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Abstract

One of the key challenges in learning joint embeddings
of multiple modalities, e.g. of images and text, is to en-
sure coherent cross-modal semantics that generalize across
datasets. We propose to address this through joint Gaus-
sian regularization of the latent representations. Building
on Wasserstein autoencoders (WAEs) to encode the input
in each domain, we enforce the latent embeddings to be
similar to a Gaussian prior that is shared across the two
domains, ensuring compatible continuity of the encoded se-
mantic representations of images and texts. Semantic align-
ment is achieved through supervision from matching image-
text pairs. To show the benefits of our semi-supervised rep-
resentation, we apply it to cross-modal retrieval and phrase
localization. We not only achieve state-of-the-art accuracy,
but significantly better generalization across datasets, ow-
ing to the semantic continuity of the latent space.

1. Introduction
The availability of significant amounts of image-text data

on the internet (e.g., images with their captions) has posed
the question whether it is possible to leverage information
from both visual and textual sources. To take advantage of
such heterogeneous data, one of the fundamental challenges
is the joint representation of multiple domains [3]. Power-
ful multimodal representations are integral to the accuracy
of models on cross-domain tasks, such as image captioning
[21] or cross-domain retrieval [1, 7, 9, 24, 26, 43].

Multimodal embeddings of images and texts can be ob-
tained by mapping input image and text representations into
a common latent space [9, 43]. Learning such representa-
tions is often formulated as an image-text matching prob-
lem in a fully supervised setup. An alternative approach is
to first learn separate latent spaces and to align them later
through constraints, e.g., supervised information [40]. The
benefit is that the latent representations of each modality are
learned independently, allowing to take advantage of unsu-
pervised (i.e. unpaired) data.

One of the main challenges in multimodal learning is to
obtain meaningful latent representations such that they cap-

ture semantics that are present across modalities, even if
the paired training data does not extensively cover all rel-
evant semantic concepts. For example, the Flickr30k [48]
and COCO [27] image captioning datasets do not contain
matching image pairs. Lacking within-domain structural
constraints, semantic similarity within each modality may
not be preserved in the embedding space (Figs. 1b and 2a).

We address this problem by learning semantically con-
tinuous latent representations of images and texts in their
respective embedding spaces, i.e. multimodal embeddings
that encourage a smooth change in the semantics of the
input modalities. We adopt a semi-supervised setting and
propose a joint Wasserstein autoencoder (jWAE) model,
leveraging that regularized autoencoders are known to yield
semantically meaningful latent spaces [22, 39]. Specifi-
cally, we adopt Gaussian regularization to ensure semanti-
cally continuous latent representations of each input modal-
ity (c.f . Fig. 2b). In contrast to standard Wasserstein au-
toencoders (WAEs) [39], we share the Gaussian prior across
modalities to encourage comparable levels of semantic con-
tinuity in both modalities. Unlike variational autoencoders
(VAEs) [22], Wasserstein autoencoders map the input data
to a point in the latent space, which allows for the co-
ordination of the two modalities through a supervised loss
based on matching image-text pairs. The advantage of the
shared Gaussian prior on the two modalities is that their
semantic representations are comparable and can be better
aligned with supervision as illustrated in Fig. 1c.

We first evaluate our multimodal embeddings of im-
ages and texts on cross-modal retrieval and show that they
yield state-of-the-art accuracy on the Flickr30k and COCO
datasets. One of the crucial advantages of the semanti-
cally continuous representation from our semi-supervised
approach is its generalization capability across datasets.
The benefit over the state of the art widens when embed-
dings of one dataset are evaluated on a related, previously
unseen dataset. Finally, we demonstrate the advantage of
our jWAE on phrase localization on the Flickr30k Entities
dataset [34], where we again outperform recent methods
from the literature.
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A stove top oven topped with 
lots of fresh fruits and vegetables.

Several fruits with Chinese
characters written on them.

(a) Input embeddings for images (left) and text (right).

Several fruits with Chinese
characters written on them.

A stove top oven topped with 
lots of fresh fruits and vegetables.

(b) Joint representation of image-text em-
beddings based on negative sampling [43].

Several fruits with Chinese
characters written on them.

A stove top oven topped with 
lots of fresh fruits and vegetables.

(c) Coordinated representation of image-text embeddings of
the proposed jWAE.

Figure 1. From input embeddings to coordinated embeddings with semantic continuity: (a) Semantic similarity in the input modalities does
not imply proximity in the embedding space. (b) Joint representations align the modalities, but the sparsity of supervised information does
not achieve continuity of the semantic space. (c) Our jWAE based on joint Gaussian regularization leads to semantic continuity.

(a) Matching images in the joint embedding space of [43]. (b) Matching images in the coordinated embedding space with the proposed jWAE.

Figure 2. Semantic continuity with Gaussian regularization. Each row shows images that are close in the learned embedding space. (a)
Without prior knowledge of matching image pairs, supervised cross-modal methods do not achieve semantic continuity. (b) Our jWAE
based on Gaussian regularization achieves semantic continuity in the coordinated image space in absence of within-domain supervision.

2. Related Work
Supervised multimodal learning. Early work on mul-
timodal learning includes Canonical Correlation Analysis
(CCA) [17] and kernel CCA (KCCA) [25], which maximize
correlation to learn projections of joint embeddings (e.g., of
images and texts). However, these methods do not scale to
large datasets [28]. Deep Canonical Correlation Analysis
(DCCA) [1] aims to overcome this scalability issue. Yet,
optimization is challenging as the covariance matrix has to
be estimated during training and is prone to over-fitting.

Many recent works formulate embedding multiple do-
mains into a joint space as a learning-to-rank problem [9,
10, 14, 15, 23, 43, 46]. A ranking hinge loss with a margin
is used such that matching cross-domain pairs are ranked
higher (i.e. are closer in the latent space) than non-matching
pairs. Wang et al. [43] additionally incorporate structural
information on the input representations themselves with a
domain-specific ranking loss. This requires prior knowl-
edge about within-domain matching pairs, which was only
available for text. Image-text matching has also been stud-
ied in a classification setting, employing logistic regression
or a softmax with cross-entropy [11, 43].

Gu et al. [14] augment the ranking loss with a condi-
tional generative model framework for cross-modal gener-
ation to obtain fine-grained multimodal features. Harada
et al. [16] learn an image-text embedding space with a

Gaussian prior using generative adversarial networks. How-
ever, the Gaussian latent prior is applied only on the image
modality, and the text distribution is matched to the latent
image distribution. Moreover, the adversarial framework
can suffer from mode collapse. Chi et al. [6] match image
and text embeddings to the label representation. They as-
sume that image and text have same label, which is limited
to tasks where only one concept is required per image.

Wehrmann et al. [45] improve sentence representations
with a character level inception module and [20, 26] im-
prove image representations for image-text matching mod-
els. Huang et al. [20] use multi-label classification to extract
various concepts in images, requiring additional image an-
notations. Lee et al. [26] propose an attention mechanism
for aligning image regions with words in a sentence. This
is orthogonal to the underlying multimodal embedding and
can be combined with the proposed jWAE framework.

Semi- and unsupervised multimodal learning. Various
approaches [31, 40] use autoencoders to obtain latent repre-
sentations. Embeddings of the two domains can be aligned
using distribution matching constraints [40, 42]. Unlike
previous work, which does not encourage any continuity
in the latent semantic space across modalities, we use reg-
ularized autoencoders based on generative models, which
enforce the latent embeddings from the encoders to match a
prior distribution, thereby yielding continuity in the embed-



Text Supervised approach [43] Ours (jWAE-MSE)

Two tan dogs play
on the grass near the
wall.

A tennis player wear-
ing white is jumping
up to hit a ball.

Table 1. Examples of images retrieved for a given sentence on
Flickr30k based on embeddings trained on COCO.

ding space. We use the latent representations obtained from
these models as a basis for our multimodal approach.

Deep generative models aim to minimize the difference be-
tween the model and the empirical data distribution, and
have been successfully applied, e.g., to image generation
tasks. Generative adversarial networks (GANs) [13] gen-
erate the model distribution in a one step procedure where
decoders are input with random (Gaussian) noise to con-
struct the data distribution. Regularized autoencoders such
as variational autoencoders (VAEs) [22] model the data dis-
tribution through a two step procedure. The empirical dis-
tribution is first mapped to a latent space via encoders and
then mapped back to the data space via decoders. VAEs
minimize the reconstruction error between the input and
output representation and balance this with the discrepancy
between the encoded representation in the latent space and a
prior distribution, e.g. a Gaussian, for each input. Recently,
[29, 39] proposed autoencoder-based frameworks where the
discrepancy between the encoded distribution of all input
representations and prior distribution is minimized. This
forces the entire encoded distribution to match the prior.
Such regularization captures the semantics of entire input
distribution in a continuous latent representation, desirable
for encoding each modality in multimodal learning.

3. Motivation & Background

Current approaches formulate the task of learning multi-
modal representations of images and text in an image-text
matching framework [9, 44], in which a ranking loss is min-
imized in a fully supervised setting. For matching image-
text pairs (xl, yl) and non-matching images xl′ or texts yl′
with similarity function s(x, y), the ranking formulation
based on the max-margin hinge loss with margin m is de-

Image Supervised approach [43] Ours (jWAE-MSE)

• Chevrolet car on display at
a convention.

• Construction in the city at
night.

• Two firemen beside their
fire engine.

• An escalator with many
people on it, leading out of
a tunnel.

• Two firemen beside their
fire engine.

• BSR trucks and machin-
ery and workers.

• An old, beat-up jeep being
towed away.

• Construction in the city at
night.

• The dog is running around
the cow.

• A person laying on the
ground next to a cow.

• Two children pet horses in
a field.

• Girl atop horse that is
chasing a small longhorn.

• A lioness is chasing a
black bison across a
grassy plain.

• A lioness chases a black
animal with horns.

• Two brown dogs play.
• Horse jockeys racing on

horses in a race.

Table 2. Examples of the top-4 captions retrieved for a given image
on Flickr30k based on embeddings trained on COCO.

fined as

LMH =
∑
l

ψ
(

max
[
0,m+ s(xl, yl′)− s(xl, yl)

])
+ψ
(

max
[
0,m+ s(xl′ , yl)− s(xl, yl)

])
.

(1)

Here, ψ is either the sum of hinge losses over all the neg-
ative samples for a given matching pair, or the maximum
over all hinge losses. The dependence on the choice of neg-
ative examples limits the robustness and generalization of
the obtained multi-modal embeddings; they fit to the par-
ticularities of a dataset, which can be seen from the exam-
ple retrievals in Tables 1 and 2 on the Flickr30k dataset for
an embedding space trained on the COCO dataset. While
methods like domain adaptation rely on data from source
and target datasets to adapt a model to perform better on
a specific target dataset [19, 41], in this work we show the
performance of the embeddings where both supervised and
unsupervised losses are trained only on the source dataset,
commonly referred to as generalization.

To overcome the limitation of existing methods in ex-
pressing semantic coherence within a domain and across
multiple domains, we propose to employ Gaussian regular-
ization on the latent distribution. By virtue of the autoen-
coder framework, structurally similar input representations
are close to each other in the low-dimensional latent space;
Gaussian regularization encourages continuity in the space
of encoded representations. Semantic alignment of these
spaces is further obtained with supervision. We refer to
the resultant embeddings as semantically continuous. Our
model consists of three main components. First, each in-
put distribution is mapped to a Gaussian distribution where
semantically similar representations are close to each other
within the domain. This is illustrated in Fig. 2b, where im-
ages that are close in the embedding space are semantically



related. Second, we share this Gaussian prior across do-
mains, leading to compatible levels of continuity in both
domains. Third, the latent representations of images and
text are semantically aligned with supervised information.
As shown in Fig. 1c, images and texts representing simi-
lar semantics come closer in the proposed joint embedding
space. Moreover, this offers significantly better generaliza-
tion across datasets as seen in Tables 1 and 2, where the ex-
ample captions retrieved with our semi-supervised approach
are semantically more related to the given image than when
only employing supervised ranking.

4. Approach

We propose a semi-supervised approach for improving
the semantic alignment between two modalities, such as im-
ages and texts. Let X = {xi}NX

i=1 and Y = {yj}NY
j=1 denote

unpaired input images and texts, respectively. Further, let
S = {(xl, yl)}NS

l=1 be matching image and text pairs. We
assume the latent space of each domain to be of dimension
d. Encoders fv : Rdv → Rd and ft : Rdt → Rd map visual
data (images) and text to their respective d-dimensional la-
tent spaces. gv : Rd → Rdv and gt : Rd → Rdt are the
decoders that map the latent representations back to images
and text. We denote the latent representations of images and
texts by ṽ and t̃, respectively. Next, we let PL ∼ N (0, Id)
be a unit Gaussian prior in the d-dimensional space with
identity covariance matrix Id and denote the encoded im-
age and text distributions as Fv = {fv (xi)}NX

i=1 and Ft =

{ft (yj)}NY
j=1, respectively. Similarly, we define the output

(reconstructed) model distributions as Gv = {gv(ṽi)}NX
i=1

and Gt = {gt(t̃j)}NY
j=1. Following the common abuse of

notation, we let Fv and Ft denote both the encoded activa-
tions and the distribution over encodings.

4.1. Wasserstein autoencoder backbone

We build the latent representation of each domain, im-
ages or text, on Wasserstein autoencoders [39]. We first de-
scribe the WAE backbone for the image pipeline and then
extend it to text.

Generative models such as VAEs and WAEs minimize
the discrepancy between the true data distributionX and the
model (reconstructed) distribution Gv . In such models, la-
tent variables z, sampled from a fixed prior distribution PL
in the latent space, are mapped to the space of the original
data with parameterized functions gv , and f -divergences,
such as the KL-divergence or the Jensen-Shannon diver-
gence, between the distributions are minimized. In high-
dimensional spaces, estimating the model distribution di-
rectly by sampling in the latent domain would require a
large number of samples from the latent distribution. There-
fore, representing the model distribution by random sam-
pling of the latent distribution is computationally expensive.

Variational autoencoders make sampling efficient by in-
troducing a proposal distribution for each xi. Specifically,
Fv(xi) is a latent distribution that generates latent represen-
tations z likely to produce xi. The VAE minimizes

LVAE = DKL
(
Fv(xi)||PL

)
− EFv(xi)

[
logGv (ṽi)

]
, (2)

where the first term encourages the latent variables z over
each xi to match the prior distribution PL. While this helps
latent samples to be representative of a data point, it does
not capture the full underlying true data distribution. As has
been pointed out by [39] for a Gaussian prior, this results
in overlapping Gaussians in the latent space from different
input data points. This also is the cause of blurry images
from VAEs in image generation tasks. Moreover, mapping
the input to a latent distribution is problematic when using
supervision in the latent space, as intended here.

To model the entire data distribution in the latent space,
minimizing D(Fv||PL) with Fv =

∫
Fv (x) dX is thus de-

sirable [39]. To that end, given the input distribution X
and the model distribution Gv , Wasserstein autoencoders
(WAEs) minimize the optimal transport cost Wc(X,Gv)
between the two distributions. Optimal transport with a cost
function c (s, t) : Rd × Rd → R+ is defined as

Wc(X,Gv) = inf
γ∈Γ(X,Gv)

E(s,t)∼γ
[
c(s, t)

]
, (3)

where Γ(X,Gv) is the set of all possible joint distributions
(couplings) of (s, t) whose marginals areX andGv , respec-
tively. In generative models with a deterministic mapping
from the latent distribution PL to Gv , the optimal transport
cost between X and Gv reduces to finding a conditional
distribution Fv such that

∫
Fv(x)dX = PL [4, 39]. This

constraint is enforced as a regularization term by minimiz-
ing D (Fv||PL). This yields Wasserstein autoencoders as

LWAE = inf
Fv∈F

EXEFv

[
c(x, gv(x))

]
+ λD

(
Fv||PL

)
. (4)

Here, c (s, t) : Rd × Rd → R+ is a cost function and F is
a set of probabilistic encoders without any constraints (non-
parametric), which model p(z|x). We take it to be the set of
all fully-connected networks with fixed size.

Choosing D as the KL-divergence between Fv and PL
would require closed forms of Fv and PL. Since the closed
form of Fv is not available, we instead minimize the Jensen-
Shannon divergence between the prior and encoded latent
distributionsDJS (Fv||PL) using a GAN-based formulation,
which allows to conveniently use samples from the distri-
bution. We refer to DJS as Gaussian regularization since we
consider the prior to be a unit Gaussian.

Note that the popular Wasserstein GANs [2] minimize
the optimal transport cost (Eq. 3) between the data distribu-
tion and the model distribution using the dual formulation
of the optimal transport cost directly from the latent space
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Figure 3. Architecture of our joint Wasserstein Autoencoder.

to the data space. That is, they do not have an encoder that
maps the input to latent representations. However, for learn-
ing coordinated representations of two input data distribu-
tions with a shared prior, an encoder that maps data points to
the latent space is desirable. We thus build on WAEs here.

4.2. Joint WAE

For learning coordinated representations, we are now in-
terested in formulating continuous d-dimensional embed-
ding spaces for each modality, which are aligned through
constraints. To this end, we propose to share the prior on
the latent representations. Specifically, the latent represen-
tations of each domain are constrained to be close to the
same unit Gaussian distribution; that is we minimize the dis-
crepancy D (Fv||PL) and D (Ft||PL) between the encoded
representations of each modality and the Gaussian prior PL.

We now formulate our joint Wasserstein autoencoder in
terms of a classical encoder-decoder setting. To that end, we
first note that when fv and gv in a regular WAE (Eq. 4) are
parameterized with encoders and decoders in a deep neu-
ral network framework, the first term of Eq. (4) reduces to
minimizing the reconstruction error between the true input
representation and the decoded representation.

To apply the WAE formulation to sentences, we first ex-
tend it to gated recurrent units (GRUs) [37] where ft is the
encoded output of the GRU encoder and Gaussian regular-
ization is applied to the encoded distribution, Ft, of all the
sentences. ft serves as the input hidden state to the GRU
decoder and the reconstruction loss for the sentence is

LGRU = −
M−1∑
m=0

log pgt

(
wjm

∣∣∣wj0:m−1, ft(yj); gt

)
, (5)

where wjm is the ground truth word and
pgt(w

j
m|wj0:m−1, ft) is the output probability of word

wjm in sentence yj given the decoder gt and hidden state ft.

Recalling that Fv and Ft denote the encoded distribution
of images and text, respectively, we formulate the unsuper-

vised part of our joint WAE loss as

LjWAE = λ1

NX∑
i=1

∥∥∥xi − gv(fv(xi))∥∥∥
− λ2

NY∑
j=1

M−1∑
m=0

log pgt

(
wjm

∣∣∣wj0:m−1, ft(yj); gt

)
+ λ3DJS(Fv||PL) + λ4DJS(Ft||PL). (6)

Here, {λ1, . . . , λ4} are the regularization parameters and
‖.‖ is `1 or `2 norm. Modality specific reconstruction error
terms are crucial components in preventing mode collapse
and encouraging diversity in the latent representations of
each domain. For sentences encoded with fully connected
encoders using pre-trained sentence encodings like average
of word2vec [30], we use an analogous formulation with the
mean-squared error as the reconstruction loss.

Gaussian regularization itself does not induce any se-
mantic coupling between the cross-modal distributions. To
ensure that the latent spaces not only have a compatible con-
tinuity but rather align semantic concepts across modalities,
we add a supervised loss minimizing the distance between
latent representations of matching image-text pairs. Embed-
dings of the two domains can now be directly aligned with
the mean-squared error

LMSE =
1

NS

NS∑
l=1

∥∥fv(xl)− ft(yl)∥∥2
. (7)

The overall loss function of our approach is then given as

LjWAE-MSE = LjWAE + LMSE. (8)

Alternatively, we also show the effect of Gaussian regular-
ization with the max-margin hinge loss [9] from Eq. (1) as
supervised loss function

LjWAE-MH = LjWAE + LMH. (9)

The overall model architecture is illustrated in Fig. 3.

Implementation. The outputs from the encoders (i.e. the
encoded distributions Fv and Ft) along with z ∼ PL are



input to the discriminator. The number of samples from
the prior distribution PL equals the sum of the samples out-
put by the two encoders. The discriminator distinguishes
between the encoded distributions and the joint Gaussian
prior. Note that we implement a single discriminator net-
work for two generator networks, which makes our archi-
tecture computationally efficient. This is possible as the
same prior distribution is used for images and texts. The dis-
criminator is a fully-connected three layer neural network
with leaky ReLU non-linearities after the first two layers,
which enables a better flow of gradients during optimization
[36]. The generator network (the encoder) of each pipeline
tries to “fool” the discriminator network by generating en-
codings close to the Gaussian prior distribution.

In general, both encoders and decoders consist of two
fully connected layers; ReLU non-linearities are applied af-
ter the first layers. For the text pipeline based on GRUs,
the encoder is a bi-directional GRU with two layers. The
output of the GRU is encoded in the latent space after ap-
plication of a linear fully-connected layer. The decoder is a
uni-directional GRU with word dropout encouraging mean-
ingful latent representations of sentences.

5. Experiments

To show the applicability of our jWAE framework across
different tasks, we evaluate the learned multimodal embed-
dings on cross-modal retrieval and phrase localization.

5.1. Cross-modal retrieval

Visual input. We consider pretrained VGG-19 [38] and
ResNet-152 [18] models for image features. For VGG-19,
we extract the 4096-dimensional feature vector from the
first fully connected layer and for ResNet-152 the 2048-
dimensional activations from the fully connected layer.

Textual input. Following [43], we use the mean of 300-
dimensional word2vec [30] features of the words in the sen-
tence. Alternatively, we use nonlinear Fisher vectors from a
hybrid Gaussian-Laplacian mixture model (HGLMM) [24].
For GRU, one-hot encodings of the words are projected
with an embedding layer, which is initialized either ran-
domly or with pre-trained word2vec embeddings.

Datasets. Two popular benchmark datasets for evaluating
multimodal visual and textual representations are Flickr30k
and COCO [9, 24, 43]. Flickr30k [48] is comprised of
31783 images with five captions per image. We use the
splits of [21, 44]; validation and test splits consist of 1000
images with 5 captions each. The remaining images are
used for training. COCO [27] is larger and more diverse
than Flickr30k. It consists of 82783 training images with
five captions each. 5000 images from the validation set are
retained for validation purposes and the remaining 30504

images are used for training. Similar to [21, 24, 44], we use
1000 images with their captions in the test split.

Network training. We train the network (see Appendix
B for architectural details) using the Adam optimizer with
a learning rate of 1E-4. The discriminator is trained with
a learning rate of 5E-5. The batch size is taken as 64 or
128. For jWAE-MSE, the regularization parameters are set
to λ1 = λ2 = 1.0 for the reconstruction terms in Eq. (6)
and λ3 = λ4 = 0.2 for the Gaussian regularization. For
jWAE-MH, the parameters are λ1 = 0.5, λ2 = 0.005, λ3 =
λ4 = 0.01 for most of the experiments.

Evaluation metric. In cross-modal retrieval tasks,
Recall@K is a standard performance measure and defined
as the fraction of instances for which their ground truth is in
the top-K based on a similarity score (cosine similarity).

Baselines & methods. We compare the accuracy of our ap-
proach against several state-of-the-art methods for image-
to-text and text-to-image retrieval, particularly the Embed-
ding Network of [43, 44] and VSE++ [9], which use differ-
ent formulations of the ranking loss, and the attention-based
Stacked Cross Attention Network (SCAN) [26]. For eval-
uation with SCAN, we integrate the jWAE-MH framework
with the best-performing setting on the respective dataset.
To compare our approach against methods without negative
sampling, we also include the Similarity Network of [43]
and the Canonical Correlation Analysis (CCA) approach
of [24]. For our jWAE framework, we demonstrate the
effect of Gaussian regularization with supervision through
the mean-squared error (jWAE-MSE, Eq. 8) as well as a
margin-based hinge loss (jWAE-MH, Eq. 9). We extend
jWAE for the SCAN method (jWAE-MH+SCAN t-i/i-t)
where in i-t attention is applied on words with respect to
each image region and in t-i image regions are attended with
respect to each word in the sentence. We also include results
from a MMD loss for matching text and image distributions
(MMD-MSE) [40] and an ablation of our method without
the Gaussian regularization (MSE), both with the usual re-
construction error for autoencoders.

Results. In Table 3, we show the results of our method for
cross-modal retrieval on the Flickr30k and COCO datasets.

Our jWAE framework leads to competitive results com-
pared to the current state of the art in image-to-text re-
trieval. For example, jWAE-MH outperforms VSE++ with
respect to top-1 recall by 1.0% points on Flickr30k and by
2.0% points on COCO. For the Embedding Network with
VGG+w2v features, jWAE-MH has 3.5% better accuracy
on COCO. Our semi-supervised representations also im-
prove the top-1 recall of SCAN t-i by 2.2% and 2.1% points
on Flickr30k and COCO, respectively. For text-to-image re-
trieval, improving the top-1 recall is more challenging. Yet,
we also achieve an improvement in top-1 recall of 1.3% and



Recall on Flickr30k Recall on COCO

Image-to-text Text-to-image Image-to-text Text-to-image

Method (Features) @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

Without
Negative
Sampling

CCA (VGG+HGLMM) [24] 34.4 61.0 72.3 24.4 52.1 65.6 37.7 66.6 79.1 24.9 58.8 76.5
CCA (Mean Vector) [24] 24.8 52.5 64.3 20.5 46.3 59.3 33.2 61.8 75.1 24.2 56.4 72.4
Sim. Network (VGG+HGLMM) [43] 16.6 38.8 51.0 7.4 23.5 33.3 30.9 61.1 76.2 14.0 30.0 37.8
MMD-MSE (VGG+w2v) [40] 35.3 60.8 72.8 16.5 40.2 52.9 42.9 73.8 84.4 19.6 50.2 66.6

With
Negative
Sampling

Emb. Network (VGG+w2v) [43] 35.7 62.9 74.4 25.1 53.9 66.1 40.7 74.2 85.3 33.5 68.7 83.2
Emb. Network (VGG+HGLMM) [43] 40.3 68.9 79.9 29.7 60.1 72.1 50.1 79.7 89.2 39.6 75.2 86.9
2WayNet (VGG+HGLMM) [7] 49.8 67.5 – 36.0 55.6 – 55.8 75.2 – 39.7 63.3 –
VSE++ (Resnet+GRU) [9] 52.9 80.5 87.2 39.6 70.1 79.5 64.6 90.0 95.7 52.0 84.3 92.0
GXN (ResNet+GRU) [15] 56.8 – 89.6 41.5 – 80.1 68.5 – 97.9 56.6 – 94.5
SCO (Resnet+GRU) [20] 55.5 82.0 89.3 41.1 60.5 80.1 69.9 92.9 97.5 56.7 87.5 94.8
SCAN t-i (ResNet+GRU) [26] 61.8 87.5 93.7 45.8 74.4 83.0 70.9 94.5 97.8 56.4 87.0 93.9
SCAN i-t (ResNet+GRU) [26] 67.9 89.0 94.4 43.9 74.2 82.8 69.2 93.2 97.5 54.4 86.0 93.6

MSE (VGG+w2v) 33.9 61.3 73.2 15.9 40.3 52.8 45.0 76.5 87.0 21.3 52.3 68.1
jWAE-MSE (VGG+w2v) 35.7 61.6 73.6 17.3 41.8 55.3 43.2 75.1 85.7 21.5 53.5 69.3
jWAE-MH (VGG+w2v) 35.4 62.5 74.4 24.1 50.4 62.6 44.2 77.4 87.7 31.3 66.0 81.3
jWAE-MSE (VGG+HGLMM) 40.3 66.3 77.2 20.3 46.5 58.9 50.3 79.4 88.3 25.2 57.5 73.3
jWAE-MH (ResNet+GRU) 53.9 82.2 87.4 40.7 72.4 81.9 66.6 91.4 96.6 53.1 84.5 92.0
jWAE-MH+SCAN t-i (ResNet+GRU) 64.0 89.4 95.2 47.1 75.9 84.0 72.0 94.5 98.3 57.1 87.5 94.1
jWAE-MH+SCAN i-t (ResNet+GRU) 68.5 89.6 94.2 44.2 74.2 83.2 69.8 93.3 98.1 54.6 86.1 93.2

Table 3. Cross-modal retrieval results (in %) on the Flickr30k dataset [48] as well as the COCO dataset [27] with 1000 test images.

Image-to-text Text-to-image

Method (all ResNet+GRU) R@1 R@5 R@1 R@5

VSE++ [9] (baseline) 64.6 90.0 52.0 84.3
VAE-MH 57.8 86.9 46.3 80.3
jWAE-MH 66.6 91.4 53.1 84.5

Table 4. Comparison of jWAE with VAE on the COCO dataset.

Flickr30k(Train) ⇒ COCO(Test)
Image-to-text Text-to-image

Method R@5 R@10 R@5 R@10

CCA (VGG+w2v) [24] 13.3 20.1 10.3 16.0
Embed. Network (VGG+w2v) [43] 37.6 49.5 32.5 45.8
MSE (VGG+w2v) 40.1 52.9 21.7 33.8
SCAN (ResNet+GRU) [26] 59.2 70.0 53.2 66.6

jWAE-MSE (VGG+w2v) 42.8 55.3 28.3 40.9
jWAE-MH (VGG+w2v) 43.4 58.4 34.5 49.2
jWAE-MH+SCAN (ResNet+GRU) 64.4 76.9 55.2 68.7

Table 5. Generalization results of models trained only on the
Flickr30k training set and evaluated on the COCO test set.

0.7% points over SCAN t-i, and an improvement of 1.1%
for VSE++ on Flickr30k and COCO. This shows that irre-
spective of the network architecture and complexity of input
features, our jWAE improves the current state of the art. To
the best of our knowledge, our jWAE framework improves
(over) the currently leading cross-modal retrieval methods.

We observe that the recall for text-to-image retrieval
of jWAE-MSE is not as competitive and is comparable to
methods that do not use negative sampling. This can be at-
tributed to the nature of the datasets where five sentences

compete for the same image. Moreover, given a sentence
there can be many images that can be described reasonably
well by the sentence. jWAE-MH bridges the gap between
maximizing top-K recall by ranking matching image-text
pairs higher than non-matching pairs and improving accu-
racy of the embeddings by encouraging semantic continuity.

In Table 4, we additionally compare jWAE-based Gaus-
sian regularization to traditional VAEs using VSE++ as
baseline. While jWAE-MH improves the accuracy of the
VSE++ baseline, VAE-MH results in a decrease of top-K
recall. The reason is that VAEs map each input to a Gaus-
sian latent distribution. This hinders the application of a
point-wise supervised loss in the latent space. In order to
match the latent representations of two modalities with the
MH loss, we instead require mapping to a point in the la-
tent space. jWAE enforces global Gaussian priors on the
latent distributions while mapping the input to a point in the
embedding space. Therefore and unlike VAEs, jWAEs are
suitable for semi-supervised learning of joint embeddings.

To show that our method learns meaningful representa-
tions with continuity in the latent space, we test the cross-
dataset generalization capability of our method against var-
ious retrieval approaches: CCA [24], the Embedding Net-
work [43], and SCAN [26]. For cross-dataset generaliza-
tion, the model is trained on the training set of one dataset,
e.g. COCO (Flickr30k), and tested on the test set of another
dataset, i.e. Flickr30k (COCO). Note, we do not train to
improve the accuracy on specific target dataset. We find
that previous methods based on global representations [43]
have low generalization performance with top-10 recall as
low as 12.2% when testing on Flickr30k for a model trained



COCO(Train) ⇒ Flickr30k(Test)
Image-to-text Text-to-image

Method R@5 R@10 R@5 R@10

Embed. Network (VGG+w2v) [43] 33.7 45.5 8.4 12.2
MSE (VGG+w2v) 43.6 56.9 24.3 34.2
SCAN (ResNet+GRU) [26] 73.7 82.6 61.3 72.4

jWAE-MSE (VGG+w2v) 48.5 60.0 29.1 40.7
jWAE-MH (VGG+w2v) 51.1 63.3 37.0 49.1
jWAE-MH+SCAN (ResNet+GRU) 80.0 87.0 66.7 75.9

Table 6. Generalization results of model trained only on the COCO
training set and evaluated on the Flickr30k test set.

on COCO. Fine-grained representations based on attention
[26] generalize better compared to [43]. Following Tables 5
and 6, the jWAE-MH framework significantly improves the
generalization across datasets further, owing to the semantic
continuity from the Gaussian regularization. For image-to-
text and text-to-image retrieval we improve the top-5 recall
by 5.2% and 2.0% points, respectively, generalizing from
Flickr30k to COCO and by 6.3% and 5.4% points, respec-
tively, for generalizing from COCO to Flickr30k.

In Fig. 2, we show modality-specific semantic continuity,
where, e.g., in the third row, for an image with “a man and
a horse”, matching images retrieved by our approach are
of ‘person-animal interaction’ whereas for the supervised
approach [43] matching images show the concept ‘person’.
Similarly, for cross-modal semantic continuity in Table 1,
[43] retrieves an image with a concept ‘two’ while jWAE
is able to retrieve the image representative of the given sen-
tence “Two tan dogs play on grass near the wall”. We pro-
vide additional qualitative examples in Appendix C.

In the Appendix A, we additionally study the accuracy
under limited supervision.

5.2. Phrase localization

We next analyze the benefit of our jWAE framework for
phrase localization on the Flickr30k Entities dataset [34].
Phrase localization associates (grounds) a phrase to a re-
gion in the image using bounding boxes [5, 35, 43, 47].
Following [43], we formulate phrase localization as a re-
trieval problem where given an image and a phrase from its
associated sentence, the phrase is mapped to the regions in
the image. Bounding box proposal regions are extracted
with Edge Box [49]. Since we are mainly interested in
evaluating the quality of our multimodal embeddings rather
than the specific task, we compared to other embedding-
based approaches [35, 43]. Additionally, we integrate our
jWAE framework with Conditional Image Text Embedding
(CITE) [32], which builds on top of the embeddings from
the Similarity Network. We also include [33], which uses
additional image and language constraints, and [47], which
considers all possible bounding boxes based on image con-
cepts like segmentation, word priors, and detection scores.

Methods R@1 R@5 R@10

MCB [11] 48.7 – –
GroundeR [35] 47.8 – –
Embedding Network [43] 51.0 70.4 75.5
Similarity Network [43] 51.0 70.3 75.0
SPC [33] 55.4 – –
IGOP [47] 53.9 – –
CITE [32] 59.2 – –

jWAE-MSE 52.5 75.0 81.5
jWAE-MSE+CITE 60.4 – –

Table 7. Phrase localization on the Flickr30k Entities dataset [34].

Dataset and input. The Flickr30k Entities dataset [34]
augments the captions of images in Flickr30k with 244k
mentions of distinct entities across sentences. The men-
tions are associated with 276k bounding boxes. Similar to
[32, 35, 43], we extract 4096-dimensional visual features
from Fast R-CNN [12], finetuned on the PASCAL VOC
2007–2012 datasets [8]. We use proposal regions with IoU
≥ 0.7 as a positive region for a phrase during training. For
encoding phrases, PCA is applied to HGLMM features to
reduce the dimensionality to 6000 [24].

Results. We compare our method with [11, 35, 43] where
multimodal embeddings are evaluated for phrase localiza-
tion. Following these methods, we use 200 or 500 Edge Box
proposals per image. An IoU of at least 0.5 is required for
a proposal region to match the ground truth bounding box
for a phrase. As shown in Table 7, our method outperforms
previous multimodal embedding networks for the phrase lo-
calization task by 1.5% for top-1 recall. The gap compared
to [43] widens to around 5% for the top-5 and top-10 re-
call. Moreover, using jWAE as the embedding framework
in CITE [32] similarly improves the top-1 recall by 1.2%
with new state of the art results for phrase localization. This
again highlights the improved accuracy of the embeddings
obtained from our semi-supervised jWAE approach. Please
see Appendix D for additional qualitative results.

6. Conclusion
We presented a novel joint Wasserstein autoencoder

framework for modeling continuous multimodal represen-
tations of images and texts with Gaussian regularization,
allowing to better capture the semantic structure in latent
representations. Our experiments show that our multimodal
embeddings push the current state of the art under full su-
pervision. A key advantage of our method is its generaliza-
tion capability across datasets, where it significantly outper-
forms recent methods. We thus believe our semi-supervised
approach provides an important step toward learning gen-
eralizable multimodal representations, which are a crucial
component, e.g., for image captioning [10] in the real world.
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Figure 4. Comparison of a standard supervised loss (MH) and the
proposed semi-supervised jWAE under limited supervison: (left)
Flickr30k; (right) COCO.

Appendix A. jWAE with Limited Supervision

To show the effectiveness of our jWAE in minimally su-
pervised settings, we perform additional experiments with
limited labeled data in the training set, specifically with
25% and 50% of the labeled data. If applicable, the rest
of the data is included in an unpaired fashion for semi-
/unsupervised learning. We observe that compared to stan-
dard supervised methods for learning joint embeddings of
images and text [9], our semi-supervised approach performs
better under different levels of supervision, highlighting the
benefit of the semantic continuity from the joint Gaussian
regularization. We observe that the accuracy gap widens as
we decrease the supervision level, e.g. from 7.4% to 10.2%
points as we decrease the supervision from 50% to 25% on
Flickr30k (c.f . Fig. 4).

Table 8 shows the effect of training with limited supervi-
sion using region-based features and attention. Our variant
of SCAN [26], i.e. SCAN+jWAE-MH, outperforms SCAN
by 3.4% and 1.3% on COCO and Flickr30k, respectively.
Since the basic SCAN is trained with 36 image regions per
image, which effectively increases the number of training
points, SCAN performs reasonably well even at 25% super-
vision. Adding our jWAE on top increases the robustness
to limited supervision further. Moreover, further decreasing
the supervision to 5%, the top-1 recall of SCAN drops to
42.0% while for SCAN+jWAE-MH the top-1 recall remains
high at 54.3% on the COCO dataset. This highlights the im-
proved generalization performance of our jWAE framework
at different supervision levels.

We also compare against other methods that rely on ad-
ditional unsupervised information, particularly the unsuper-
vised autoencoder reconstruction loss combined with su-
pervised MSE-based alignment, but without the Gaussian
regularization (MSE). The top-5 recall of our jWAE-MSE
method is higher compared to the semi-supervised MSE
baseline by 2.6% and 3.2% points on average for Flickr30k
at 50% and 25% supervision, respectively. Similarly for
the COCO dataset, the top-5 recall is 2.8% and 3.1% points

100 75 50 25

Percentage of Labeled Data

0.5

1.0

1.5

2.0

2.5

3.0

to
p-

5
R

ec
al

l(
jW

A
E

-M
S

E
)

-
to

p-
5

R
ec

al
l(

M
S

E
)

100 75 50 25

Percentage of Labeled Data

−1

0

1

2

3

to
p-

5
R

ec
al

l(
jW

A
E

-M
S

E
)

-
to

p-
5

R
ec

al
l(

M
S

E
)

Figure 5. Percentage gain in top-5 recall with the proposed jWAE-
MSE over the MSE baseline under limited supervision with 50%
and 25% of the labeled data: (left) Flickr30k; (right) COCO.

COCO Flickr30k

Method(ResNet+GRU) (label %) R@1 R@5 R@1 R@5

SCAN [26] (25%) 55.9 86.5 45.9 72.6
SCAN [26] (5%) 42.0 84.3 – –
SCAN+jWAE-MH (25%) 59.3 88.3 47.2 75.0
SCAN+jWAE-MH (5%) 54.3 87.0 – –

Table 8. Comparison of SCAN and SCAN-jWAE under limited
supervision.

higher compared to MSE at 50% and 25% supervision, re-
spectively, as shown in Fig. 5. The difference in recall at
a particular supervision level between our method and the
baseline increases with decreasing labeled data. This shows
that encouraging continuity in the latent spaces helps to bet-
ter align similar encoded representations and can be har-
nessed in learning cross-modal concepts even when super-
vised information is limited.

Appendix B. Network Architecture

Cross-modal retrieval

Image pipeline. The input representations obtained from
VGG-19 or ResNet-152 are fed into our joint Wasser-
stein autoencoder. The image encoder takes 4096 inputs
(2048 for ResNet-152), which are fully connected to a hid-
den layer of 2048 nodes. The encoder outputs into a d-
dimensional latent space. The decoder is symmetric to the
encoder. We apply ReLU nonlinearities after the hidden
layer in both encoder and decoder.

Text pipeline. We use a similar network with one hidden
layer for the text encoder. For 300-dimensional sentence
inputs, the hidden encoder layer is of dimensionality 1024,
and the latent layer has 256 dimensions. The same latent di-
mensionality is chosen for the image pipeline. The decoder
network is again symmetric to the encoder. We apply ReLU
nonlinearities after the hidden layer in the encoder and the
decoder. When using high-dimensional HGLMM features,



Text Ground truth image Retrieved image with
jWAE-MSE

A man using his lap-
top computer while a
cat sits on his lap.

A pizza and grapes
sit on a tray next to a
drink.

A bath room with a
toilet a sink and a
mirror.

A kitchen with a
stove, oven, and re-
frigerator.

A slice of choco-
late cake with dark
chocolate icing.

a no skate boarders
sign on the side of
the road.

Table 9. Given a caption, examples of images retrieved by our
method that did not match the ground truth. While they are clearly
incorrect, they bear a semantic relation to the ground truth.

we set the hidden layer size to 3000 and use a 512 (1024)-
dimensional latent space for jWAE-MSE (jWAE-MH).

For GRU, the dimension of word embeddings is 300.
Starting with one-hot coded vectors, the GRU encoder con-
sists of an embedding layer, a bidirectional GRU layer, and
a fully connected layer with dimensionality 1800. The GRU
decoder has a fully connected layer and a uni-directional
GRU layer. Word dropout regulates the dependence of the
prediction of a word in a sentence on the preceding ground
truth sequence. To obtain a latent encoding that is represen-
tative of the sentence, we set the word dropout rate to 0.2 in
the decoder.

Discriminator network. We use a three layer discriminator
network on the latent spaces of each pipeline. The sizes of
the layers are chosen as 256, 256, and 2, respectively. We
use leaky ReLU activations between all the layers.

Image Retrieved text with jWAE-MSE

• A couple of men that are walking around on some
grass.

• Two men are playing with a toy in a wooded area.
• A couple of men standing on top of a lush green

forest.
• A group of young men and women sitting at a

table.

• Painting of oranges, a bowl, candle, and a pitcher.
• Four boats with people carrying lots of bananas

and other foods.
• A couple of people in boats with food.
• Painting of a table with fruit on top of it.

• A man riding skis down a snow covered slope.
• A person on skis going down a snow covered hill.
• A person turning while skiing down a snowy hill.
• A lady snow skiing on flat ground

• Some purple bananas and other fruits are together.
• Some purple bananas sitting between apples and

some squash.
• A pile of black bananas and other fruit.
• Assorted fruit on display at a fruit market.

• A kitchen with cookies in the oven baking.
• A white oven with cookies being baked inside.
• an oven with a pan of cookies baking inside it.
• The cookies are inside an oven in the kitchen.

• Foreign stop sign, possibly in Sanskrit or Cambo-
dian script, with nice tree and water background,
off-white property wall typical of India or southeast
Asia.

• A stop sign in a foreign language by a body of water.
• A stop sign posted in a foreign language.
• A stop sign has a language that is not English.

Table 10. Examples of the top-4 captions retrieved for a given
image by the proposed jWAE-MSE. Captions that do not match
the ground truth are shown in bold.

Phrase localization

The encoder of the image pipeline passes the 4096-
dimensional inputs through two fully connected layers, with
2048 hidden nodes and a 512-dimensional latent space. For
the text pipeline, the 6000-dimensional input features are
also passed through two fully connected layers, again with
2048 hidden nodes and 512 latent dimensions. The de-
coders are symmetric to the encoders. We apply ReLU
nonlinearities after the hidden layer in the encoder and the
decoder. For the discriminator network, we set the size of
the three fully connected layers to 384, 256, and 2, respec-
tively. Leaky ReLU nonlinearities are applied to the outputs
of first and second layer. The last layer is a linear layer. In
Fig. 6, we show CITE [32] built upon our jWAE framework.
The inputs to the image pipeline are 4101 dimensional with
4096-dimensional VGG-19 features and 5 spatial location
features. Gaussian constraints are applied to the features
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Figure 6. Architecture of CITE [32] with our joint Wasserstein autoencoder.

from image and text pipeline before applying an element-
wise product.

Appendix C. Cross-Modal Retrieval Results
We provide some examples for the cases where our

method does not retrieve the correct image for text-to-image
retrieval (c.f . Table 9). We observe that the retrieved images
have similar concepts as the ground truth image. Without
requiring any supervised information on image-image simi-
larity, our jWAE is able to align similar concepts in images.
This also shows that apart from the ground truth captions
of the images, a caption can explain many images in the
dataset. In Table 10 we include results for image-to-text re-
trieval for jWAE-MSE showing that our method is able to
recover relevant captions for a given image.

Generalization across datasets. In Table 11 and Table 12,
we show additional examples for a model trained on COCO
and tested on the Flickr30k dataset. We observe that our
jWAE retrieves semantically more relevant images (texts)
for a given text (image) compared to the competing method.
This shows that for good generalization performance of the
embeddings, semantic continuity in the latent representa-
tions is desirable.

Appendix D. Phrase Localization Results
In Table 13, we include results of the bounding boxes

retrieved by the proposed jWAE for the given phrase and
image. Our method is able to retrieve bounding boxes hav-
ing high overlap with the ground truth bounding box.



Text Matched images with su-
pervised method [43]

Retrieved image with
jWAE-MSE

Two race cars are go-
ing down a racetrack
bend.

Two women playing
beach volleyball are
jumping in the air for
the ball.

Several cyclists
make their way
through a rutted
field, as a camera-
man films.

A hockey goalie
stands in front of the
net at the ready.

A woman in white is
holding a blue um-
brella and walking in
the rain.

Spray obscures the
face and torso of the
paddle wielding man
in the red kayak.

A line of people are
biking down a road.

Table 11. Examples of images retrieved for a given sentence on
Flickr30k based on embeddings trained on COCO.

Image Supervised approach
[43]

Ours (jWAE-MSE)

• People are at a cos-
tume party.

• A group of parents are
sitting at an outdoor
assembly.

• A group of friends
working on a quilt.

• A decorative plate
with a piece of cake
on it.

• A crowd of people in
colorful dresses.

• Many ethnic people
in multicolored robes
gather for an event.

• A string instrument
band and chorus
singers rehearsing.

• A crowd of women
wearing multiple dif-
ferent colors is enter-
ing a stone structure.

• A snowboarder soars
through the air.

• A stuffed bear with
goggled on wearing
snow skies.

• This is a skier getting
some nice jumps in.

• A young girl with her
bike.

• A snowboarder soars
through the air.

• A snowboarder is do-
ing a big jump and is
in the air.

• Somebody is skiing
down a mountain.

• skier in red pants ski-
ing down a slope.

• People at a supermar-
ket checkout.

• A person wearing a
hat made out of yel-
low bananas.

• Two men in orange
construction hats are
guiding a cart full of
brick stones.

• A man with two kids
looking at pictures on
a camera.

• A man is standing in
the aisle of a grocery
store and staring at the
cereal selection.

• A customer at the
checkout of a grocery
store.

• A busy store full of
people shopping at
the store.

• A man with a shop-
ping cart is studying
the shelves in a super-
market aisle.

• A soccer player is
kicking the ball.

• White and red striped
bus riding through a
city at night.

• A man in a blue apron
in a kitchen.

• A young boy carry-
ing a large soccer ball
with a soccer feild in
the background.

• A soccer player is
running while kicking
a ball.

• A man in blue plays
soccer.

• Two girls on separate
teams fighting for a
soccer ball.

• Two girls fight for
the soccer ball while
playing soccer on the
grass.

• A man jumping down
a hill in a forested
park.

• A man jumps off a
hill.

• A man sits on a field
near a backpack.

• A zoo keeper tend-
ing to an elephant’s
mouth.

• Mountain bike riders
on a dirt trail.

• Woman on bicycle
riding down dirt trail.

• Bicyclist riding on a
dirt race course.

• Two women riding
their bicycles along a
dirt road.

Table 12. Examples of the top-4 captions retrieved for a given
image on Flickr30k based on embeddings trained on COCO.



Images with bounding boxes Phrases (in red) in sentences

A blue, red, and yellow airplane is flying through the air.

A young man in a t-shirt is speaking at a podium while another young man stands
by.

A young man in a t-shirt is speaking at a podium while another young man stands
by.

A woman rides her bike by some trees.

A person holding a piece of equipment up to her eyes is standing in a large
meadow near a blue vehicle.

A crowd watches as a woman draws caricatures.

Table 13. Examples of the bounding boxes retrieved for a phrase in an image by the proposed jWAE. (green) Ground truth bounding box;
(red) Retrieved bounding box.


