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Abstract

Pose estimation of 3D objects in monocular images is a
fundamental and long-standing problem in computer vi-
sion. Existing deep learning approaches for 6D pose es-
timation typically rely on the availability of 3D object mod-
els and 6D pose annotations. However, precise annota-
tion of 6D poses in real data is intricate, time-consuming
and not scalable, while synthetic data scales well but lacks
realism. To avoid these problems, we present a weakly-
supervised reconstruction-based pipeline, named NeRF-
Pose, which needs only 2D bounding boxes and rela-
tive camera poses during training. Following the first-
reconstruct-then-regress idea, we first reconstruct the ob-
jects from multiple views in the form of an implicit neu-
ral representation. Then, we train a pose regression net-
work to predict pixel-wise 2D-3D correspondences between
images and the reconstructed model. A NeRF-enabled
PnP+RANSAC algorithm is used to estimate stable and ac-
curate pose from the predicted correspondences. Experi-
ments on LineMod and LineMod-Occlusion show that the
proposed method has state-of-the-art accuracy in compar-
ison to the best 6D pose estimation methods in spite of be-
ing trained only with weak labels. We extend the Home-
brewed DB dataset with real training images to support the
weakly supervised task and achieve compelling results. The
extended dataset and code will be released soon.

1. Introduction
Several computer vision tasks, such as 2D object detec-

tion and semantic segmentation, have experienced tremen-
dous progress in recent years thanks to the development of
deep learning. However, 2D object detection [13, 15, 31,
37, 45, 47] alone is limited and insufficient for real-world
applications such as Augmented Reality, Robotic Manipu-
lation, Autonomous driving, etc., which often require the

*The first two authors contributed equally to this work

Figure 1. The inference of NeRF-Pose. 1) The pose regression
network predicts a binary segmentation mask and 2D-3D corre-
spondences represented as NOCS maps. The g.t. NOCS maps are
generated from the OBJ-NeRF network, which encodes implicit
3D object representation recovered from the multi-view weak la-
bels, i.e., 2D object segmentation masks and relative camera poses.
2) The proposed NeRF-enabled PnP+RANSAC is performed on
the regressed results to predict the object pose.

knowledge of the full 6 degrees of freedom (DoF) pose of
the object in the scene. Therefore, the ability to recover the
pose of the objects in 3D environments is essential for a
better understanding of the 3D scene.

This fundamental 3D vision problem has been addressed
by scholars for decades and is particularly difficult if the
estimation is done only from a single RGB image. Re-
cent research tackles the ill-posed nature of this problem
in a data-driven way where the pose is usually computed
with respect to a 3D CAD model. Most of the recent ap-
proaches [27, 34, 35, 43, 44, 54, 56, 66, 70, 30, 60, 7]
require 6D pose labels as supervision signals. Moreover,
most of the recent methods posed the pose estimation as
a problem of correspondence estimation between a known
3D object model, such as a CAD model, and image pix-
els. However, it is hard and expensive to obtain accurate
pose labels and fine-grained CAD models for all objects for
real-world scenarios [26]. On the other hand, synthetically
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generated images have the advantage of a potentially un-
limited amount of labeled data. However, methods trained
only on synthetic data [27, 55, 70, 4, 25] have worse perfor-
mance than their real counterparts due to the lack of real-
ism. Moreover, precise textured CAD models are required
to render synthetic data. We argue that it is much easier
to obtain 2D image labels, such as segmentation masks,
and relative camera poses. As widely used in the recent
methods [27, 34, 35, 43, 44, 54, 56, 66, 70, 30, 60, 7],
segmentation mask can be obtained either manually or au-
tomatically with the off-the-shelf object segmentation ap-
proaches [28, 15, 6], few-shot segmentation[63, 40], depth
driven segmentation or background substaction[12], while
relative camera poses can be obtained with Structure from
Motion (SfM) [49], Simultaneous Localization And Map-
ping (SLAM) [1], Inertial Visual Odometry [33], or simply
a marker board [26]. Different from fully-supervised meth-
ods trained on all labels, e.g. CAD models, segmentation
masks and 6D pose labels, the methods, that don’t use tex-
tured CAD models and 6D pose annotations, use weaker
labels and, so, can be considered as weakly-supervised.

Our approach is to first recover implicit 3D object rep-
resentation from training images containing weak labels:
2D segmentation masks and relative camera poses. Next,
we use this implicit representation to supervise the regres-
sion of dense correspondences between training images and
previously recovered object’s implicit 3D object representa-
tion. Therefore, we propose a first-reconstruct-then-regress
training pipeline, named NeRF-Pose, which builds atop of
the success of Neural Radiance Fields (NeRF) [39] and its
successors [36, 69, 46, 67]. We first reconstruct the object
as a NeRF-based network trained with weak labels. Then,
we train a pose regression network to regress the dense im-
age pixel (2D)-object model (3D) correspondences.

As depicted in Fig. 1, during inference, we first detect
the objects in a 2D image using an off-the-shelf 2D ob-
ject detection network and then predict segmentation masks
and dense correspondences represented in terms of Nor-
malized Object Coordinates (NOCS) [61]. With regressed
correspondences and the NeRF object model, we propose a
NeRF-enabled PnP+RANSAC method in order to compute
the object pose in the end. Our key contributions can be
summarized as follows:

• A weakly-supervised object pose estimation approach,
which is trained only with 2D annotations and relative
camera poses, instead of relying on an explicit CAD
model and accurate 6D pose labels.

• OBJ-NeRF neural network encoding an implicit 3D
object representation obtained from weak labels: seg-
mentation masks and relative camera poses.

• Pose regression network, which relies on the above ob-
ject’s implicit NeRF-based representation.

• NeRF-enabled PnP+RANSAC approach enabling
highly accurate 6D pose computation.

• An extension of the HomebrewedDB dataset contain-
ing real video sequences with weak labels (segmenta-
tion masks and relative camera poses).

We conduct experiments on LineMod (LM) [17] and
LineMod Occlusion (LMO)[3] datasets, and extend the
HomebrewedDB (HBD)[26] dataset. Though training in
weakly supervised settings, we have about 15% (LM) and
20% (LMO) improvement on ADD(-S) metric compared to
the methods trained without CAD models but with accu-
rate pose labels. We also achieve comparable results on
LM, LMO, and HBD datasets in comparison to fully su-
pervised methods. The experiments show that our weakly-
supervised NeRF-Pose approach achieves accurate and ro-
bust object pose estimation.

2. Related Work
The first type of pose estimation methods that gained

popularity in recent years are dense correspondence-based
methods [70, 18, 62, 35, 42, 52, 51]. While being different
in implementation, their common denominator is the key
idea to train a neural network to predict 2D-3D correspon-
dences between each object pixel in the image and the 3D
location of the corresponding point on the object’s surface.
Those correspondences are consecutively used either with
PnP+RANSAC [32, 11] or the Umeyama algorithm [57] to
compute the 6D object pose. DPOD [70, 52] is proposed
to use discrete UV maps to uniquely parameterize the ob-
ject surface. With this parameterization, the UNet-like net-
work [48] predicts two discrete UV coordinates for each
visible pixel occupied by the object. Pix2Pose [42] and
CDPN [35] leverage two-stage detectors and use 3D nor-
malized vertex coordinates to parameterize the correspon-
dences. Correspondences in CDPN are only used to esti-
mate rotation, while translation there is predicted directly.
NOCS [62] uses Mask-RCNN [15] and a normalized ob-
ject coordinate space to predict correspondences. However,
NOCS mainly focuses on estimating the scale and 6D pose
for unseen objects. EPOS [18] extends the idea of dense
correspondences by parameterizing each 2D-3D correspon-
dence with its location within a discrete object fragment.
Multi-fragment perspectives and many-to-many 2D-3D cor-
respondences enable it to handle symmetric objects more
effectively.

Furthermore, CosyPose [30] and Self6D [59] use a sim-
ilar pose parameterization which allows for direct pose pre-
diction. They predict the pose by estimating the 2D cen-
ter location of the object and its distance to camera center.
Combined with the intrinsic parameters of the camera, it
gives the estimate of the translation component of the 6D
pose. Allocentric rotation parameterization is used for sim-
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Figure 2. NeRF-Pose Pipeline. Stage 1: Multi-view Neural Object Reconstruction. During training, we first reconstruct the neural object
model from multiple views. The rays generated from different viewpoints are sampled to produce 3D points along the rays (top left). The
sampled points and directions (x, d) are then transformed into an object-centric coordinate system according to the estimated object pose
P̂0 and relative camera pose P∆. The transformed 3D points and directions (x′, d′) are passed through the learnable NeRF model. We can
get the image RGB values and the mask with the NeRF rendering process. The image rendering loss and segmentation mask loss are used
to guide the learning of the neural object model. Stage 2: Single View Object Pose Estimation. In stage two, we directly regress the object
coordinate map and the segmentation mask supervised by the rendering results from the neural object model. At inference, we first detect
and crop the objects from 2D images (lower left). The coordinates and segmentation mask are predicted from the pose regression network.
In the end, the NeRF-enabled PnP+RANSAC is performed to recover the precise object pose in the canonical object space defined at the
reconstruction stage.

pler rotation prediction. Self6D is first trained on synthetic
data and then fine-tuned on real data without pose anno-
tations in a self-supervised manner. AAE [54], leverages
manifold learning to retrieve a descriptor of a given object
patch from a pre-computed database consisting of descrip-
tors of the same object under various rotation. The trans-
lation is estimated based on the object scale in the image.
MHP [38] predicts multiple pose hypothesis to estimate the
pose of symmetric or occluded objects. GDR-Net[60] and
SO-Pose[7] use the combination of dense correspondences
and direct pose estimation by first predicting the dense cor-
respondences and then performing the learning-based pose
prediction, which they name patch-pnp. And, SO-Pose in-
troduces self-occlusion information to make the correspon-
dences more stable.

Methods above are all fully supervised with the accu-
rate pose labels and object CAD models available. The
following two methods relax the constraints and could be
trained without object CAD models. LieNet [8] directly re-
gresses the pose with the Mask-RCNN [15] as backbone
network. With known object pose labels and camera in-
trinsics, Cai et al. [5] supervise the coordinate prediction
network with the multi-view consistency, minimizing re-
projection error across different views. Limited by the ac-
curacy of the coordinate prediction network, the reprojec-

tion error is insufficient to guide reliable correspondence
learning. LatentFusion[41] trains the implicit neural object
representation, which, at reference, takes the multi-view
RGBD images of well-calibrated unseen objects as input
and reconstructs the object model. Then, the render-refine
network is used to estimate the object pose from RGBD in-
put iteratively. Bundle-SDF [65] performs 6D tracking and
reconstructs an object without assuming a CAD model from
a video. WeLSA [58] generates pose labels for weakly la-
beled data by training on very few labeled data using shape
alignment and feature alignment. Although WeLSA works
with very few labeled data, they employ depth maps for
training the pipeline and estimating pose labels for weakly
labeled data.

Concerning weakly supervised methods, there are few
works related to ours. On the basis of NeRF[39], i-
NeRF [68] presents a differentiable camera pose refinement
method, which treats the camera pose as network parame-
ters and iteratively updates the pose by minimizing the dis-
crepancy between the input images and the rendered outputs
in particular views. However, because of the high com-
putational burden, it takes about half a minute to process
one image and is very sensitive to the pose initialization.
BARF [36] and NeRF–[64] introduce the methods to esti-
mate camera poses and train NeRF concurrently. It inspires
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us to optimize the object pose, while simultaneously recon-
structing the object with known relative poses.

Different to the model-free approach [5], which opti-
mizes the network via minimizing the re-projection error,
we instead aim at densely generating accurate 2D-3D cor-
respondences between input images and an implicit NeRF
object representation obtained from weak labels, yielding
better performance.

3. Methods
In this section, we present NeRF-Pose for 6D pose estima-
tion, which only requires weak supervision. We assume that
real images with 2D ground truth segmentation masks and
relative camera poses are available during training. We first
present OBJ-NeRF, an implicit 3D model representation,
learned under above-defined constraints. This representa-
tion is then used to generate object correspondence maps,
which is afterwards used to train our proposed pose regres-
sion network. Finally, the regressed correspondences are
used in a novel NeRF-enabled PnP+RANSAC algorithm for
iterative pose estimation.

3.1. OBJ-NeRF

NeRF [39] and its followups recover the 3D scene from
multiple views with known camera poses. Since we deal
with the problem of 6D object pose estimation, our aim is
to compute object-centric NeRF and use it as an implicit 3D
model representation for object pose estimation. Thus, we
propose to modify the original NeRF approach. We take
as input the images, segmentation masks and relative cam-
era poses, and output implicit object-specific NeRF repre-
sentation, named OBJ-NeRF. As OBJ-NeRF reconstruction
relies only on relative camera poses, it will produce a 3D
model in some uncertain coordinate systems. In order to
make use of OBJ-NeRF for the purpose of 6D pose esti-
mation based on dense 2D-3D correspondences it is neces-
sary to recover it with respect to some reference coordinate
systems. To achieve this, simultaneously with the NeRF
reconstruction, we propose to regress poses of the NeRF
reconstructed object with respect to some chosen reference
frames. These estimated poses will be used later for the
generation of correspondence maps needed for training the
correspondence estimation network.

NeRF encodes a 3D scene as a continuous 3D represen-
tation using an MLP function Nψ : R3×R3 → R3×R with
(x;d) 7→ (c;σ), which predicts the RGB color c ∈ R3 and
volume density σ ∈ R for each input 3D point x ∈ R3

and its view direction d ∈ R3. It can be summarized as
Nψ(x,d) = (c, σ), where ψ is the set of network parame-
ters.

Based on the NeRF scene representation, OBJ-NeRF re-
constructs the object from multiple images, and optimizes
the reference object pose at the same time. It takes images

I , object masks M, camera intrinsics K, relative poses P∆

as training input and outputs the rendered object view Î , its
mask M̂, correspondence map Ô as well as the reference
object pose P0 in respect to the reference image I0. As
shown in stage 1 in Fig. 2, the steps of the full procedure,
from input images to rendering the outputs, can be named
as Sample points, Transform points, Calculate, and Render.

Sample points. Given 2D pixel coordinates u ∈ R2

in an input image I , we can express a 3D point x along
the viewing ray at depth z as x = K−1(u, z,K), where
z ∈ [znear, zfar] is the depth sampling interval and K−1

is the inverse projection function from image plane to 3D
space. Different from the scene reconstruction, to recon-
struct the object centric model, we limit the ray sampling
interval to be close to the estimated object center t̂3d, de-
noted as (znear, zfar) = (| ˆt3d| − s, | ˆt3d| + s), where | ˆt3d|
is the distance from estimated object center to the camera
center, and s ∈ R is larger than the object scale. Uniform
sampling or weight guided re-sampling can be applied here
to generate N points along each ray.

Transform points. Different from scene-centric
BARF [36] and iNeRF [68], which optimize absolute cam-
era poses in some arbitrary coordinate systems, we perform
object-centric reconstruction, which instead estimates the
object poses in the camera coordinate system. Therefore,
the sampled points (x,d) from camera coordinate system
are transformed to the object coordinate system (x′,d′) ac-
cording to the object pose P̂i with respect to the image
Ii. However, poses of image objects are unavailable and
thus need to be estimated. Notably, owing to our weakly-
supervised settings, where relative camera poses from I0
to Ii, denoted by P∆i0, are accessible, only P0 needs to
be optimized. Thus, arbitrary poses can then be computed
by Pi = P∆i0P0. We further define the transformation
functions: Wx

P0
(x,P∆i0) → x′ and Wd

P0
(d,P∆i0) → d′,

which transform the coordinate x and view direction d into
unified object-centric coordinates, with the parameters P0

to be optimized.
Calculate. Until now, we have obtained the transformed

ray points and their directions (x′,d′). Then, we feed
(x′,d′) into the original NeRF network Nψ to get color and
volume density prediction (c, σ). In summary, our OBJ-
NeRF network Nψ can be formulated as:

Nψ(x
′
,d

′
) = Nψ,P0(W

x(x,Pi),Wd(x,Pi)) = (c, σ), (1)

where ψ and P0 are the network parameters.
Render. Akin to NeRF, we use volume rendering ap-

proach to map a set of calculated data (c, σ) to the image
plane along the rays. The volume rendering function sums
up the product of transmittance Ti and alpha value αi of N
sampled points along the ray, which is differentiable. Fol-
lowing [39, 67], the rendered color Ĉ, mask M̂ and coordi-

4



nates Ô can be formulated as:

Ĉ(u) =

N∑
i=1

Tiαici, M̂(u) =

N∑
i=1

Tiαi, Ô(u) =

N∑
i=1

Tiαixi,

(2)
with Ti = exp(−

∑
1≤j≤i−1 σjδj), and αi = 1 −

exp(−σiδi), where δj is the sampling distance between
sampled adjacent points.

Constrain object pose. With only 2D bounding box and
segmentation, where object center information is unavail-
able, the object canonical pose center has no constraint. Ac-
cordingly, we constrain the object center by projecting the
object center ˆt3d to each view. More specifically, we min-
imize the reprojection error between the projected object
center and 2D bounding box center t2d on the image plane
by minimizing e = ||K(Wx

P0
( ˆt3d0 ,P∆),K)− t2d||22.

Loss function. We leverage the 2D segmentation mask
and the segmented image as the supervision signals for the
rendered pixel mask and color value. Denoting the segmen-
tation mask at pixel u as M(u) ∈ {0, 1}, and the color
value as C(u) ∈ R3, our loss function for the reconstruc-
tion stage can be defined as:

Lrec =
∑
i

(
∑
u

M(u)||C(u)− Ĉ(u)||22

+
∑
u

||M(u)− M̂(u)||22

+ ||K(Wx
P0

( ˆt3d0 ,P∆i0),K)− t2di ||22),

(3)

where i iterates the training image views, and u iterates the
image pixels.

In the end, the newly defined object canonical pose is
determined by optimizing the object pose in multi-view set-
tings. With the learned canonical pose and neural model,
the NOCS map ground truth can be rendered for the next
pose estimation stage.

3.2. Pose Estimation

The overall three-step pipeline is shown in Stage 2 in
Fig. 2. The first two steps depend on separately trained
convolutional neural networks. The third step is purely
optimization-based and does not require training. The first
step represents the off-the-shelf 2D detector trained on
ground truth crops of the objects of interest. In practice,
we use YOLOv3 [10]. In the second step, a pose regression
network is trained on images I to predict object coordinates
O and segmentation mask M. The third step is our NeRF-
enabled PnP+RANSAC algorithm, to improve the perfor-
mance of pose calculation by introducing the NeRF-Mask
renderer.

Coordinates regression. Our pose regression network is
inspired by DPoD [70] and CDPN [35], the state-of-the-art
dense correspondence-based methods for indirect pose esti-
mation. We use ResNet[16] as encoder backbone, and the

Figure 3. Illustration of a single iteration of the NeRF-enabled
RANSAC. Similar to a standard PnP+RANSAC procedure (upper
top), the pose hypothesis is first calculated by the PnP algorithm
from sampled 2D-3D correspondences. Scored by Inlier Ratio, the
pose hypothesis with most inliers is selected as the estimated re-
sults. Different to standard PnP+RANSAC, we further assemble
Recall and Precision into our criteria of pose selection (bottom).
Detailly, we first render the object mask in this pose hypothesis us-
ing our well-trained octree-NeRF. Then, we calculate Precision by
the Intersection (red)-over-Union (blue+red+green) between the
rendered mask and the mask from our pose regression network.
Recall is defined as the ratio of the intersection (red) over the area
of regressed mask (red+green). In the end, the selection score are
calculated as the weighted sum of Inlier Ratio, Precision, and Re-
call.

decoder contains four upsampling layers. Our pose regres-
sion network outputs the predicted segmentation M̂ and the
object coordinates Ô, which encodes correspondences be-
tween input image pixels and the OBJ-NeRF 3D model rep-
resentation.

The loss function is defined similarly to other depth re-
gression works [2, 23]. Our loss function is composed of the
segmentation loss and the normalized coordinate regression
loss:

L = w1LM + w2LNOCS . (4)

The LM loss is defined by the mean squared error (MSE)
between predicted mask M̂ and ground truth mask M.
LNOCS is defined between the predicted object NOCS map
Ô and their ground truth O rendered from the implicit neu-
ral network OBJ-NeRF as given below:

LNOCS = λ1Lmse + λ2Lgrad + λ3Lnormal, (5)

The first term Lmse is the element-wise loss that mea-
sures the average distance between these two coordinates
written as:

Ld = ∥M⊙ (O− Ô)∥22. (6)

Lgrad and Lnormal are used to penalize the coordinate
errors in first and second order. Similar to the loss of [23],
they are defined as:

Lgrad = ∥M⊙ (∇xÔ−∇xO)∥22 + ∥M⊙ (∇yÔ−∇yO)∥22, (7)

Lnormal = ∥M⊙ (1− cos(n(Ô), n(O))∥22, (8)

where ∇x and ∇y are the gradients for the coordinates
along x and y axis, n(o) = [∇x(o),∇y(o),−1] defines the
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Figure 4. Qualitative results on LM and HBD. Column (a) shows the CAD models used as reference ground truth shapes. Column (b)
and (f) illustrate the predicted object poses (blue) and ground truth poses (green). Column (c) and (g) are the rendered images from our
well-trained OBJ-NeRF model, Column (d) and (h) are the produced NOCS map from our OBJ-NeRF, which are also g.t. of regression
network. Column (e) and (i) are the predicted NOCS from our regression network. Black dash circles show the NOCS prediction of
occlusion regions.

surface normal vector and cos(n1, n2) measures the cosine
similarity of the two vectors.

NeRF-enabled PnP+RANSAC. With the predicted
dense 2D-3D correspondences, PnP+RANSAC-based
method [70, 35, 18] are typically used for estimating object
pose P̂. As shown in Fig. 3, the PnP+RANSAC [11]
algorithm iteratively selects a minimum number of corre-
spondences for pose estimation and calculates object pose
using PnP method. The pose hypothesis supporting the
most inliers is selected as the calculated pose results.

The criteria of pose selection in PnP+RANSAC is in-
lier ratio SIR, which highly depends on the correspon-
dence quality. To make PnP+RANSAC more stable, we
add two extra pose selection criteria which are independent
to the correspondences. As shown in Fig. 3, with the cal-
culated pose hypothesis and our implicit object represen-
tation, we can render the object mask M̂nerf on the im-
age plane without occlusion. With the mask M̂pose pre-
dicted from our pose regression network, we add the Over-
lap Recall SRecall and Overlap Precision SPrec to the score
which is defined as: SRecall = |M̂nerf

⋂
M̂pose|/|M̂pose|

and SPrec = |M̂nerf

⋂
M̂pose|/|M̂pose

⋃
M̂nerf |. The fi-

nal score is defined as S = v1SIR + v2SPrec + v3SRecall.

Following Plenoctree [69], we convert the well-trained
OBJ-NeRF model to an octree-based data structure, namely
octree-NeRF, which stores the average value of c, σ sam-
pled in the leaf voxel of octree. The NeRF calculation is
simplified by the octree indexing, which significantly ac-
celerates the mask rendering.

4. Experiments
4.1. Datasets

In this section, we conduct extensive experiments to demon-
strate that our proposed weakly-supervised pose estimation
method, NeRF-Pose, produces highly-accurate 6D object
pose estimation.

Datasets. We conduct our experiments on three
publicly available datasets: Linemod (LM)[17],
Linemod-Occlusion (LMO)[3], T-Less[19] and Home-
brewedDB (HBD)[26]. The LM dataset is a standard
benchmark for 6D object pose estimation of textureless
objects. It offers 13 objects of various sizes in the scenes
with large background clutter but with almost no occlusion.
The LMO dataset consists of 8 objects from LM dataset but
provides more challenging test data with more occlusion.
According to our problem settings, we train our model on
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Table 1. LM results in on ADD-10 metric. *denotes that the objects is symmetric and is evaluated in ADD-S. Our-pose denotes our results
trained on 6D pose labels, and Our-weak denotes training on camera relative pose labels.

Object DPOD PVNet CDPN GDR SO-Pose LieNet Cai. Ours-sam Ours-pose Our-pose Our-weak
[70] [43] [35] [60] [7] [8] [5] w/o NeRF w/o NeRF w/ NeRF w/ NeRF

CAD w/ CAD w/o CAD
Ape 53.3 43.6 64.4 - - 38.8 52.9 50.1 69.4 89.1 93.1

Bvise 95.2 99.9 97.8 - - 71.2 96.5 99.4 99.4 99.3 99.6
Cam 90.0 86.9 91.7 - - 52.5 87.8 97.7 98.3 98.7 98.9
Can 94.1 95.5 95.9 - - 86.1 86.8 98.7 97.8 99.1 99.7
Cat 60.4 79.3 83.8 - - 66.2 67.3 77.2 77.8 97.1 98.1

Drill 97.4 96.4 96.2 - - 82.3 88.7 99.1 99.6 97.4 98.7
Duck 66.0 52.6 66.8 - - 32.5 54.7 57.4 69.7 90.3 94.2

Eggbox* 99.6 99.2 99.7 - - 79.4 94.7 89.1 99.9 99.6 99.9
Glue* 93.8 95.7 99.6 - - 63.7 91.9 100 98.9 98.1 99.3
Holep 64.9 81.9 85.8 - - 56.4 75.4 90.3 89.4 94.3 96.5
Iron. 99.8 98.9 97.9 - - 65.1 94.5 100 99.8 98.1 97.8

Lamp 1 88.1 99.3 97.9 - - 89.4 96.6 98.7 99.8 97.9 98.7
Phone 71.4 92.4 90.8 - - 65.0 89.2 90.2 94.8 96.4 97.3
Mean 82.6 86.3 89.9 93.7 96.0 65.2 82.9 88.3(↑ 5.4) 91.8(↑ 8.9) 96.6(↑ 13.7) 97.8(↑ 14.9)

the real data in LM and strictly follow the training/testing
split proposed in [3]. On the LMO dataset, to make a fair
comparison to Cai et al. [5], we train our method with the
real training data of LM. Since the HBD dataset has no
real training data, we provide an Real data EXTtension
of the HBD dataset, named HBD-REXT. It consists of
real images of each HBD object presented in BOP [22]
challenge. These images are captured by the Azure Kinect
camera with only relative poses and segmentation mask
provided. We will make the HBD-REXT dataset publicly
available soon.

Evaluation Metrics. On the LM and LMO datasets, we
report the standard ADD(-S) metrics [17] with the 10% di-
ameter threshold, as it is the most prevalent pose quality
metric for these two datasets. The n◦, n cm metric [50]
measures whether the rotation error is less than n◦ and
the translation error is below n cm. Besides, we also
use n◦ and n cm [50], which measure whether the rota-
tion error is less than n◦ and the translation error is be-
low n cm, respectively. Moreover, following the setup of
the BOP challenge, which aims at unifying the evaluation
of 6D pose estimation methods, we report the following
metrics for the HBD dataset: Visible Surface Discrepancy
(VSD) [22, 20], Maximum Symmetry-Aware Surface Dis-
tance (MSSD) [9], Maximum Symmetry-Aware Projection
Distance (MSPD) and Average Recall, which is computed
as: AR = (ARV SD +ARMSSD +ARMSPD)/3.

Since we predict the poses in a canonical orientation, it is
necessary to transform them to absolute poses. This is done
by transforming them with the offset poses (obtained from
the g.t. poses), which represent the transformation from ab-
solute poses to the canonical poses. Note that this transfor-
mation is only leveraged for evaluation.

4.2. Comparisons to the State-of-the-art

LM. We train our method on real images, strictly fol-
lowing the training/testing split from [3]. In order to make
a fair comparison to Cai at al. [5], apart from training using
relative poses(Our-weak), we also train our method using
pose labels(Our-pose). In Tab. 1, our method outperforms
the method of Cai at al. [5] by a large margin (≈ 14pp)
on a ADD(-S) metric. Moreover, our method with weakly-
supervised settings performs on-par with the SoTA fully-
supervised methods. We also perform an ablation, (Ours-
sam) by using SegmentAnything[28] to generate segmenta-
tion masks using ground truth bounding boxes as input in-
stead of using ground truth segmentation masks. The mild
accuracy drop(3.5%) indicates that our approach can be ap-
plied in the real world much more easily compared to other
approaches using relative poses from the sensor or SFM and
segmentation masks obtained using SAM.

LMO. We compare our method with SoTA methods in
terms of ADD(-S) on LMO. Compared to Cai et al. [5]
trained with pose labels but without CAD models on real
images, our method on the same settings achieves 49.2%
on mean ADD score, surpassing it with a large margin of
20pp. In our setting, the CAD models are not accessible,
so we do not train our method in self-generated synthetic
images or pbr images pulished in [22, 21]. It is proved
that training with more synthetic images can improve the
model performance and pbr images can improve more. So,
it is reasonable to claim that we stays comparable with the
SoTA fully-supervised methods (GDR-Net [60]: 53.0% and
SO-Pose [7]: 54.3%) trained on real and author-generated
synthetic images.

In Tab.1 and Tab.2, Our-weak(uses OBJ-NeRF with
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Table 2. Comparisons with state-of-the-art methods on LMO. We report the Average Recall(%) of ADD(-S) without refinement. real
denotes the same real data as LM. syn denotes self-generated synthetic data, and pbr denotes blender rendered synthetic data from BOP[21].
* denotes the symmetric objects. Our-pose denotes our results with accurate pose labels and Our-weak is with relative pose labels. w/o
NeRF denotes our results using original PnP+RANSAC and w/ NeRF is our method with our NeRF-enabled PnP+RANSAC.

PoseCNN PVNet Single-Stage HybridPose GDR SO-Net GDR SO-Net Cai. Our-pose Our-pose Our-weak Our-weak
[66] [43] [24] [53] [60] [7] [60] [7] [5] w/o NeRF w/ NeRF w/o NeRF w/ NeRF

CAD w/ CAD w/ CAD w/o CAD w/o CAD
training real+syn real+pbr real real

Ape 9.6 15.8 19.2 20.9 39.3 46.3 46.8 48.4 7.10 46.8 46.9 48.3 49.7
Can 45.2 63.3 65.1 75.3 79.2 81.1 90.8 85.8 40.6 79.1 86.2 81.4 86.4
Cat 0.9 16.7 18.9 24.9 23.5 18.7 40.5 32.7 15.6 20.7 27.1 28.8 26.9

Driller 41.4 65.7 69.0 70.2 71.3 71.3 82.6 77.4 43.9 58.9 65.8 60.4 66.2
Duck 19.6 25.2 25.3 27.9 44.4 43.9 46.9 48.9 12.9 25.3 29.9 32.8 36.9

Eggbox 22.0 50.2 52.0 52.4 58.2 46.6 54.2 52.4 46.4 19.6 24.9 22.8 24.4
Glue 38.5 49.6 51.4 53.8 49.3 63.3 75.8 78.3 51.7 61.0 66.3 69.8 70.9

Holep. 22.1 36.1 45.6 54.2 58.7 62.9 60.1 75.3 24.5 41.0 46.4 41.8 49.8
Mean 24.9 40.8 43.3 47.5 53.0 54.3 62.2 62.3 30.3 44.1 49.2 48.2 51.4(↑ 21.1)

relative poses) performs better than Our-pose (uses OBJ-
NeRF with absolute poses). This is caused by noisy labels
in LM, which harm more Our-pose than Our-weak. This is
because in Our-weak we optimizes all pose labels by min-
imizing the reprojection and rendering errors constrained
with relative poses. In Our-pose with absolute poses we
cannot refine them, since we cannot guarantee to obtain the
correct object’s scale.

HBD-REXT. To support weakly-supervised training on
real images, we extend the HomebrewedDB training set
by capturing more real sequences for all objects used in
BOP [22] challenge. We provide about 300 real images for
each object with segmentation masks and relative camera
poses generated from the markerboard. We train our model
on this newly captured data. Since no other method was
trained only with relative poses and 2D segmentation, we
cannot run other methods using this new weakly-supervised
data. In Tab. 3 we report the AR of VSD, MSSD, MSPD
metrics on the BOP challenge test set. It illustrates that we
stay on-par with the methods trained on synthetic images
[70, 24, 35] and fall behind the methods trained on pbr im-
ages [18, 30, 35]. Notably, neither CAD models nor ground
truth poses are used in the our-weak case, whose results are
shown in the last column of Tab. 3.

Table 3. Comparisons with state-of-the-art methods on HBD.

DPoD Single CDPN Pixel2Pose EPOS CosyPose CDPN Our-weak
[70] [24] [35] [42] [18] [30] [35] w/ NeRF

training syn syn syn pbr pbr pbr pbr real-ext
VSD 21.8 24.1 39.1 35.2 48.4 61.3 61.4 44.0

MSSD 26.2 25.0 45.1 39.4 52.7 63.4 70.8 48.6
MSPD 37.9 38.8 56.9 59.4 72.9 72.1 84.5 62.8

AR 28.6 29.3 47.0 44.6 58.0 65.6 72.2 51.8
Time(s) 0.18 0.19 0.31 0.98 0.66 0.42 0.27 0.25

T-Less. We evaluate our pipeline on T-Less dataset. The
T-Less dataset comprises 30 objects with real training im-
ages. We train our model using relative camera poses and
real training images. In Tab. 4 we report the AR of VSD,
MSSD, MSPD metrics on the BOP challenge test set. We
achieve closer to benchmark accuracy despite not using a
CAD model. It shows that Nerf can learn accurate geome-
try and render correspondences which are usually extracted
from the CAD model. SurfEmb performs better than our
approach as their approach is tailored for symmetric objects
and also employs an inference pipeline with 2.2s. However,
the results compared to other regression-based, Dpod and
DpodV2, show that our approach can perform equally bet-
ter employing NeRF.

Table 4. Comparisons with state-of-the-art methods on T-Less. We
report the VSD, MSPD, MSSD, AR metrics as described in the
BOP challenge without refinement. CAD refers to the approaches
assuming that the CAD model is available for training

Approach Dv2 SurfEmb EP CP Dv2 CDPN Ours

[52] [14] [18] [30] [52] [35]

CAD Y Y Y Y N N N

VSD 0.57 0.5 0.57 0.46 0.49 0.45
MSSD 0.62 0.53 0.59 0.49 0.67 0.49
MSPD 0.76 0.83 0.63 0.76 0.59 0.41 0.66

AR 0.65 0.62 0.47 0.64 0.51 0.37 0.54

4.3. Ablations

Shape Analysis. The visual results of the objects repre-
sented in OBJ-NeRF can be found in Fig. 4(c, g). Compared
to their reference CAD models (Fig 4(a)), our OBJ-NeRF
keeps both the detailed shapes and the texture information.
Accurate shapes obtained in our model promises the accu-
racy of our consecutive pose estimation. We also observe
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some minor defects on our predicted shapes, e.g. details of
cat eyes and cow legs, which is mainly caused by the impre-
cise relative pose annotations and imperfect segmentation
masks.

View Numbers. To figure out how the number of views
used in NeRF reconstruction affects the pose estimation,
we train OBJ-NeRF with 4 different numbers of views—
32(B1), 64(B2), 128(B3) and 156(Baseline). From the re-
sults in Tab. 5, training using 156 views is slightly better
than the others. It actually shows small difference (around
0.5%) on ADD metric and almost no influence of the num-
ber of views to the results. Thus, we use 156 views for
training OBJ-NeRF. Moreover, the results also illustrate the
number of views does not bring significant influence on the
performance, i.e., the OBJ-NeRF can recover the highly
precise object model, though trained with fewer views. It
is an interesting conclusion that can inspire us to use few-
shot labels for reconstruction and pose estimation.

Regression Loss. We study the contribution of our pose
regression loss. As shown in Tab. 5 C1-C3, the loss with
gradient and normal loss has the best performance, which
indicates the efficiency of our utilized loss functions.

Training with occlusions. To further evaluate the influ-
ence of occlusions on the performance of OBJ-NeRF, we
add random rectangles onto RGB images to mask out cer-
tain areas and simulate occlusions and errors in segmenta-
tion masks. We test the performance on the same objects as
in other ablation studies. The reconstruction computed from
the distorted images (Fig.5(d)) has no clear difference to the
non-distorted one (Fig.5(e)). However, in Tab 5, training
with occlusion(D1) has a slight drop (about 5 pp on ADD
score) on pose estimation performance. We consider it ac-
ceptable, as the occlusion increases the difficulty of the re-
construction. Moreover, as indicated by the green ellipses
in Fig.5, the g.t. masks and pose labels from the LM and
HBD are actually noisy. Due to these imprecision, our re-
constructions are missing some details. However, all our ex-
periments demonstrate that such reconstructed implicit ob-
ject models and small pose errors can be tolerated.

NeRF-enabled PnP+RANSAC. Furthermore, we evalu-
ate the effectiveness of our proposed correspondence solver.
We present the results in Tab. 5, which shows about 2%
improvement on LM dataset on ADD score (E1). Though
on 2◦ metric, original PnP+RANSAC is slightly better than
ours, our method outperforms it on 2 cm metric. On
ADD score, our method shows superiority over the orig-
inal PnP+RANSAC. The main reason is that our NeRF-
enabled RANSAC incorporates mask-based Recall and Pre-
cision in scoring pose hypothesis, as illustrated in Fig. 3.
Since Recall and Precision are more sensitive to translation,
our NeRF enabled RANSAC prefers pose hypothesis with
less translation error, leading a better performance on both
ADD and 2 cm metrics that reflect translation performance.

Table 5. Ablation study on LM subset. We train the whole pipeline
for the Ape, the Cat, and the Duck objects. A0 is the baseline set-
ting in our paper, and B1-B3 show the results on different num-
bers of training views in OBJ-NeRF. C1-C3 are the results using
different loss combination. D1 is the result training with gener-
ated occlusions. E1-E3 consists of the results from different the
PnP+RANSAC strategies.

Case Method ADD(0.01d) 2cm 2o,2cm 2o

A0 NeRF-Pose 95.1 97.5 82.3 83.2
B1 rec. 32 views 94.6 97.0 79.6 79.9
B2 rec. 64 views 94.0 96.6 78.4 78.9
B3 rec. 128 views 93.6 96.2 78.5 79
C1 w/o Lgrad 91.5 95.2 77.2 78.4
C2 w/o Lnorm 91.0 94.4 76.9 78.0
C3 w/o Lgrad,Lgrad 92.9 96.1 77.7 78.3
D1 rec. w/ occlusion 89.8(↓ 5.3 pp) 93.8 74.4 76.0
E1 PnP+RANSAC 93.6(↓ 1.5 pp) 96.8 83.0 83.8

E2(LMO) NeRF-PnP+RANSAC 51.4 48.4 9.6 12.1
E3(LMO) PnP+RANSAC 48.2 (↓ 3.2 pp) 45.7 8.7 11.6

In Tab. 5 E2-E3, we also report the ADD(-S) score on LMO
dataset. We observe an average 3% improvement using our
proposed NeRF-enabled method. The results show the su-
periority of our proposed NeRF-enabled PnP-RANSAC al-
gorithm over the original one. LMO dataset contains more
occlusion data than LM dataset. The occlusions can make
mask scores used in NeRF-PnP-Ransac imprecise. In that
case overlap recall and precision can deteriorate. However,
since we weight the inlier score the most with 0.6 vs. 0.2
for precision and recall scores, and since our inliers are quite
accurate we still get better performance than standard PnP-
RANSAC as shown in the Tab.5 for the LM-O benchmark.

4.4. Implementation and Runtime Analysis

We implement our object-centric NeRF network based
on the original version of NeRF in[39], and train the net-
work from scratch. For the 2D detector, we use the standard
YOLOv3 [10] detector in stage two. An ImageNet [29] pre-
trained ResNet34 [16] network is leveraged as the backbone
of our pose regression network. All networks are trained
until convergence.

The training is done on a machine with a Titan RTX GPU
with 24GB Memory, an Intel(R) i7-8700K CPU and 24GB
RAM. During inference, for a single image with 640× 480
resolution, our approach takes about 0.25s for one object,
including about 0.03s for YOLOV3 2D detector, 0.01s for
pose regression and 0.21s for our pose solver.

5. Limitations

Though we present NeRF-Pose in a weakly-supervised
way, considering the training difference in OBJ-NeRF net-
work and our pose regression net, failing to enable end-to-
end optimization sometimes leads to local minima.
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Figure 5. (a),(b) and (c) are masked RGB images (green ellipses
are noises and blue ellipses are our generated occlusions), and (d)
is rendered with occluded images training, (e) without.

As indicated in Tab. 2, when trained on pbr images ren-
dered by Blender with high quality from BOP [22, 21],
GDR [60] and SO-Pose[7] gain about 10% improvement
on ADD(-S) metric. Those fully-supervised methods ben-
efit from pbr images that cover more poses and have more
realistic occlusion under various light conditions. It inspires
us to generate more synthetic training data using our well-
trained OBJ-NeRF for better performance.

6. Conclusion
In this paper, we propose NeRF-Pose, a first-reconstruct-
then-regress approach for weakly-supervised object pose
estimation. NeRF-Pose first implicitly reconstructs the ob-
ject as the proposed neural network, namely OBJ-NeRF,
from the weak labels and generates the signals to supervise
the correspondences predicted from our pose regression net-
work. At inference, a NeRF-enabled PnP+RANSAC algo-
rithm is used to estimate the pose from the predicted cor-
respondences. Finally, A thorough evaluation on LineMod,
LineMod-Occlusion, T-Less and Homebrewed DB datasets
show our leading performance on the task of weakly-
supervised object pose estimation.
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[30] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. Cosypose: Consistent multi-view multi-object 6d
pose estimation. Proceedings of the European Conference
on Computer Vision (ECCV), 2020. 1, 2, 8

[31] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 734–750, 2018. 1

[32] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Epnp: An accurate o (n) solution to the pnp problem. Inter-
national journal of computer vision, 81(2):155, 2009. 2

[33] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland
Siegwart, and Paul Furgale. Keyframe-based visual–inertial
odometry using nonlinear optimization. The International
Journal of Robotics Research, 34(3):314–334, 2015. 2

[34] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.
Deepim: Deep iterative matching for 6d pose estimation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 683–698, 2018. 1, 2

[35] Zhigang Li, Gu Wang, and Xiangyang Ji. Cdpn:
Coordinates-based disentangled pose network for real-time
rgb-based 6-dof object pose estimation. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 7678–7687, 2019. 1, 2, 5, 6, 7, 8

[36] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields.
arXiv preprint arXiv:2104.06405, 2021. 2, 3, 4

[37] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 1

[38] Fabian Manhardt, Diego Martin Arroyo, Christian Rup-
precht, Benjamin Busam, Tolga Birdal, Nassir Navab, and
Federico Tombari. Explaining the ambiguity of object de-
tection and 6d pose from visual data. In Proceedings of the
IEEE International Conference on Computer Vision, pages
6841–6850, 2019. 3

[39] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European conference on computer vision, pages
405–421. Springer, 2020. 2, 3, 4, 9

[40] Khoi Nguyen and Sinisa Todorovic. Feature weighting and
boosting for few-shot segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 622–631, 2019. 2

[41] Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter
Fox. Latentfusion: End-to-end differentiable reconstruction
and rendering for unseen object pose estimation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10710–10719, 2020. 3

[42] Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose:
Pixel-wise coordinate regression of objects for 6d pose es-
timation. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 7668–7677, 2019. 2, 8

[43] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. Pvnet: Pixel-wise voting network for 6dof pose esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4561–4570, 2019. 1,
2, 7, 8

[44] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate,
robust to partial occlusion method for predicting the 3d poses
of challenging objects without using depth. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3828–3836, 2017. 1, 2

[45] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[46] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. arXiv preprint arXiv:2103.13744,
2021. 2

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1

11

https://bop.felk.cvut.cz/home/
https://bop.felk.cvut.cz/home/


[48] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 2

[49] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4104–4113, 2016. 2

[50] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-
ordinate regression forests for camera relocalization in rgb-d
images. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2930–2937,
2013. 7

[51] Ivan Shugurov, Ivan Pavlov, Sergey Zakharov, and Slobodan
Ilic. Multi-view object pose refinement with differentiable
renderer. IEEE Robotics and Automation Letters, 2021. 2

[52] Ivan Shugurov, Sergey Zakharov, and Slobodan Ilic.
Dpodv2: Dense correspondence-based 6 dof pose estima-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021. 2, 8

[53] Chen Song, Jiaru Song, and Qixing Huang. Hybridpose: 6d
object pose estimation under hybrid representations. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 431–440, 2020. 8

[54] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian
Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3d
orientation learning for 6d object detection from rgb images.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 699–715, 2018. 1, 2, 3

[55] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian
Durner, and Rudolph Triebel. Augmented autoencoders: Im-
plicit 3d orientation learning for 6d object detection. Inter-
national Journal of Computer Vision, 128(3):714–729, 2020.
2

[56] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time
seamless single shot 6d object pose prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 292–301, 2018. 1, 2

[57] Shinji Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE Transactions
on Pattern Analysis & Machine Intelligence, pages 376–380,
1991. 2

[58] Shishir Reddy Vutukur, Ivan Shugurov, Benjamin Busam,
Andreas Hutter, and Slobodan Ilic. Welsa: Learning to pre-
dict 6d pose from weakly labeled data using shape alignment.
In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Gio-
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