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Abstract

Frame quality deterioration is one of the main chal-
lenges in the field of video understanding. To compen-
sate for the information loss caused by deteriorated frames,
recent approaches exploit transformer-based integration
modules to obtain spatio-temporal information. However,
these integration modules are heavy and complex. Further-
more, each integration module is specifically tailored for
its target task, making it difficult to generalise to multiple
tasks. In this paper, we present a neat and unified frame-
work, called Spatio-Temporal Prompting Network (STPN).
It can efficiently extract robust and accurate video features
by dynamically adjusting the input features in the back-
bone network. Specifically, STPN predicts several video
prompts containing spatio-temporal information of neigh-
bour frames. Then, these video prompts are prepended
to the patch embeddings of the current frame as the up-
dated input for video feature extraction. Moreover, STPN
is easy to generalise to various video tasks because it
does not contain task-specific modules. Without bells and
whistles, STPN achieves state-of-the-art performance on
three widely-used datasets for different video understand-
ing tasks, i.e., ImageNetVID for video object detection,
YouTubeVIS for video instance segmentation, and GOT-10k
for visual object tracking. Code is available at https:
//github.com/guanxiongsun/vfe.pytorch

1. Introduction

Video understanding is a fundamental research direction
in the field of computer vision. It plays an important role in
many real-world applications, such as autonomous driving
[67, 33], video surveillance [36, 5], and sports analysis [59,
25]. However, a significant challenge in this field is the
deterioration of video frames due to motion blur, occlusion,
and deformation, which makes it difficult to extract relevant
information.
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Figure 1. Comparisons between pipelines of (a) existing methods
and (b) the proposed Spatio-temporal Prompting Network (STPN).
Existing methods introduce complex and task-specific integration
modules ( ) after backbone networks ( ). In contrast,
STPN is a unified framework for multiple tasks. A lightweight dy-
namic video prompt (DVP) predictor ( ) generates a set of DVPs
to adjust input before backbone networks ( ). Best viewed in
colour.

To overcome this challenge, inspired by the great suc-
cess of transformers in many computer vision tasks [52, 57,
27, 19, 4], researchers explore various transformer-based in-
tegration modules to alleviate the information loss on the
deteriorated video frames. For example, in video object
detection, transformer-based feature aggregation methods
[13, 7, 60, 46] are investigated to enhance the feature of pro-
posals [43] in the detection head. In video instance segmen-
tation, deteriorated frames usually cause wrong instance as-
sociations in a sequence, so 3D mask decoders [58, 22, 8]
are introduced to learn associations of instance masks in an
end-to-end manner. For visual object tracking, traditional
correlation filters [26, 50] meet their limitations in severely
degraded frames. Therefore, transformer-based integration
modules [11, 65, 6, 10] are proposed to better capture com-
plicated correlations between the template region and the
search region. To conclude, the summarised pipeline of re-
cent methods is shown in Figure 1 (a). A backbone network
extracts spatially-only features from the current frame and
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the support frames in the same video. Then, different in-
tegration modules integrate spatial-only features on multi-
ple frames to obtain spatio-temporal features. Finally, the
spatio-temporal features are used for the targeted video un-
derstanding task.

While the current pipeline achieves good performance,
there are still two major limitations of transformer-based
integration modules. Firstly, these integration modules are
involved as an extra component after the backbone network,
leading to increased complexity and additional computa-
tional costs. Secondly, each integration module is tailored
specifically for the target task and thus cannot be gener-
alised to multiple video tasks. Hence, we put forward the
following question: can we remove the complex integration
modules and directly obtain spatio-temporal information in
backbone networks?

To answer this question, inspired by recent prompting
techniques [24, 23, 28], in this paper, we present a neat and
unified framework, called Spatio-Temporal Prompting Net-
work (STPN). Instead of using complex integration mod-
ules, STPN simplifies the current pipeline for video under-
standing by introducing spatio-temporal information into
the backbone network, as shown in Figure 1 (b). Specif-
ically, given a video frame, we propose a dynamic video
prompt (DVP) predictor to generate several video prompts
according to support frames. Then, the predicted DVPs are
prepended to the patch embeddings of the current frame as
the updated input. Finally, a vision transformer backbone
network extracts video features using the updated input for
future video understanding tasks. It is worth noting that the
DVP predictor is a lightweight structure and introduces only
a small number of extra parameters, e.g., 0.11M. Moreover,
STPN can be easily adapted to different video understand-
ing tasks, since it does not contain task-specific modules,
and all modifications happen before the backbone network.

In summary, our key contributions are: (1) We present
the Spatio-Temporal Prompting Network (STPN) that can
extract robust video features on deteriorated video frames.
STPN simplifies the current pipeline for video understand-
ing and is easy to generalise to different video understand-
ing tasks. (2) To the best of our knowledge, we are the
first to explore promoting techniques for robust video fea-
ture extraction on the task of video object detection (VOD),
video instance segmentation (VIS), and visual object track-
ing (VOT). (3) Without bells and whistles, STPN achieves
state-of-the-art performance on three widely-used video un-
derstanding benchmarks, i.e., ImageNet-VID [44] for VOD,
YouTube-VIS [66] for VIS, and GOT-10k [21] for VOT.

2. Related Work
In this section, we first review the state-of-the-art

(SOTA) methods for related video understanding tasks.
Then, we introduce the visual prompting techniques.

Video Object Detection (VOD). SOTA VOD methods
use attention modules to aggregate features of support
frames onto the current frame and thus enhance the feature
quality of the current frame. For example, RDN [13] and
SELSA [60] utilise relation modules to aggregate proposal
features from local frames and global frames, respectively.
These methods use sample memory architectures to store
features on support frames, e.g., a sliding window or a
memory queue, which limit the “diversity” of support fea-
tures. Therefore, MAMBA [46] proposes a memory bank
architecture that can partially update and sample support
features and thus achieve a good speed-accuracy trade-off.
More recent approaches TransVOD [17] and TDViT [48]
introduce transformers into the field and further improve
the performance of VOD.

Video Instance Segmentation (VIS). The goal of VIS is to
simultaneously segment and track all object instances in the
video sequence. There are two categories of approaches:
Firstly, per-frame approaches conduct instance segmen-
tation on each frame independently and then associate
instance masks by post-processing. MaskTrackRCNN
[66] adds a tracking prediction head on MaskRCNN [16]
for instance association. More recently, some approaches
[63, 20, 18] use transformers [52, 4] to reason the relation-
ships between instances. Secondly, per-clip approaches
[58, 62, 8, 22] directly predict 3D masks for each instance
in a video. VisTR [58] proposes a transformer encoder-
decoder structure to obtain spatio-temporal features, which
are then used in an instance sequence matching module
to get object tracks. IFC [22] uses memory tokens inside
of the transformer encoder module to transfer temporal
information between input frames.

Visual Object Tracking (VOT). Object tracking is one
of the most fundamental research topics in computer
vision and has a long history. Siamese-based methods
[2, 30, 29, 56, 70] consider tracking as a template-matching
problem by extracting correlation feature maps of the target
and the search region via two-head siamese networks.
Recently, transformers have been introduced to perform
attention-based correspondence modelling and these meth-
ods [6, 54, 10, 65] achieve SOTA performance. Among
these trackers, MixFormer [11] is a unified framework
established solely on transformers for feature extraction,
correspondence modelling, and result generation.

Prompting. The concept of prompting is originally pro-
posed in natural language processing (NLP). Prompting
refers to designing instructions and prepending them to the
input so that the pre-trained language models [41, 14, 3]
can “understand” the task. Recently, prompting techniques
have been explored in many computer vision tasks. A major



Meaning Symbol

The i-th transformer layer Li

Collection of the output embeddings from Li Ei

Number of embeddings in Ei ni

Dimension of embeddings in Ei di
Collection of dynamic video prompts P
Number of dynamic video prompts NP

Table 1. List of notations.

trend [37, 38, 24] is to transfer pre-trained vision-language
models [15, 40, 42] to the task of video recognition, e.g.,
video classification and action recognition. Another popu-
lar research direction is parameter-efficient transfer learning
via prompt tuning. For example, VPT [23] and UPT [68]
tune a small number of parameters in the input space of a
model and can achieve good performance comparable to the
full fine-tuning scheme on a variety of recognition tasks.

3. Preliminaries

In this section, we define notations necessary for subse-
quent demonstrations. It denotes the current frame and t is
the current time step in the video. Isup denotes the support
frames used to predict video prompts and aid in the fea-
ture extraction process. Specifically, Isup = {Iτ}t+S(K/2)

t−S(K/2),
where K denotes the number of support frames (assumed
to be an even number) and S denotes the frame interval in
the time dimension between support frames.

Transformers encoders [27, 34, 61] are used to extract
feature embeddings from video frames. A transformer
encoder contains a patch embedding layer and L trans-
former layers. The input frame is first divided into n non-
overlapping patches {xj ∈ R3×h×w|j ∈ N, 1 ≤ j ≤ n},
where h and w are the height and width of the patches. Each
patch is then embedded into patch embeddings, denoted as
E ∈ Rn0×d0 . Other notations are summarised in Table 1.

4. Methodology

4.1. Overview

The overview of our framework is shown as in Figure 2
(a). There are two stages in the framework: the predicting
stage and the prompting stage. The goal of the predicting
stage is to generate a set of prompts that vary according
to spatio-temporal information. We first select K support
frames around It and then pass the support frames Isup to
the patch embedding layer and the transformer encoder to
extract image embeddings, called support embeddings. The
support embeddings are then passed to the dynamic video
prompt (DVP) predictor network as the input. The DVP
predictor outputs NP dynamic video prompts, denoted as

P, which contain the spatio-temporal information of the
current video. Details of the DVP predictor network are
illustrated in §4.2.

The second stage is the prompting stage whose goal is to
extract spatio-temporal features of the current frame It us-
ing P. Specifically, P is prepended to the patch embeddings
of the current frame It. Then, the mixed embeddings are
passed into the transformer encoder to produce the spatio-
temporal embeddings. Finally, the spatio-temporal embed-
dings are used for different video understanding tasks, e.g.,
video object detection, video instance segmentation and vi-
sual object tracking. More details of the prompting stage
are presented in §4.3.

4.2. Predicting Stage

Given the current frame It, we first sample K support
frames around It as support frames. The support frames are
then passed into the patch embedding layer and the trans-
former encoder:

Ei
τ = Li(Ei−1

τ ) Ei
τ ∈ Rni×di , i = 1, 2, . . . , L. (1)

Therefore, the collection of support embeddings is denoted
as: Esup = {EL

τ ∈ RnL×dL |τ ∈ T }, where T is the
collection of sampled time steps around the current frame,
T = [t− S(K/2), ..., t− S, t+ S, ..., t+ S(K/2)]. For
example, if K = 6 and S = 2, three support frames are
sampled from the past of the current time step t, and three
are sampled from the future, with a time interval of 2 be-
tween each sampled frame in both directions. Given Esup,
we design two predicting networks, i.e., transformer-based
predictor and mixer-based predictor, to obtain dynamic
video prompts P ∈ RNP×d.

Transformer-based Predictor. This design is inspired
by the object decoder in DETR [4] where a set of ran-
domly initialised object queries are used to retrieve object
features on the image embeddings. As depicted in Fig-
ure 2 (b), we introduce a set of learnable prompt queries
Q ∈ RNP×dL to gather spatio-temporal information from
the support embeddings. Specifically, a multi-head atten-
tion (MHA) [52] module takes the support embeddings and
the prompt queries as input, and produces the aggregated
embeddings. The process is formulated as follows:

K = Concat(Esup) K ∈ RK·nL×dL , (2)

Q̂ = MHA(LN(Q),LN(K)) +Q Q̂ ∈ RNP×dL , (3)

where Concat(·) indicates the concatenation operation and
LN denotes the LayerNorm layer. The output embeddings
are then added back to the prompt queries and passed to
the LayerNorm layer. The normalised output embeddings
are further transformed by a simple feed-forward network
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Figure 2. (a) An overview of our approach. In the predicting stage, a set of dynamic visual prompts (DVPs) P is generated by the
DVP predictor that takes support embeddings Esup on support frames Isup as the input. Then, in the prompting stage, predicted DVPs are
prepended with the patch embeddings of the current frame to extract spatio-temporal embeddings via a transformer encoder which contains
L transformer layers. Finally, different task heads take the spatio-temporal embeddings and output final results for various general video
tasks, e.g., video object detection, video instance segmentation, and visual object tracking. (b) Details of the transformer-based predictor.
(c) Details of the Mixer-based predictor.

(FFN) with a residual connection that makes the dynamic
video prompts:

P = FFN(LN(Q̂)) + LN(Q̂) P ∈ RNP×d. (4)

Mixer-based Predictor. Inspired by the MLP-Mixer [49]
(shortened as Mixer), we design a Mixer-based predictor to
transform support embedding into dynamic video prompts.
The details of a Mixer-based predictor are shown in Figure 2
(c). Unlike the transformer-based predictor whose first step
is to concatenate all support embeddings, we conduct aver-
age pooling in the temporal dimension to obtain the average
support embeddings Esup as follows:

Esup = AvgPool(Esup) Esup ∈ RnL×dL , (5)

where AvgPool denotes the average pooling across the time
dimension. Then, the average support embedding is nor-
malised by a LayerNorm layer and further transposed and
passed into a feed-forward network (FFN) to obtain the hid-
den feature h with NP channels. Finally, the hidden feature
h is used to generate NP dynamic video prompts with d
channels. These two steps can be formulated as follows:

h = FFN((LN(Esup))
T ) h ∈ RdL×NP , (6)

P = FFN((LN(h)T ) P ∈ RNP×d, (7)

where LN and (·)T denote the LayerNorm layer [1] and the
transpose layer, respectively.

4.3. Prompting Stage

Given the predicted dynamic video prompts P, we con-
catenate P together with the patch embeddings of the cur-
rent frame Et as the input of the transformer encoder. The
details of this process are shown in the prompting stage
(right part) of Figure 2 (a). More concretely, the process
of applying P and extracting the spatio-temporal feature of
the current frame It can be formulated as:[
Z1

t ,E
1
t

]
= L1(Concat(P,Et)) (8)[

Zi
t,E

i
t

]
= Li(Concat(Zi−1,Ei−1

t )) i = 2, 3, ..., L (9)

yt = Head(EL
t ), (10)

where Concat(·) indicates the concatenation operation and
Zi

t ∈ RNP×di represents the extra embeddings produced
by adding P in the input embeddings. The weights of
the transformer encoder are shared in the predicting and
prompting stages. Finally, the output embeddings EL

t are
passed into the head network for different video tasks.

STPN Shallow v.s. STPN Deep. Following the protocols
in VPT [23], we design two STPN variants, i.e., STPN shal-



Transformer Layer
...

(a) SPTN shallow

Transformer Layer

Transformer Layer

Transformer Layer
...

(b) SPTN deep

Transformer Layer

Transformer Layer

Figure 3. A comparison between the (a) STPN shallow and the (b)
STPN deep. The green rounded rectangles denote predicted DVPs.
In (a), one set of DVPs is prepended to the patch embeddings be-
fore the first layer of the transformer encoder. In (b), L sets of
DVPs are predicted and then prepended to the input embeddings
of all L transformer layers in the transformer encoder.

low v.s. STPN deep, according to how many sets of dy-
namic video prompts (DVPs) are generated to adjust the
transformer encoder. For example, in the shallow version,
one set of DVPs is predicted and prepended only before
the first transformer layer. In the deep version, L sets of
DVPs are predicted via L separate FC layers, and each
set of DVPs is prepended to the corresponding transformer
layer. Formally, the DVPs of the i-th layer are denoted as
Pi ∈ RNP×di and the feature extraction process Equation
(9) is changed to:[

. . . ,Ei
t

]
= Li(Concat(Pi−1,Ei−1

t )) i = 2, 3, ..., L. (11)

The difference between the shallow and deep variants is
shown in Figure 3.

5. Experiments
We first conduct experiments and compare SPTN with

other state-of-the-art methods on three general video under-
standing tasks, i.e., video object detection (VOD), video
instance segmentation (VIS) and visual object tracking
(VOT). Then, in §5.3, we conduct ablation studies on how
different design choices affect the overall performance,
which helps to gain a deeper understanding of SPTN.

5.1. Settings

Datasets. For VOD, the ImageNetVID dataset [44] is
used. It contains 3,862 training and 555 validation videos.
Following previous approaches [46, 60, 69], we add
overlapped 30 classes of the ImageNet DET dataset into
the train set. Specifically, we sample 15 frames from each
video in the VID train and at most 2,000 images per class
from the DET train. For VIS, we train our models and
report results on the YouTube VIS 2019 dataset [66]. The
dataset contains 2,238 training, 302 validation, and 343 test
videos, which covers 40 object categories. For VOT, we

choose the GOT10k [21] dataset, because it is a large-scale
dataset (10,000 training videos and 180 test videos) with
more than 1.5 million manually labelled bounding boxes,
enabling stable training and evaluation of trackers.

Evaluation Metrics. For video object detection and video
instance segmentation, we report detailed results in the
COCO [32] evaluation format. Specifically, we report the
average precision (AP) metric which computes the average
precision over ten IoU thresholds [0.5 : 0.05 : 0.95] for
all categories. Meanwhile, the COCO evaluation contains
other important metrics, e.g., AP50 and AP75 that are
calculated at IoU thresholds of 0.50 and 0.75, and APS ,
APM , APL that are calculated on different object scales,
i.e., small, medium and large. The metrics for detection and
segmentation are noted with box and mask, respectively.
For visual object tracking, we report the widely used aver-
age overlap (AO) and the success rate (SR). AO denotes the
average overlaps between all ground truth and estimated
bounding boxes, while SR measures the percentage of
successfully tracked frames where the overlaps exceed a
threshold, e.g., SR0.5 and SR0.75.

Transformer Encoders. Our method is compatible with
different transformer backbones. For demonstration, we
conduct experiments on two well-known transformer
backbones, i.e., Swin [34] and CvT [61]. Swin is used for
video object detection and video instance segmentation.
CvT is used for visual object tracking. The details of the
backbones are illustrated in the supplementary material.

Training and Inference. All reported results are obtained
with Python 3.7 and PyTorch 1.8.1 on Tesla V100 GPUs.
We follow the protocols in TransVOD [17], Mask2Former
[9], and MixFormer [11] to set the hyper-parameters, e.g.,
learning rate, data augmentations, optimiser, etc., for three
tasks, respectively. More details about the hyper-parameter
settings are described in the supplementary material.

5.2. Comparisons with SOTA Methods

Video Object Detection. Table 2 shows the results of
STPN and state-of-the-art methods. Firstly, in the AP50
metric, using a simple FasterRCNN [43] base detector
with the Swin-T [34] backbone, STPN achieves 85.0% of
AP50, which makes a 1.3% improvement over the best
competitor TransVOD [17]. Furthermore, when changing
the FasterRCNN base detector to a multi-frame aggregation
method SELSA [60], STPN increases further to 86.5% of
AP50. When using a more strict AP metric, STPN with
FasterRCNN and SELSA achieve remarkable improve-
ments of +6.5/6.9% over the best competitor EOVOD [47],
respectively. Finally, when changing to stronger backbones,
STPN with the Swin-B backbone achieves further improved



Model Base Detector Backbone AP AP50 AP75 APS APM APL

CHP [64] CenterNet R101 - 76.7 - - - -
EOVOD [47] FCOS R101 54.1 79.8 59.5 10.5 28.3 60.1
RDN [13] FasterRCNN R101 53.4 81.8 60.1 8.5 27.4 59.6
TransVOD [17] Deformable DETR R101 - 82.0 - - - -
MEGA [7] FasterRCNN R101 53.2 82.9 59.2 9.1 29.4 59.1
TDViT [48] FasterRCNN SwinT 50.9 79.9 55.7 9.1 26.9 57.2
SELSA* [60] FasterRCNN SwinT 52.3 82.3 58.2 11.4 28.8 57.9
TransVOD [17] Deformable DETR SwinT - 83.7 - - - -

STPN FasterRCNN SwinT 60.6 85.0 68.8 12.1 33.7 66.8
STPN SELSA SwinT 60.9 86.5 68.6 13.3 34.8 67.1

MEGA [7] FasterRCNN ResNeXt101 - 84.1 - - - -
MAMBA [46] FasterRCNN ResNeXt101 - 86.7 - - - -
TransVOD [17] Deformable DETR SwinB - 90.0 - - - -

STPN FasterRCNN SwinB 63.6 86.1 71.6 12.1 33.8 70.3
STPN SELSA SwinB 65.2 90.6 73.5 14.1 37.7 71.8

Table 2. Comparison with state-of-the-art methods on ImageNet VID for video object detection. ∗ represents our re-implementation.

Model Backbone AP AP50 AP75 FPS

VisTR [58] R101 40.1 64.0 45.0 57.7
CrossVIS R101 36.6 57.3 39.7 35.6
MaskProp R101 42.5 - 45.6 -
SeqFormer R101 49.0 71.1 55.7 64.6
IFC [22] R101 44.6 69.2 49.5 89.4
IDOL [63] R101 50.1 73.1 56.1 26.0
VITA [18] R101 51.9 75.4 57.0 -
M2F-VIS [8] SwinT 51.5 75.0 56.5 -
MinVIS [20] SwinT 51.9 75.1 58.2 27.1

STPNMinV IS SwinT 54.8 78.7 61.0 26.5

Table 3. Comparison with state-of-the-art methods for video in-
stance segmentation on the YouTube VIS 2019 dataset.

performance of 65.2% AP. Compared to TransVOD, STPN
with SELSA makes a 0.6% improvement in AP50.

Video Instance Segmentation. We compare STPN with
state-of-the-art methods in Table 3. Using the M2F-VIS
[8] as the baseline segmentation method, STPN improves
performance by large margins with 2.9/3.6% of AP/AP50,
respectively. Compared with SOTA methods with similar
backbone complexities, for example, Swin-T or ResNet-
101, STPN achieves the best accuracy. Specifically, STPN
improves the performance of the best competitor VITA
[18] by 2.9/3.3% of AP/AP50, respectively.

Visual Object Tracking. Table 4 compares STPN with
state-of-the-art methods. We use MixFormer [11] as our
baseline. Specifically, when CVT-22k and CVT-1k are used

Model Backbone AO SR0.5 SR0.75

SiamRPN++ [29] R101 51.7 61.6 32.5
SiamR-CNN [53] R101 64.9 72.8 59.7
PrDiMP [12] R101 63.4 73.8 54.3
TrDiMP [55] R101 67.1 77.7 58.3
TREG [10] R101 66.8 77.8 57.2
TransT [6] R101 67.1 76.8 60.9
STARK [65] R101 68.8 78.1 64.1
MixFormer[11] CVT-22K 70.7 80.0 67.8
MixFormer [11] CVT-1K 71.2 79.9 65.8

STPNMixFormer CVT-22K 71.8 81.6 69.0
STPNMixFormer CVT-1K 72.7 81.9 67.7

Table 4. Comparison with state-of-the-art tracking methods on the
GOT-10k dataset.

as the backbone, STPN improves the AO of MixFormer by
+1.1% and +1.5%, respectively. STPN achieves the best
performance compared to other SOTA methods on the GOT-
10K dataset.

These experimental results demonstrate that STPN is
easy to generalise to various video understanding tasks and
achieves remarkable performance across all three different
video tasks.

5.3. Ablation Study

We investigate the effect of different designs of our
approach on the overall performance. All experiments in
§5.3 are conducted on the ImageNet VID dataset for video
object detection.
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DVP Predictor Designs. We compare the effects of DVP
predictor designs on different baselines. Figure 4 (a) shows
the results on the Swin-T backbone. The FasterRCNN
baseline achieves 80.7% AP50, runs at 23.12 FPS, and has
44.90M parameters. Using the transformer-based predictor
and the Mixer-based predictor, STPN achieves 85.0/84.5%
AP50 and runs at 22.27/22.41 FPS and has 45.01/44.96M
parameters, respectively. These results show that the
transformer-based predictor can achieve better accuracy,
while the Mixer-based predictor has less complexity and
faster speed. Experiments on the Swin-B backbone are
shown in Figure 4 (b) and the experimental results indicate
the same conclusion.

Efficiency of STPN. Compared with other state-of-the-art
methods, STPN with both predictor designs actually
achieves a significantly improved speed-accuracy trade-off,
as shown in Figure 4 (c). These results demonstrate that
the pipeline of STPN is very efficient and is not sensitive
to different predictor designs. We choose the transformer-
based predictor as our default setting since it achieves a
slightly higher accuracy with a comparable fast speed.

STPN Shallow v.s. STPN Deep. As shown in the Figure
5, we conduct experiments on Swin-T/S/B/L variants. The

(a) S 1 2 4 8 16 32
AP 58.7 59.6 60.1 60.6 60.5 60.5

(b)
K 1 3 5 7 9 11
AP 52.6 53.5 58.9 60.6 60.6 60.7
FPS 22.4 22.4 22.3 22.3 21.7 20.5

(c)
NP 3 5 7 9 11 13
AP 60.2 60.3 60.6 60.6 60.5 60.6
FPS 22.9 22.7 22.3 21.6 21.0 19.9

Table 5. Effect of hyper-parameters in STPN: the temporal stride
S, the number of support frames K, and the number of dynamic
video prompts NP . Different choices of hyper-parameters are
listed in rows highlighted in grey.

first finding is that both STPN shallow and STPN deep can
continuously improve performance on all Swin variants,
indicating that STPN has good compatibility with backbone
scales. Another finding which contradicts our intuition
is that surprisingly STPN shallow achieves better perfor-
mance than STPN deep on three Swin variants. We believe
the reason is that STPN shallow has fewer parameters and
thus is easier to optimise in the training process. In contrast,
the Swin-L variant is much more complex and thus needs
more adjustments in the intermediate transformer layers.
By default, we use STPN shallow.

Support Frame Sampling. We use two hyper-parameters
S and K to control the sampling of support frames. Table
5 (a) and Table 5 (b) show the effects of choosing different
values of S and K, respectively. Firstly, we fix the value
of K as 7, so 15 surrounding support frames are used in
total. Then, we vary the temporal stride S from 1 to 32. As
shown in Table 5 (a), S=8 achieves the best performance.
Afterwards, with S fixed as 8, we verify the effect of
different K with respect to both performance (AP) and
speed (FPS). Specifically, when K=7, STPN achieves a
good speed-accuracy trade-off with 60.6% AP and 22.3
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Figure 6. Bounding boxes and Grad-CAM visualisations of Faster-
RCNN and STPN. Each column shows a video frame from the
ImageNet VID validation set.
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Figure 7. Instance mask visualisations of MinVIS [20] and STPN.
Each column shows a video frame from the YouTube VIS dataset.
MinVIS fails to generate accurate masks in low-quality frames.

FPS. Therefore, we choose S = 8 and K = 7 as default.

Number of dynamic video prompts. To explore the effect
of the number of dynamic video prompts NP , we show the
performance and speed results by varying this number from
3 to 13 in Table 5 (c). The best speed-accuracy trade-off is
obtained when NP is 7. In particular, once NP is greater
than 7, AP is less affected by the change of NP . Thus, we
use 7 as the default value of NP .

5.4. Qualitative Results

Grad-CAM [45] is used to visualise the “concentration”
areas of the FasterRCNN baseline and STPN in some
challenging scenarios, for example, motion blur, occlusion,
and both. As shown in Figure 6, FasterRCNN either
fails to detect the blurry object or generates false positive
detections, while STPN can produce accurate detections.
In the first column, the squirrel is very blurry because of
its fast movement. As a result, FasterRCNN cannot detect
the squirrel, and thus the Grad-CAM does not show much
attention to the region of the squirrel. On the contrary,
STPN successfully detects the squirrel, and Grad-CAM

FasterRCNN STPN

(a) Fast-speed objects (b) Medium-speed objects

FasterRCNN STPN

Figure 8. t-SNE visualisation of the object features produced by
FasterRCNN and STPN on (a) fast speed and (b) medium speed
objects in the ImageNet VID dataset.

shows a good concentration map in the squirrel region.

Instance Mask Visualisation. Figure 7 shows the mask
segmentation results of the state-of-the-art method MinVIS
[20] and the STPN in deteriorated frames. For example, in
the first and the second columns, MinVIS fails to generate
instance masks for the surfboard and the fox because of
motion blur but our STPN can generate accurate instance
masks in these frames. The third column shows a case of
occlusion. The left deer is occluded by the right one, so
the MinVIS fails to generate a mask in the head area of
the left dear. Besides, it cannot distinguish the two deer
and generate one instance mask. In contrast, STPN works
well for generating the mask of the occluded deer and
distinguishing the two instances of deer.

t-SNE [51] is a statistical method for visualising high-
dimensional data in 2D maps and is usually used to demon-
strate the discriminative abilities of different models in clas-
sification tasks. We visualise the object features extracted
by FasterRCNN and STPN using t-SNE. Figure 8 (a) and
(b) show the results on the objects with the fast and medium
moving speeds, respectively. We can see that STPN has bet-
ter clustering results than the FasterRCNN baseline, demon-
strating that STPN can improve the discriminative ability of
features. Details of how to define different moving speeds
and how to generate object features are illustrated in the
supplementary material.

6. Conclusion
To the best of our knowledge, we are the first to explore

promoting techniques for robust video feature extraction.
We present a neat and unified framework, named Sptio-
Temporal Prompting Network (STPN). STPN simplifies the
current pipeline for video understanding tasks. Moreover,
STPN is easy to generalise to various video tasks. We
conduct extensive experiments and report STPN’s supe-
rior performance on three widely-used video benchmarks:
ImageNet VID for video object detection, YouTube for
video instance segmentation, and GOT-10K for visual ob-
ject tracking. We hope our work can inform future research
on robust video understanding.



A. Appendix
We introduce detailed implementations of STPN. We use

Python 3.7 and PyTorch 1.8.1 [39], and conduct experi-
ments on NVIDIA Tesla V100-32GB GPUs.

A.1. STPN on CVT

CVT [61] is the default transformer encoder used in Mix-
Former [11] for visual object tracking. The architecture of
CVT is slightly different from other transformer encoders
[34, 27] mainly because CVT uses convolutional layers to
generate down-scaled feature maps whereas other encoders
are down-scaled by reshaping and concatenating. As a re-
sult, the predicted DVP by STPN should also be compatible
with the convolution-based downscale layers in CVT.

The convolution-based downscale layer in CVT is imple-
mented by Conv2d layers with kernel size 3×3 and stride
2. The predicted dynamic video prompts (DVPs) consist of
NP embeddings. To enable Conv2d on DVPs, we increase
NP from the default value of 5 to 9, so that we can reshape
the DVPs to a 3×3 feature map. The reshaped DVPs are
then passed into the convolution-based downscale layer to
generate down-scaled embeddings. Additionally, we add
zero padding of size 2 on the reshaped DVPs before pass-
ing it to the Conv2d layer to ensure the output DVPs have
the same size as the input. Therefore, the input size and the
output size of DVPs are the same which is 3x3. Finally, the
output DVPs are reshaped back to 9 embeddings and then
prepended with down-scaled feature maps for the following
transformer layer.

A.2. Training and Inference

Details of hyper-parameters we used for video object de-
tection (VOD), video instance segmentation (VIS), and vi-
sual object tracking (VOT) are listed in the Table 5. For
VOD and VIS, following the training protocols in Faster-
RCNN [43] and MinVIS [20], the whole model is trained
end-to-end in a single stage. In contrast, following the train-
ing protocol in MixFormer [11], the training process is di-
vided into two stages. The parameters in the score predic-
tion head [11] are trained in the second stage. All other pa-
rameters including the DVP predictor and CVT backbone
are trained in the first stage.

A.3. Grad-CAM Details

We use the EigenCAM [35] for visualising the class ac-
tivation maps (CAM) for STPN on the task of video ob-
ject detection. During the visualisation progress, two ex-
tra modifications are needed compared with the normal
grad-cam visualisation for the task of image classification.
Firstly, we need to formulate a customised “reshape” trans-
formation that integrates the stored activations in the Faster-
RCNN [43] output features (from the feature pyramid net-
work (FPN) [31]). Specifically, we re-scale all feature levels

of FPN to the same scale, the scale of 64× in our imple-
mentation. Secondly, we need to construct a “target” func-
tion that generates CAMs optimised for specific bounding
boxes, such as their score or their intersection over union
with the original bounding boxes. More implementation de-
tails can be found in the GitHub page 1.

A.4. t-SNE Details

Following the protocol in FGFA [69], we categorise
the ImageNet VID Val set into three groups: fast-speed,
medium-speed, and slow-speed subsets. The definition is
based on the Motion Intersection over Union (mIoU) met-
ric which measures the IoU of the same object in the nearby
frames (±10 frames). The specific thresholds are mIoU
> 0.9 (slow), mIoU ∈ [0.7, 0.9] (medium), and mIoU < 0.7
(fast). Slow-speed subset usually has higher quality than the
medium-speed and the fast-speed subsets. Therefore, STPN
improves the FasterRCNN detector more significantly in the
medium-speed and fast-speed subsets.

t-SNE requires a classification label for each sample fea-
ture. So we need to convert the feature maps within bound-
ing boxes into sample features. Given a bounding box,
we use the RoIPooling [43] operation to generate a sam-
ple feature (proposal). Specifically, we use the ground-truth
bounding boxes of the ImageNet VID Val set to generate
sample features. The labels of each sample feature are set as
the label of the corresponding ground-truth bounding box.
In this way, we can compare the quality of feature maps
obtained by FasterRCNN with and without STPN.
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