreground. For adversarially-
trained DNNs, adversarial perturbations are more likely to
interact with each other on the foreground.
• Moreover, the adversarial-trained DNN usually had more

components punishing the true category and less compo-
nents encouraging incorrect categories than the normally-
trained DNN.

In fact, our research group led by Dr. Quanshi Zhang
has proposed game-theoretic interactions, including inter-
actions of different orders [58] and multivariate interac-
tions [60]. As a basic metric, the interaction can be used to
learn baseline values of Shapley values [36] and to explain
signal processing in trained DNNs from different perspec-
tives. For example, we have used interactions to build up a
tree to explain the hierarchical interactions between words
in NLP models [57] and to explain the generalization power
of DNNs [59]. The interaction can also explain adversarial
transferability [54] and adversarial robustness [35]. As an
extension of the system of game-theoretic interactions, in
this study, we interpret attributions and interactions of ad-
versarial attacks.

However, the computational cost of the Shapley value
is NP-hard, which makes the decomposition of perturba-
tion components is also NP-hard. Thus, we develop an ef-
ficient approximation approach to the decomposition prob-
lem. Our method has been applied to DNNs with various
architectures for different tasks. Preliminary experiments
have demonstrated the effectiveness of our method.

Contributions: This study provides new perspectives to
understand adversarial attacks, which includes the regional
attribution to the adversarial attack and the extraction of per-
turbation components. We have applied our methods to var-
ious benchmark DNNs and datasets. Experimental results
provide an insightful understanding of adversarial attacks.

2. Related work
Adversarial attacks and defense: Attacking methods

can be roughly divided into two categories, i.e. white-
box attacks [48, 4, 14, 22, 28, 33, 46] and black-box at-
tacks [32, 24, 9, 7]. Various methods have been proposed to
defend adversarial attacks. Defensive distillation [34] uses
knowledge distillation [17] to improve the adversarial ro-
bustness of DNNs. Some studies focus on the methods of
detecting adversarial examples [12, 29, 26, 49], which can
reject adversarial examples in order to protect DNNs. Be-
sides the detection of adversarial examples, some methods
are proposed to directly learn robust DNNs. Adversarial
training methods have been proposed to train DNNs resis-
tant to adversarial attacks [50, 28, 61], which use adversar-
ial examples as training samples during the training process.

The explanation of adversarial examples: has received
increasing attention in recent years. Tsipras et al. [52]
showed an inherent trade-off between the standard accu-
racy and adversarial robustness, and found that compared
with normally trained DNNs, the adversarial trained DNN
tended to be more interpretable. Furthermore, Etmann et
al. theoretically and empirically demonstrated that more

robust DNNs exhibited more interpretable saliency maps.
Some studies demonstrated that the existence of adversar-
ial examples was attributed to finite-sample overtting [3],
the presence of well-generalizing but non-robust features in
datasets[18], and the geometry property of the high dimen-
sional data [13]. Wen et al. [55] proposed the CLEVER
score as the lower bound guarantee of the robustness of
DNNs. Adversarial saliency map [33] computes the impor-
tance of each pixel to the network prediction. Xu et al. [56]
and Fan et al. [11] proposed to generate structured and
sparse perturbations to better understand adversarial exam-
ples. Unlike previous studies of explaining why the adver-
sarial example exists, our work focuses on the explanation
of adversarial examples from perspectives of which region
of the input image is important to the attacking cost, and
how the adversarial perturbation pixels interact with each
other during attacking.
• Difference between the Shapley-based attribution and
the adversarial saliency map [33]: The gradient-based ex-
planations [41], including the adversarial saliency map [33],
represents the marginal attacking utility w.r.t. a specific con-
text. In comparison, [30] has proved that the Shapley value
is computed on all potential contexts, which ensures more
fairness than the gradient-based explanation, and makes the
Shapley value satisfy the aforementioned properties. Please
see section A in supplementary materials for details.

The interaction has been widely investigated in the field
of statistics [2, 23]. Sorokina et al. [8] defined the K-way
interaction for additive models. Lundberg et al. [38] quan-
tified interactions between features for tree ensemble meth-
ods. Some studies mainly focus on interactions for DNNs.
Murdoch et al. [31] proposed to disambiguate interactions
in LSTMs, and Singh et al. [44] extended this method to
generic DNNs. Jin et al. [20] quantified the contextual in-
dependence of words for DNNs in NLP tasks. Tsang et
al. [51] detected statistical interactions based on neural net-
work weights. Janizek et al. [19] extended the method of
Integrated Gradients [47] to quantify pairwise interactions
of input features. In comparison, in this study, we apply
a different type of interactions between perturbation pixels
based on Shapley values, in order to extract perturbation
components.

The Shapley value is proposed in the game theory [40].
Considering multiple players in a game, each player aims
to win a high reward. Some players choose to form a coali-
tion in order to let the coalition win a reward, higher than
the sum of rewards of those players when they play in-
dividually. The Shapley value is considered as a unique
and unbiased approach to fairly allocating the total reward
gained by all players to each player [27], which satisfies
four desirable properties, i.e. linearity, dummy, symme-
try, and efficiency [30], which will be introduced later. Let
N = {1, 2, . . . , n} denote the set of all players, and let r(·)
denote the reward function. Let us consider a set of players

S, which does not include the player i, i.e. S ⊆ N \ {i}.
r(S) represents the reward gained by players in S, i.e. the
reward obtained when only players in S participate in the
game. When player i joins the game, the overall reward
changes to r(S ∪ {i}). The difference of the reward, i.e.
r(S ∪ {i}) − r(S), is considered as the marginal contribu-
tion of player i to the reward. The Shapley value φr(i) is
formulated as the weighted sum of marginal contributions
of player i brought by all possible S ⊆ N \ {i}.

φr(i) =
1

|N |
∑

S⊆N\{i}

(
|N |−1

|S|

)−1

(r(S ∪ {i})− r(S)) (1)

where
(|N|−1
|S|

)
is the number of all combinations of |S| play-

ers among the set without the player i. Note that the Shapley
value is the unique function that satisfies all the following
desirable properties [30]:

• Linearity property: Let there be two games and the cor-
responding score functions are r and w, i.e. r(S) and w(S)
measure the score obtained by players in S in these two
games. If these two games are combined into a new game,
and the score function becomes r + w, then the Shapley
value comes to be φr+w(i) = φr(i)+φw(i) for each player.

• Dummy property: A player i ∈ N is referred to as
a dummy player if r(S ∪ {i}) = r(S) + r({i}) for any
S ⊆ N\{i}. In this way, φr(i) = r({i}) − r(∅), which
means that player i plays the game independently.

• Symmetry property: If r(S ∪ {i}) = r(S ∪ {j}) holds
for any subset S ⊆ N\{i, j}, then Shapley values of player
i and j are equal, i.e. φr(i) = φr(j) .

• Efficiency property: The sum of each player’s Shap-
ley value is equal to the score won by the coalition N , i.e.∑n

i=1 φ
r(i) = r(N) − r(∅). This property guarantees the

overall score can be allocated to each player in the game.

3. Algorithm
We first introduce basic concepts of adversarial attacks.

Let x ∈ [0, 1]n denote the input image, and a DNN is
learned to predict the class label c(x) ∈ {1, 2, . . . , T}. To
simplify the story, in this study, we mainly analyze the tar-
geted adversarial attack. The goal is to add a human im-
perceptible perturbation δ ∈ Rn on x to get a new image
x′ = x + δ, which makes the DNN mistakenly classify x′
as the target category t 6= c(x). The objective of the tar-
geted adversarial attack is defined by [4] as follows.

min
δ
‖δ‖p s.t. c(x+ δ) = t, x+ δ ∈ [0, 1]n

relax
===⇒min

δ
‖δ‖p+λ · f(x+ δ) s.t. x+ δ ∈ [0, 1]n

(2)

where the value of f(x) : [0, 1]n → R measures the
correctness of the classification, and λ is a scalar con-
stant. For example, in [48] f is defined as the cross en-
tropy loss. In [4], f is chosen as f(x) = max{maxi6=t Zi −
Zt,−threshold}, where Z is the output of the DNN before
the softmax layer.

𝛽

2
⋅width

Λ𝑢𝑣

(b)

regard a, b, d, e

as a coalition

𝜙𝑎 𝜙𝑏 𝜙𝑐

𝜙𝑑 𝜙𝑒

𝜙′𝑐

Image of 3x3 pixels Image of 3x3 pixels

𝜙′{𝑎,𝑏,𝑑,𝑒}

(a)

𝛽

2
⋅width

𝛽

2
⋅width

𝛽

2
⋅width

Step1 Step2 Step3

(c)
Image Perturbation map

Figure 2. (a) Images are divided into L × L grids and extended to (1 + β) · width × (1 + β) · height to compute regional attributions.
(b) A toy example to illustrate the interaction among pixels. If pixels a, b, d, e form a coalition and act as a singleton player, then the total
reward of a, b, d, e increases. The additional reward indicates the interaction among a, b, d, e. (c) A toy example to illustrate the extraction
of perturbation components.

3.1. Regional attributions to the adversarial attack
Given an input image, the regional attribution measures

the importance of each image region to the decrease of the
attacking cost ‖δ‖p. [27] has discussed that the commonly
used gradient w.r.t. the attacking loss [41] cannot objec-
tively reflect the regional attribution due the highly non-
linear representation of the DNN. Please see section A in
supplementary materials for more discussions. Consider-
ing the high computational burden, we investigate the re-
gional attribution instead of the pixel-wise attribution. We
divide the entire image into L × L grids (regions), de-
noted by Λ = {Λ11,Λ12, . . . ,ΛLL}. Each region Λuv ∈ Λ
(1 ≤ u, v ≤ L) is a set of pixels. φuv denotes the attribution
of the region Λuv . The total attribution to the decrease of
the attacking cost is allocated to each region:

φ11 + φ12 + · · ·+ φLL = cost(Λ)− cost(∅) (3)

where cost(Λ) = ‖δ(Λ)‖p and cost(∅) = ‖δ(∅)‖p. δ(Λ) repre-
sents the adversarial perturbation generated by allowing all
pixels to be perturbed. δ(∅) represents the adversarial pertur-
bation generated without perturbing any pixels in Λ. Note
that it is impossible to conduct adversarial attacks, when all
pixels in the image are not allowed to be perturbed. Thus,
as Fig. 2 (a) shows, we approximate φuv by extending the
input image to (1 + β) · width × (1 + β) · height, where
β is a small scalar constant. We regard δ(∅) as the adversar-
ial perturbation generated when only the extended regions
are perturbed. We compute such regional attribution as the
Shapley value [40].

φuv=
1

L2

∑
S⊆Λ\{Λuv}

(
L2 − 1

|S|

)−1[
cost(S ∪ {Λuv})−cost(S)

]
(4)

where S denotes a set of regions excluding Λuv. The cost(S)

is the Lp norm (p = 2, or +∞) of the adversarial pertur-
bation generated when only regions in S are allowed to be
perturbed during attacking. We formulate such an attack us-
ing masking operation, δ̂ = arg minδ ‖δ ◦M (S)‖p+c · f(x+

δ ◦M (S)) s.t. x + δ ◦M (S) ∈ [0, 1]n, where ◦ represents the
element-wise multiplication. M (S) is a mask, which satis-
fies ∀Λuv ∈ S, ∀i ∈ Λuv, M

(S)
i = 1, and for all other pixels

i, M (S)
i = 0. δ(S) = δ̂ ◦ M (S) is the adversarial pertur-

bation generated when only regions in S are allowed to be
perturbed, thereby cost(S) = ‖δ(S)‖p.

Based on Equation (4), in order to quantify the re-
gional attribution, we sample different M (S) to conduct
adversarial attacks. Note that the adversarial attack with
masking operation is conducted to compute cost(S) and
cost(S ∪ {Λuv}), instead of obtaining more robust pertur-
bations.

3.2. Interactions in the attack and the decomposi-
tion of perturbation components

In this section, given a perturbation map of an input
image, we aim to decompose the perturbation map into
several relatively independent image regions (perturbation
components), in order to explore the true pixel-wise col-
laborative behavior behind of the adversarial attack. Note
that the collaborative behavior itself may not be adversar-
ial robust. Given the set of all perturbation pixels Ω, we
aim to extract m components, i.e. {C(1), C(2), . . . , C(m)},
where ∀i, C(i) ⊆ Ω; ∀i, j, i 6= j, C(i) ∩ C(j) = ∅, and
C(1) ∪ C(2) ∪ . . . C(m) ⊆ Ω. Perturbation pixels within each
component are supposed to have strong interactions, while
perturbation pixels in different components are supposed
to have weak interactions. Thus, each component can be
roughly considered independent in the adversarial attack.

The interaction among perturbation pixels reflect co-
operative or adversarial relationships of perturbation pix-
els in attacking. Inspired by [30], we define interactions
based on the game theory. Let us consider a game with
n players Ω′ = {1, 2, . . . , n}, where players aim to gain a
reward. We use 2Ω′

to denote all potential subsets of Ω′.
For example, if Ω′ = {a, b}, then 2Ω′

= {∅, {a}, {b}, {a, b}}.
The reward of the game z : 2Ω′

→ R maps a set of play-
ers to a scalar value. Here, given an adversarial example
x′ = x+δ ∈ Rn and a DNN g(·)1 : Rn → RT , where T is the
number of categories, we regard each perturbation pixel in δ
as a player. The goal of perturbation pixels is to decrease the
score of the true category g`(x′) and increase the score of
the target category gt(x′). Given a set of perturbation pixels
S ⊆ Ω, we formulate the reward of perturbation pixels in S
as z(S) = gt(x+ δ ◦M (S))− g`(x+ δ ◦M (S)), by assigning
values of perturbation pixels in Ω \S to zero, where M (S) is
a mask ∀i ∈ S,M (S)

i = 1;∀i ∈ Ω \ S,M (S)
i = 0.

1g(·) denotes the DNN’s output scores before the softmax layer.

The total reward in the game is Φ = z(Ω) − z(∅), where
z(Ω) = gt(x+δ◦1)−g`(x+δ◦1) is the reward obtained by all
perturbation pixels, and z(∅) = gt(x+ δ ◦ 0)− g`(x+ δ ◦ 0)

is the baseline reward w.r.t. the original image. The total
reward can be allocated to each perturbation pixel, Φ = φ1+

φ2 + · · · + φn as the Shapley value. φi is referred to as the
reward of the perturbation pixel i.

We notice that perturbation pixels do not contribute to
the attack independently. Instead, some perturbation pix-
els may form a specific component. In this way, the reward
gained by the component is different from the sum of the re-
ward of each perturbation pixel when they contribute to the
attack individually. Here, we can consider this component
as a singleton player. Thus, the total reward Φ is allocated to
n−|S|+1 players in the new game, i.e. Φ = φ′S+

∑
i∈N\S φ

′
i.

In this way, the interaction among players in S is defined as

I[S] = φ′S −
∑

i∈S φi (5)

where φ′S is the allocated reward when S is taken as a sin-
gleton player, and φi is the reward when we consider the
perturbation pixel i contributes to the attack independently.

We compute φi and φ′S as Shapley values, which will
be given in Equation (6). Fig. 2 (b) shows a toy example
for the interaction. The total reward is allocated to each
perturbation pixel, i.e. Φ = φa + φb + · · · + φh + φi. If
pixels a, b, d, e are regarded as a singleton player, then the
allocation of Φ would change to Φ = φ′{a,b,d,e} + φ′c · · · +
φ′h + φ′i. If φ′{a,b,d,e} − (φa + φb + φd + φe) 6= 0, then pixels
a, b, d, e are considered to have interactions.

Understanding of the interaction: If I[S] > 0, it means
perturbation pixels in S cooperate with each other to change
prediction scores of the DNN. If I[S] < 0, it means pertur-
bation pixels in S conflict with each other. The absolute
value |I[S]| indicates the strength of the interaction.

Computation of the reward: According to Equation (1),
φi and φ′S are computed as follows.

φi =
1

n

∑
S̃⊆Ω\{i}

(
n− 1

|S̃|

)−1[
z(S̃ ∪ {i})− z(S̃)

]

φ′S =
1

n′

∑
S̃⊆Ω\S

(
n′ − 1

|S̃|

)−1[
z(S̃ ∪ S)− z(S̃)

] (6)

where n′ = n−|S|+1. In this study, we propose an efficient
method to approximate φi and φ′S , which will be introduced
in Equation (7) and Equation (8).

Extraction of perturbation components: We extract
perturbation components via hierarchical clustering, in
which perturbation pixels have strong interactions. The
pseudo code of extracting perturbation components is
shown in section C in supplementary materials. In the
first step of clustering, we merge q neighboring perturba-
tion pixels with strong interactions into a q-pixel compo-

nent. In the second step, we merge q neighboring compo-
nents with strong interactions into a component of q2 pix-
els. In this way, we iteratively generate components of q,
q2, q3 pixels, etc. A toy example is shown in Fig. 2 (c).
We use C(i) to denote a component. The finally merged
component is selected from a set of component candidates,
each of which is a set of q neighboring components, Sc =

C(i1) ∪ C(i2) ∪ . . . ∪ C(iq). If |I[Sc]| > γ, then we merge
C(i1), C(i2), . . . , C(iq) into a large component. Considering
the local property [6], we only compute interactions among
neighboring pixels/components.

Efficient approximation of rewards of perturbation
pixels: We can consider the value of each perturbation pixel
i as the sum of values of K sub-pixels, denoted by (i, k),
1 ≤ k ≤ K. The values of the K sub-pixels are uni-
formly divided, i.e. δ/K = δ(i,1) = δ(i,2) = · · · = δ(i,K).
In this way, the reward φi can be approximated as the
sum of sub-pixels’ rewards, i.e. φi ≈

∑K
k=1 φ(i,k). Con-

sider the symmetry property of the Shapley value [30],
φ(i,1) = φ(i,2) = · · · = φ(i,K). Thus, we can approxi-
mate φi ≈ K · φ(i,k). Please see section B.1 in supplemen-
tary material for the proof and more discussions. The re-
ward φ(i,k) can be approximated as follows. Let us consider
the marginal reward for computing the Shapley value of the
sub-pixel, i.e. z(S ∪ {(i, k)})− z(S). Given a large value of
K, the perturbation magnitude of each sub-pixel |δ(i,k)| is
fairly small. The marginal reward can be approximated as
z(S ∪ {(i, k)})−z(S) = δ(i,k) ·∂z(S)/∂δ(i,k)+o(δ(i,k)), based
on the Taylor expansion. In this way, the Shapley value of
each sub-pixel is given as Equation (7).

φ(i,k)≈
1

nK

∑
S⊆Ωpixel\{(i,k)}

(
nK − 1

|S|

)−1[
∂z(S)

∂δ(i,k)

δ(i,k)

]
︸ ︷︷ ︸

approximates z(S∪{(i,k)})−z(S)

(7)

where Ωpixel = {(i, k)|1 ≤ i ≤ n, 1 ≤ k ≤ K}.
Efficient approximation of rewards of components:

Let there be m components in a certain clustering step,
i.e. {C(1), C(2), . . . , C(m)}. Given a component C(u), we
approximate φC(u) using combinations of components, in-
stead of perturbation pixels. We further reduce the cost of
calculating φC(u) in the similar way of calculating φi. Each
perturbation pixel i in C(u) is divided intoK sub-pixels, i.e.
∀i ∈ C(u), δi =

∑
k δ(i,k). In this way, C(u) can be divided

into K sub-components. The k-th sub-component is given
as C(u)

k =
⋃
i∈C(u){(i, k)}. The reward of C(u)

k is approxi-
mated as follows. Please see section B.3 in supplementary
materials for the proof.

φ
C

(u)
k

≈ 1

mK

∑
S⊆Ωcomp\{C(u)

k
}

(
mK − 1

|S|

)−1

A (8)

where Ωcomp = {C(u)
k |1 ≤ u ≤ m, 1 ≤ k ≤ K}, and

A =
∑

(i,k)∈C(u)
k

[
∂z(S)
∂δ(i,k)

δ(i,k)

]
, which approximates z(S ∪

{C(u)})− z(S).

Implementation & computational complexity: The
computation of Shapley values is NP-hard. The sampling-
based method has been widely used for approximation [5].
Thus, we propose to approximate Equation (7) and Equa-
tion (8) by a sampling method. The complexity of comput-
ing the Shapley value of one pixel is O(2n). Equation (9)
reduces the computational complexity to O(nKT), where
n is the pixel number, and T is times of sampling. Be-
cause derivatives to sub-pixels w.r.t. all pixels i ∈ Ω can be
computed simultaneously, the computational complexity of
computing Shapley values of all pixels remains O(nKT).

φ(i,k)≈
1

nKT

nK−1∑
s=0

T∑
t=1

δ(i,k)
∂z(S)

∂δ(i,k)

∣∣∣∣
S=S

pixel
st

s.t.
∣∣∣Spixel
st

∣∣∣ = s

φ
C

(u)
k

≈ 1

mKT

mK−1∑
s=0

∑
(i,k)∈C(u)

k

T∑
t=1

δ(i,k)
∂z(S)

∂δ(i,k)

∣∣∣∣
S=S

comp
st

s.t. |Scomp
st | = s

(9)

where t represents a sampling step; s controls the size of the
set S; Spixel

st ⊆ Ωpixel \ {(i, k)} denotes a random subset of s
sub-pixels excluding (i, k); Scomp

st ⊆ Ωcomp \ {C(u)
k } denotes

a random subset of s sub-components excluding C(u)
k .

Even with above approximation, the computational
cost for computing all component candidates in each
step of clustering is still high. Thus, we further ap-
proximate rewards of component candidates by simpli-
fying contextual relationships of far-away pixels [6].
We use Sc = C(i1) ∪ C(i2) ∪ . . . ∪ C(iq) to denote a
component candidate. If we compute φ′Sc in the set
{Sc, C(ik+1) . . . , C(im)}, the computational complexity is
O((m − q)KT). The complexity of computing rewards
of all candidates is O(m(m − q)KT). Here, instead
of computing φ′Sc in the set {Sc, C(ik+1) . . . , C(im)}, we
randomly merge m̃ components to get m̃/q component
candidates, including Sc. In this way, the new set includes
m̃/q component candidates and m − m̃ components, i.e.
{Sc,

⋃2q
a=q+1 C

(ia), . . . ,
⋃m̃
a=m̃−q+1 C

(ia), C(im̃+1), . . . , C(im)}.
We can simultaneously compute rewards of m̃/q candi-
dates in the new set, and the computational complexity is
O((m − (q − 1)m̃/q)KT). To compute rewards of all
potential component candidates, we need to sample qm/m̃
different sets. In this way, the overall complexity for the
computation of rewards of candidates is reduced from
O(m(m − q)KT) to O(m(qm/m̃ − q)KT). Please see
section B.4 supplementary materials for details.

4. Experiments
Datasets & DNNs: We tested our methods on tasks

of coarse-grained image classification, fine-grained im-
age classification, and face attribute estimation, using four
benchmark datasets: the Pascal VOC 2012 dataset [10], the
CUB200-2011 dataset [53], the Stanford Dog dataset [21],
and the CelebA dataset [25]. For each of these datasets,

we used object images cropped by object bounding boxes
for both training and testing. We analyzed regional attribu-
tions to the adversarial attack on three benchmark DNNs:
AlexNet [42], VGG-16 [43] and ResNet-18 [16]. We com-
puted interactions among perturbation pixels and extracted
perturbation components on ResNet-18/34/50 [16].

Furthermore, to analyze the utility of adversarial
training, we also extracted perturbation components on
adversarially-trained ResNet-18/34/50 [28]. We conducted
adversarial training on two datasets: the Pascal VOC 2012
dataset [10] and the CUB200-2011 dataset [53]. For ad-
versarial training on the CUB200-2011 dataset, we only
conducted the classification on 10 categories that were uni-
formly selected from the original 200 categories. For fair
comparisons, the normally-trained DNN was also trained
using the same 10 categories in the CUB200-2011 dataset.
All DNNs were pre-trained on the ImageNet dataset [37],
and then fine-tuned using these four datasets, respectively.

Implementation details: We used the C&W attack [4]
as the L2 attacker and the BIM [22] as the L∞ attacker,
which have been widely used. For adversarial attacks on
all datasets and DNNs, we conducted the targeted attack.
For the Pascal VOC 2012 dataset [10], we set the target
class as the bird. For the CUB200-2011 dataset [53] and
the Stanford Dogs dataset [21], we set the target class as
the last category in each dataset, which were the Com-
mon Yellowthroat and the African hunting dog, respectively.
For the CelebA dataset [25], we chose two global face at-
tributes (male, young) and three local face attributes (wear-
ing glasses, smiling, wearing lipstick), and set the target as
the opposite attribute, for example, we conducted the adver-
sarial attack on the CelebA dataset to make a DNN mistak-
enly predict a face image actually with wearing glasses to
not wearing glasses. We set β = 1/6, L = 8 to compute
regional attributions. We set q = 4 to compute interactions
among perturbation pixels and further extract perturbation
components.

4.1. Exp. 1: Regional attributions to the adversarial
attack

Visualization of regional attributions: Fig. 3 visu-
alizes adversarial perturbations and regional attributions.
We compared magnitudes of regional adversarial perturba-
tions with regional attributions. Given a region Λuv , the
magnitude of the regional perturbation was computed as
(
∑
i∈Λuv

|δi|2)1/2. Fig. 3 shows that attributions to the L2 at-
tack and magnitudes of regional perturbations were similar,
but attributions to the L∞ attack and magnitudes of regional
perturbations were usually different. For example, let us fo-
cus on the top left girl image in Fig. 3, L∞ perturbations
uniformly distributed over the entire image, while attribu-
tions mainly focused on the face region. We have also com-
pared regional attributions with different hyper-parameters

Image Perturbations Magnitudes Attributions Perturbations Magnitudes Attributions

�� attacking�� attacking
Image Perturbations Magnitudes Attributions Perturbations Magnitudes Attributions

�� attacking�� attacking

(a) Visualization of adversarial perturbations and regional attributions. For attributions, dark red regions are important to the decrease of attacking
cost. Blue regions indicate negative attributions, i.e. the existence of these regions increases the attacking cost.

(b) (Left column) The IoU between regional attributions to the attack and regional attributions to the attack; (right column) the IoU between
adversarial magnitudes and adversarial magnitudes.

Figure 3. Comparison between adversarial perturbations and regional attributions. For attributions, dark red regions are important regions
to the decrease of the attacking cost. Blue regions indicate negative attributions, i.e. these regions decrease the effect of attacking and
increase the attacking cost. Regional attributions to the L2 attack and magnitudes of regional perturbations were usually similar, while
regional attributions to the L∞ attack and magnitudes of regional perturbations were usually different.

CelebA CUB200-2011 Pascal VOC Stanford Dogs
IoU(attributions) IoU(magnitudes) IoU(attributions) IoU(magnitudes) IoU(attributions) IoU(magnitudes) IoU(attributions) IoU(magnitudes)

AlexNet 0.749 ± 0.027 0.668 ± 0.154 0.729 ± 0.032 0.526 ± 0.051 0.743 ± 0.046 0.577 ± 0.069 0.739 ± 0.024 0.567 ± 0.061
VGG-16 0.718 ± 0.038 0.534 ± 0.064 0.681 ± 0.057 0.543 ± 0.070 0.685 ± 0.073 0.474 ± 0.096 0.742 ± 0.045 0.488 ± 0.138

ResNet-18 0.762 ± 0.087 0.497 ± 0.190 0.713 ± 0.044 0.552 ± 0.064 0.718 ± 0.072 0.540 ± 0.158 0.707 ± 0.060 0.550 ± 0.110

Table 1. The IoU between regional attributions to the L2 attack and regional attributions to the L∞ attack, and the IoU between L2

adversarial perturbations’ magnitudes and L∞ adversarial perturbations’ magnitudes2. Regional attributions to the L2 attack and regional
attributions to the L∞ attack were similar, while regional magnitudes of L2 adversarial perturbations and magnitudes of L∞ adversarial
perturbations were dissimilar.

(β and L), which shows that regional attributions were in-
sensitive to the selection of hyper-parameters. Please see
section D.1 supplementary materials for details.

Similarity between regional attributions through dif-
ferent attacks: As Fig. 3 shows, although the distribution
of L2 adversarial perturbations and the distribution of L∞
adversarial perturbations were dissimilar, their regional at-
tributions were similar to each other. Given regional at-
tributions to the L2 attack φ(2) ∈ RL×L and regional at-
tributions to the L∞ attack φ(∞) ∈ RL×L, we used the
IoU =

∑
u

∑
v min(φ

′(2)
uv ,φ

(′∞)
uv)∑

u

∑
v max(φ

′(2)
uv ,φ

′(∞)
uv)

to measure the similarity be-

tween regional attributions φ(2) and φ(∞), where we nor-
malized the attribution φ′uv =

φuv−minu′,v′ φu′v′
maxu′,v′ φu′v′−minu′,v′ φu′v′

.
We also showed the IoU between L2 magnitudes and L∞
magnitudes. Please see Table 1 for quantitative results of
similarity between regional attributions and similarity be-
tween magnitudes of regional perturbations. In Fig. 3, we
found that regional attributions to the L2 attack and regional
attributions to the L∞ attack were similar, while magni-
tudes of L2 adversarial perturbations and regional magni-
tudes of L∞ adversarial perturbations were dissimilar.

4.2. Exp. 2: Interactions in the attack and the
decomposition of perturbation components

Extraction of perturbation components: We extracted
interactions between perturbation pixels generated in the
L2 attack, and decomposed the perturbation into compo-

2The mean and standard deviation of IoU were computed on 10 sam-
ples.

nents. To reduce the computation cost, we regarded each
group of neighboring 4 × 4 pixels as a super-pixel. We set
m̃ = 0.5 · m. In the first step of clustering, γ was set to
satisfy ES [1(|I[S]| > γ)] = 0.2, where 1(·) is the indica-
tor function. In subsequent steps of clustering, γ was set
to satisfy ES [1(|I[S]| > γ)] = 0.5. To obtain stable results,
when computing the reward of a component candidate Sc,
we kept the nearest component of each component in Sc al-
ways present in sampling. In each step, we ended up merg-
ing components, when component candidates for which the
reward had been computed covered more than 90% compo-
nents. We used the greedy strategy to merge components,
and kept conducting clustering until the size of each com-
ponent was 64.

We first extracted perturbation components on normally-
trained DNNs. Fig. 4 visualizes adversarial perturbations
and corresponding perturbation components. Note that we
enlarged the size of each super-pixel, to clarify the visual-
ization. Fig. 4 shows that components were not aligned with
visual concepts. For example, adversarial perturbations on
the top left girl image in the first row of Fig. 4 was seg-
mented into five components, in which the pink component
covered the neck, hair, and other regions without semantic
meanings.

Effects of adversarial training on perturbation com-
ponents: We also extracted perturbation components
on adversarially-trained DNNs, which are visualized in
Fig. 4. We used the method proposed by Madry et
al. [28] for adversarial training, which was formulated as
minθ Exi∈X maxx′i:‖x′

i−xi‖p≤ε
` (gθ (x′i) , ci), where ci repre-

N
o
rm

a
l
 T

ra
in

in
g

A
d
v
e
rs

a
ri

a
l

T
ra

in
in

g

Image Perturbation
Perturbation
components Image Perturbation

Perturbation
components

0.064 0.028 0.022 0.0060.867 0.041 0.110 0.042

0.818 0.241 0.158 0.068
0.016 0.006 0.252 0.066

0.074 0.0380.138 0.0460.004 0.001 0.002 0.001

Image Perturbation
Perturbation
components Image Perturbation

Perturbation
components

Purple number : interaction strength within the component

Green number : interaction strength between different components Down arrow: mainly decreases the score of the label category

Up arrow: mainly increases the score of the target category

Figure 4. Visualization of perturbation components. Perturbation pixels within each component have strong interactions. Perturbation
pixels between different components have relatively weak interactions. The color saturation of the component indicates the average reward
(importance) of the perturbation component. Perturbation components were not always aligned with visual concepts.

CUB200-2011 Pascal VOC
Normal Adv-trained Normal Adv-trained

ResNet-18 63.8% 80.8% 55.6% 90.4%
Resnet-34 69.0% 78.6% 66.2% 85.7%
ResNet-50 62.6% 84.9% 60.8% 89.2%

Table 2. The ratio of perturbation components mainly in the fore-
ground.

sents the label of xi, and ` denotes the classification loss.
We investigated whether perturbation components were

mainly localized in the foreground or the background. A
perturbation component was regarded being in the fore-
ground, if perturbation pixels in the component belonging
to the foreground were more than perturbation pixels in the
component belonging to the background. Table 2 reports
the ratio of components in the foreground for adversarially-
trained DNNs and normally-trained DNNs. Adversarially-
trained DNNs had more perturbation components in the
foreground than normally-trained DNNs.

Moreover, we also explored the utility of perturbation
components, i.e. whether the component mainly decreased
the prediction score of the true category or mainly in-
creased the score of the target category. We classified
perturbation components into two types, i.e. components
mainly decreasing the prediction score of the true category
and components mainly increasing the score of the target
category. ∆y` =

∣∣∣g`(x+ δ)− g`(x+ δ ◦M (Ω\C(u)))
∣∣∣ and

∆yt =
∣∣∣gt(x+ δ)− gt(x+ δ ◦M (Ω\C(u)))

∣∣∣measured the de-
crease of the prediction score of the true category and the in-
crease of the prediction score of the target category caused
by the component C(u), respectively. If ∆y` > ∆yt, the
component C(u) was regarded mainly decreasing the score
of the true category; otherwise, mainly increasing the score
of the target category. Table 3 reports the ratio of com-
ponents that mainly decreased the prediction score of the
true category. The ratio of components mainly decreasing
the score of the true category in adversarially-trained DNNs
were usually greater than that in normally-trained DNNs.

CUB200-2011 Pascal VOC
Normal Adv-trained Normal Adv-trained

ResNet-18 62.8% 77.9% 34.9% 55.3%
ResNet-34 44.0% 68.4% 43.8% 63.1%
ResNet-50 58.2% 82.8% 31.6% 48.2%

Table 3. The ratio of perturbation components which mainly de-
crease the score of the true category.

5. Conclusion

In this paper, we have analyzed adversarial attacks from
the attributional perspective. We have computed regional
attributions to adversarial attacks. We have further defined
and extract interactions among perturbation pixels decom-
posed the perturbation map into perturbation components
based on interactions. We have found regional attributions
to the L2 attack and magnitudes of the L2 perturbation were
similar, while regional attributions to the L∞ attack and
magnitudes of the L∞ perturbation were dissimilar. The
extraction of perturbation components showed that pertur-
bation components were not aligned with visual concepts.
We have found that adversarially-trained DNNs had more
perturbation components in the foreground than normally-
trained DNNs. Moreover, compared to the normally-trained
DNN, the adversarially-trained DNN was prone to decrease
the score of the true category, instead of increasing the score
of the target category. Our methods have been used to ana-
lyze different DNNs learned for the image classification and
the face attribute estimation.

Acknowledgments

This work is partially supported by the National Nature
Science Foundation of China (No. 61906120, U19B2043),
Shanghai Natural Science Foundation (21ZR1434600),
Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102), and Huawei Technologies Inc. Xin
Wang is supported by Wu Wen Jun Honorary Doctoral
Scholarship, AI Institute, Shanghai Jiao Tong University.

References
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Good-

fellow, Moritz Hardt, and Been Kim. Sanity checks for
saliency maps. arXiv preprint arXiv:1810.03292, 2018.

[2] Jacob Bien, Jonathan Taylor, and Robert Tibshirani. A
lasso for hierarchical interactions. In Annals of statistics,
41(3):1111, 2013.

[3] Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. Ad-
versarial examples from computational constraints. In
arXiv:1805.10204, 2018.

[4] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In IEEE Symposium on Secu-
rity and Privacy, 2017.

[5] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial
calculation of the shapley value based on sampling. In Com-
puters & Operations Research, 36(5):1726–1730, 2009.

[6] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I.
Jordan. L-shapley and c-shapley: Efficient model interpreta-
tion for structured data. In arXiv:1808.02610, 2018.

[7] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and
Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-
box attacks to deep neural networks without training substi-
tute models. In arXiv:1708.03999, 2017.

[8] Mirek Riedewald Daria Sorokina, Rich Caruana. Detecting
statistical interactions with additive groves of trees. In ICML,
2008.

[9] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Xi-
aolin Hu, Jianguo Li, , and Jun Zhu. Boosting adversarial
attacks with momentum. In CVPR, 2018.

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

[11] Yanbo Fan, Baoyuan Wu, Tuanhui Li, Yong Zhang,
Mingyang Li, Zhifeng Li, and Yujiu Yang. Sparse adver-
sarial attack via perturbation factorization. In Proceedings
of European Conference on Computer Vision, 2020.

[12] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and An-
drew B. Gardner. Detecting adversarial samples from arti-
facts. In ICML, 2017.

[13] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S.
Schoenholz, Maithra Raghu, Martin Wattenberg, and Ian
Goodfellow. Adversarial spheres. In arXiv:1801.02774,
2018.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In
arXiv:1412.6572, 2014.

[15] Alex Graves and Navdeep Jaitly. Towards end-to-end speech
recognition with recurrent neural networks. In ICML, 2014.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In NeurIPS Deep Learning
Workshop, 2014.

[18] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Adversar-
ial examples are not bugs, they are features. In NeurIPS,
2019.

[19] Joseph D Janizek, Pascal Sturmfels, and Su-In Lee. Explain-
ing explanations: Axiomatic feature interactions for deep
networks. arXiv preprint arXiv:2002.04138, 2020.

[20] Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, and Xi-
ang Ren. Towards hierarchical importance attribution: Ex-
plaining compositional semantics for neural sequence mod-
els. In ICLR, 2020.

[21] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng
Yao, and Li Fei-Fei. Novel dataset for fine-grained image
categorization. In CVPR Workshop on Fine-Grained Visual
Categorization, 2011.

[22] Alexey Kurakin, Ian J. Goodfellow, and Samy Ben-
gio. Adversarial examples in the physical world. In
arXiv:1607.02533, 2017.

[23] Michael Lim and Trevor Hastie. Learning interactions via
hierarchical group-lasso regularization. In Journal of Com-
putational and Graphical Statistics, 24(3):627–654, 2015.

[24] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.
Delving into transferable adversarial examples and black-
box attacks. In arXiv: 1611.02770, 2016.

[25] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, 2015.

[26] Jiajun Lu, Theerasit Issaranon, and David Forsyth. Safe-
tynet: Detecting and rejecting adversarial examples robustly.
In ICCV, 2017.

[27] Scott M. Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In NeurIPS, 2017.

[28] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018.

[29] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and
Bastian Bischoff. On detecting adversarial perturbations. In
ICLR, 2017.

[30] Grabisch Michel and Roubens Marc. An axiomatic approach
to the concept of interaction among players in cooperative
games. In International Journal of Game Theory, 1999.

[31] W. James Murdoch, Peter J. Liu, and Bin Yu. Beyond word
importance: Contextual decomposition to extract interac-
tions from lstms. In ICLR, 2018.

[32] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
arXiv:1602.02697, 2017.

[33] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In IEEE
European Symposium on Security & Privacy, 2016.

[34] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha,
and Ananthram Swami. Distillation as a defense to ad-
versarial perturbations against deep neural networks. In
arXiv:1511.04508, 2016.

[35] Jie Ren, Die Zhang, Yisen Wang, Lu Chen, Zhanpeng Zhou,
Xu Cheng, Xin Wang, Yiting Chen, Jie Shi, and Quan-

shi Zhang. Game-theoretic understanding of adversarially
learned features. arXiv preprint arXiv:2103.07364, 2021.

[36] Jie Ren, Zhanpeng Zhou, Qirui Chen, and Quanshi Zhang.
Learning baseline values for shapley values. arXiv preprint
arXiv:2105.10719, 2021.

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge.
In International Journal of Computer Vision, 115(3):211–
252, 2015.

[38] Su-In Lee Scott Lundberg. Consistent feature attribution for
tree ensembles. In ICML WHI Workshop, 2017.

[39] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017.

[40] Lloyd S Shapley. A value for n-person games. In Contribu-
tions to the Theory of Games, 2(28):307–317, 1953.

[41] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[42] Karen Simonyan and Andrew Zisserman. Imagenet classifi-
cation with deep convolutional neural networks. In NeurIPS,
2012.

[43] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015.

[44] Chandan Singh, W. James Murdoch, and Bin Yu. Hierarchi-
cal interpretations for neural network predictions. In ICLR,
2019.

[45] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin Riedmiller. Striving for simplicity: The
all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[46] Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi.
One pixel attack for fooling deep neural networks. In
arXiv:1710.08864, 2017.

[47] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic
attribution for deep networks. In International Conference
on Machine Learning, pages 3319–3328, 2017.

[48] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In ICLR, 2014.

[49] Guanhong Tao, Shiqing Ma, and Xiangyu Zhang Yingqi Liu.
Attacks meet interpretability: Attribute-steered detection of
adversarial samples. In NeurIPS, 2018.

[50] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses. In ICLR, 2018.

[51] Michael Tsang, Dehua Cheng, and Yan Liu. Detecting sta-
tistical interactions from neural network weights. In ICLR,
2018.

[52] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. In ICLR, 2019.

[53] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011.

[54] Xin Wang, Jie Ren, Shuyun Lin, Xiangming Zhu, Yisen
Wang, and Quanshi Zhang. A unified approach to interpret-
ing and boosting adversarial transferability. In International
Conference on Learning Representations, 2021.

[55] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi,
Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel.
Evaluating the robustness of neural networks: An extreme
value theory approach. In ICLR, 2018.

[56] Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang,
Quanfu Fan, Deniz Erdogmus, Yanzhi Wang, and Xue Lin.
Structured adversarial attack: Towards general implementa-
tion and better interpretability. In International Conference
on Learning Representations, 2019.

[57] Die Zhang, Huilin Zhou, Hao Zhang, Xiaoyi Bao, Da
Huo, Ruizhao Chen, Xu Cheng, Mengyue Wu, and Quan-
shi Zhang. Building interpretable interaction trees for deep
nlp models. In AAAI, 2021.

[58] Hao Zhang, Xu Cheng, Yiting Chen, and Quanshi Zhang.
Game-theoretic interactions of different orders. arXiv
preprint arXiv:2010.14978, 2020.

[59] Hao Zhang, Sen Li, Yinchao Ma, Mingjie Li, Yichen Xie,
and Quanshi Zhang. Interpreting and boosting dropout from
a game-theoretic view. In ICLR, 2021.

[60] Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, and
Quanshi Zhang. Interpreting multivariate interactions in
dnns. In AAAI, 2021.

[61] Stephan Zheng, Yang Song, Thomas Leung, and Ian Good-
fellow. Improving the robustness of deep neural networks
via stability training. In CVPR, 2016.

A. Comparisons of Shapley-based attributions and other explanation methods
We define regional attributions and interactions between perturbation pixels based on Shapley values [40]. We compare

Shapley-based attributions with other explanation methods from the following perspectives.
• Theoretical rigor. A good attribution method must satisfy certain desirable properties. The Shapley value has been

proved to be the unique attribution that satisfies four desirable properties, i.e. the linearity property, the dummy property,
the symmetry property, and the efficiency property [30]. In comparison, some explanation methods like Grad-CAM [39] and
GBP [45] do not have theoretic supports for the correctness of these methods.

• Objectivity. The attribution of one input element depends on contexts of neighboring pixels. The Shapley value considers
all possible contexts to compute the attribution of an input unit, which ensures the objectiveness of the attribution. In contrast,
some attention methods, such as the adversarial saliency map [33], only consider the marginal gradient, which is biased to a
specific context from this perspective.

• Trustworthiness. The theoretic foundation in game theory makes the Shapley values trustworthy. In contrast, some
seemingly transparent explanation methods simply do not have clear theoretical support, which hurts the trustworthiness of
the explanation. Actually, [1] has shown some explanation methods like GBP [45] can not reflect the true attribution.

• Broad applicability. The Shapley values can be extended to measure interactions between two input elements. [57]
has proved the theoretical foundation and advantages for defining interactions using the Shapley value in game theory [30].
However, some gradient-based explanation methods assume the model is locally linear, which fails to measure interactions
between two input elements.

B. Details of efficient approximation of interactions
We approximate Shapley values to enable efficient computation of interactions.

B.1. Approximation of attributions of perturbation pixels

In Section Algorithm, we introduce the approximation of the Shapley value of a perturbation pixel. In the supplementary
material, we give more discussions about the approximation.

The adversarial perturbation is denoted as δ ∈ Rn. Each perturbation pixel i is divided into K sub-pixels with equal
values, i.e. δi = δ(i,1) + δ(i,2) + · · ·+ δ(i,K) and δ(i,1) = δ(i,2) = · · · = δ(i,K). Instead of directly computing the attribution
of each perturbation pixel, we compute the attribution of each sub-pixel. The attribution of the sub-pixel can be efficiently
approximated based on the Taylor expansion, which will be discussed later.

Among sub-pixels (i, 1), (i, 2) . . . (i,K), each sub-pixel plays the same role in attacking, thereby φ(i,1) = φ(i,2) =
· · · = φ(i,K), which is proved as follows. The attribution of each sub-pixel (i, k) is formulated as the Shapley value. The
Shapley value satisfies the four axioms (linearity axiom, dummy axiom, symmetry axiom, and efficiency axiom). According
to the symmetry axiom, given two sub-pixels (i, k) and (j, k′) , if z(S ∪ {(i, k)}) = z(S ∪ {(j, k′)}) holds for any set
S ⊆ Ωpixel\{(i, k), (j, k′)}, then φ(i,k) = φ(j,k′), where Ωpixel = {(1, 1), (1, 2), . . . , (n,K − 1), (n,K)} denotes the set of
all sub-pixels. Because the sub-pixel of the same perturbation pixel i has the equal value, given two sub-pixels (i, k) and
(i, k′) of the same perturbation pixel i, z(S∪{(i, k)}) = z(S∪{(i, k′)}) holds for any set S ⊆ Ωpixel\{(i, k), (i, k′)}, where
1 ≤ k, k′ ≤ K, and k 6= k′. In this way, φ(i,1) = φ(i,2) = · · · = φ(i,K). Thus, we approximate the attribution of perturbation
pixel i as φi =

∑K
i=1 φ(i,k), which equals to φi = K · φ(i,k).

B.2. Properties of the approximated attribution

In Section Algorithm, we approximate the attribution of perturbation pixel i as φi =
∑K

i=1 φ(i,k). In the supplementary
material, we further discuss properties of the approximated attribution.

The approximated attribution still satisfies the linearity axiom and the efficiency axiom.
Proof of the linearity axiom: Given two score functions v(S) and w(S), we use φvi and φwi to denote the attribution of

perturbation pixel i to score v and score w respectively. Let there be a new score function f ′(S) = v(S) + w(S). We use
φv+w
i to denote the approximated attribution of perturbation pixel i to the new score function. The approximated attribution

of perturbation pixel i is the sum of attributions sub-pixels, i.e. φv+w
i =

∑K
k=1 φ

v+w
(i,k) . The attribution of each sub-pixel is

defined as the Shapley value. The Shapley value satisfies the linearity axiom. Then
∑K

k−1 φ
v+w
(i,k) =

∑K
k=1(φv(i,k) + φw(i,k)) =

φvi + φwi . In this way, the approximated attribution is proved to satisfy the linearity axiom, i.e. φv+w
i = φvi + φwi .

Proof of the efficiency axiom: The approximated attribution of each perturbation pixel is the sum of attributions of
corresponding sub-pixels. Thus, the sum of approximated attributions of all perturbation pixels is the sum of attribu-

tions of all sub-pixels, i.e.
∑n

i=1 φi =
∑n

i=1

∑K
k=1 φ(i,k). Attributions of sub-pixels satisfy the efficiency axiom, i.e.∑n

i=1

∑K
k=1 φ(i,k) = z(Ωpixel) − z(∅). z(Ωpixel) is the score gained with all sub-pixels, i.e. the score made by the whole

adversarial perturbation δ, and z(∅) is the score produced without the adversarial perturbation, i.e. the score made by the
original image. z(Ω) also represents the score made by the whole adversarial perturbation δ, where Ω = {1, 2, . . . , n} is the
set of all perturbation pixels. Thus, z(Ωpixel) = z(Ω), and

∑n
i=1

∑K
k=1 φ(i,k) = z(Ωpixel)− z(∅) = z(Ω)− z(∅). In this way,

the approximated attribution is proved to satisfy the efficiency axiom, i.e.
∑n

i=1 φi = z(Ω)− z(∅).

B.3. Approximation for attributions of sub-pixels based on the Taylor expansion

In the paper, we approximate attributions of sub-pixels based on the Taylor expansion as Equation (8). In the supplemen-
tary material, we aim to derive the approximation in details.

Given a function f(x1, x2, . . . , xn) : Rn → R, the Taylor expansion at (x
(k)
1 , x(k)

2 , . . . , x
(k)
n) is

f(x1, x2, . . . , xn) = f(x
(k)
1 , x

(k)
2 , . . . , x(k)

n)

+

n∑
i=1

(xi − x(k)
i)

∂f(x
(k)
1 , x

(k)
2 , . . . , x

(k)
n)

∂xi

+ o((x1 − x(k)
1 , x2 − x(k)

2 , . . . , xn − x(k)
n))

z(S ∪ {(i, k)}) denotes the change of the prediction score of the DNN made by sub-pixels in S ∪ {(i, k)}, where S ⊆
Ωpixel\{(i, k)}. The Taylor expansion for z(S ∪ {(i, k)}) at S is given as

z(S ∪ {(i, k)}) ≈ z(S) + δ(i,k) ·
∂z(S)

∂δ(i,k)

Thus, the approximation for the Shapley value of the sub-pixel (i, k) is given as

φ(i,k) =
1

nK

∑
S⊆Ωpxiel\{(i,k)}

(
nK − 1

|S|

)−1[
z(S ∪ {(i, k)})− z(S)

]

≈ 1

nK

∑
S⊆Ωpixel\{(i,k)}

(
nK − 1

|S|

)−1

(
∂z(S)

∂δ(i,k)
δ(i,k))

Let there be m components in a certain clustering step. C(u)
k =

⋃
i∈C(u)(i, k) denotes a sub-component. We use Ωcomp =

{C(1)
1 , C

(1)
2 , . . . , C

(m)
K−1, C

(m)
K } to denote the set of all sub-components. The Shapley value of the sub-component C(u)

k is
approximated as

φ
C

(u)
k

=
1

mK

∑
S⊆Ωcomp\{C(u)

k }

(
mK − 1

|S|

)−1[
z(S ∪ {C(u)

k })− z(S)
]

≈ 1

mK

∑
S⊆Ωcomp\{C(u)

k }

(
mK − 1

|S|

)−1 ∑
(i,k)∈C(u)

k

[
z(S ∪ {i, k})− z(S)

]

≈ 1

mK

∑
S⊆Ωcomp\{C(u)

k }

(
mK − 1

|S|

)−1 ∑
(i,k)∈C(u)

k

(
∂z(S)

∂δ(i,k)
δ(i,k))

B.4. Implementation & computational complexity:

Clarification: In both the paper and the supplementary material, the computational complexity is quantified as times
of network inference, i.e. the number of input (masked) images on which we conduct the forward/backward propagation.
We do not count the number of detailed operations during the forward/backward propagation w.r.t. each specific input
image, in order to simplify the analysis. It is because given a specific DNN, the number of detailed operations during
the forward/backward propagation is the same for different input images.

In the paper, we introduce the implementation of the approximation of Shapley values and analyze the computational
complexity. In the supplementary material, we aim to further explain the computational complexity of our approximation for
attributions and how we approximate the attribution of components in detail.

We use a sampling-based method to reduce the complexity of computing Shapley values. The original formulation of the
Shapley value considers all combinations of pixels to compute the Shapley value for each pixel. Thus, the computational
complexity of the Shapley value of each pixel is O(2n). We implement the approximation of Shapley values of sub-pixels
with a sampling method. In this way, the complexity of computing the Shapley value of one sub-pixel is reduced toO(nKT).
Note that φi ≈ K · φ(i,k). Therefore, the complexity of approximating the Shapley value of each pixel is also O(nKT). The
derivatives towards all sub-pixels can be computed simultaneously via back-propagation. Thus, the computational complexity
of computing Shapley values of all pixels remains O(nKT).

We use hierarchical clustering to iteratively merge several components into a larger component based on interactions.
We use the following approximation method, to compute and reduce the complexity of computing the attribution of the
pair of components. Let there be m components in a certain clustering step. Given a component C(u), we can use the
sampling method to get their attributions φC(u) . Here, from the perspective of game theory, each component is a player,
and there are m players in the game. As mentioned above, the complexity of computing φC(u) is O(mKT). We use
Sc = C(i1) ∪C(i2) ∪ . . .∪C(iq) to denote a component candidate. To determine the interaction inside Sc, we need to compute
φ′Sc . The computation of φ′Sc regards C(i1), C(i2), . . . , C(iq) as a single component. Then, the set of components changes to
{Sc, C(ik+1) . . . , C(im)}withm−q+1 players. In this way, the computational complexity of φ′Sc isO((m−q)KT). Whereas,
considering all potential pairs of components, the computational complexity grows. We only consider the interaction between
neighboring components. There are m potential pairs of components, and the complexity of computing all potential pairs of
components is O(m(m− q)KT).

Considering the local property [6], we can further approximate φ′
C(u)

⋃
C(v) by simplifying contextual relationships of

far-away pixels. Here, instead of computing φ′Sc in the set {Sc, C(ik+1) . . . , C(im)}, we randomly merge m̃ components to
get m̃/q component candidates, including Sc. In this way, the new set includes m̃/q component candidates and m − m̃
components, i.e. {Sc,

⋃2q
a=q+1 C

(ia), . . . ,
⋃m̃
a=m̃−q+1 C

(ia), C(im̃+1), . . . , C(im)}. We can simultaneously compute attributions
of m̃/q candidates in the new set, and the computational complexity is O((m− (q − 1)m̃/q)KT). To compute attributions
of all potential component candidates, we need to sample qm/m̃ different sets. In this way, the overall complexity for the
computation of attributions of candidates is reduced from O(m(m− q)KT) to O(m(qm/m̃− q)KT).

C. Pseudo code of extracting perturbation components

Algorithm 1 Extraction of perturbation components via hierarchical clustering
1: Inputs: pixel set Ω; reward function z(·); component size q; iteration times T
2: Outputs: Component set Ω′;
3: Initialization: Ω′ = Ω
4: for iter = 1 to T do
5: ∀C ∈ Ω′, compute φC with reward function z(·)
6: while not all possible component candidates are considered do
7: Get component candidate set Ωcandidate by randomly merging each group of neighboring q components in Ω′

8: ∀Ccandidate ∈ Ωcandidate, compute φCcandidate with reward function z(·)
9: Compute interaction in each component candidate: I = φCcandidate −

∑
C∈Ccandidate

φC
10: end while
11: Ω′ = ∅
12: Update the component set Ω′ by greedily adding the component candidate with highest interaction strength |I| to Ω′

13: end for

D. Additional experimental results of regional attributions
D.1. Regional attributions computed with different hyper-parameters

In this section, we have compared regional attributions with different hyper-parameters (β and L). The results are shown
as follows. We found that important regions indicated by attributions were similar under the same selection of β, such as the
belly region of the pigeon (in the first row) and the wing region of the jaeger (in the second row). Note that when β were
different, the generated adversarial perturbations would be different, which leaded to different regional attributions. However,
compared with the difference between the magnitudes and attributions, the difference between regional attributions computed
with different hyper-parameters was smaller.

Perturbations Magnitudes Attributions Perturbations Magnitudes Attributions Perturbations Magnitudes Attributions Perturbations Magnitudes Attributions

𝐿 = 6, 𝛽 = 1/27 𝐿 = 12, 𝛽 = 1/6𝐿 = 12, 𝛽 = 1/27 𝐿 = 6, 𝛽 = 1/6

D.2. More experimental results of regional attributions

Experimental results of regional attributions have been shown in Fig. 3 in the paper. In the supplementary material,
we give additional results of regional attributions. The visualization shows that although the distribution of L2 adversarial
perturbations and the distribution of L∞ adversarial perturbations were dissimilar, their regional attributions were similar to
each other.

Image Perturbations Magnitudes Attributions
𝐿𝐿2 attacking𝐿𝐿∞ attacking

Perturbations Magnitudes Attributions

Image Perturbations Magnitudes Attributions
𝐿𝐿2 attacking𝐿𝐿∞ attacking

Perturbations Magnitudes Attributions

E. Comparisons of attributions
There are two types of attributions in the paper, i.e. regional attributions to the attacking cost and pixel-level attributions

to the change of prediction score (under L2 attacking)). We visualize regional attributions to the cost of L2 attacking and L∞
attacking and pixel-wise attribution to the change of the prediction score. In most cases, important regions indicated by these
attributions were similar. For example, in the third row, the dog’s head and the horse’s body were indicated to be important
by all three kinds of attributions. In other cases, important regions indicated by different attributions were different. For
example, important regions of the potted plant in the last row indicated by these three kinds of attributions were dissimilar.

Image

Regional
attributions to
𝐿2 attacking

Regional
attributions to
𝐿∞ attacking

Attributions
to the change

of the
prediction Image

Regional
attributions to
𝐿2 attacking

Regional
attributions to
𝐿∞ attacking

Attributions
to the change

of the
prediction

F. More experimental results of interactions and perturbation components
Experimental results of interactions and perturbation components have been shown in Fig. 4 in the paper. In the supple-

mentary material, we give more examples of visualizations. Perturbation components usually were not aligned with visual
concepts.

N
or

m
al

 T
ra

in
in

g
Ad

ve
rs

ar
ia

l T
ra

in
in

g

Image Perturbation
Perturbation
components Image Perturbation

Perturbation
components Image Perturbation

Perturbation
components Image Perturbation

Perturbation
components

