2101.05952v1 [cs.DC] 15 Jan 2021

arxXiv

Dynamic DNN Decomposition for Lossless
Synergistic Inference

Beibei Zhang, Tian Xiang, Hongxuan Zhang, Te Li, Shigiang Zhu, Jianjun Gu
Intelligent Robotics Research Center, Zhejiang Lab, Hangzhou, China
{beibei, txiang, hongxuan, lite, zhusq, jgu}@zhejianglab.com

Abstract—Deep neural networks (DNNs) sustain high perfor-
mance in today’s data processing applications. DNN inference
is resource-intensive thus is difficult to fit into a mobile device.
An alternative is to offload the DNN inference to a cloud server.
However, such an approach requires heavy raw data transmission
between the mobile device and the cloud server, which is not
suitable for mission-critical and privacy-sensitive applications
such as autopilot. To solve this problem, recent advances un-
leash DNN services using the edge computing paradigm. The
existing approaches split a DNN into two parts and deploy the
two partitions to computation nodes at two edge computing
tiers. Nonetheless, these methods overlook collaborative device-
edge-cloud computation resources. Besides, previous algorithms
demand the whole DNN re-partitioning to adapt to computation
resource changes and network dynamics. Moreover, for resource-
demanding convolutional layers, prior works do not give a
parallel processing strategy without loss of accuracy at the edge
side. To tackle these issues, we propose D°, a dynamic DNN
decomposition system for synergistic inference without precision
loss. The proposed system introduces a heuristic algorithm named
horizontal partition algorithm to split a DNN into three parts.
The algorithm can partially adjust the partitions at run time
according to processing time and network conditions. At the
edge side, a vertical separation module separates feature maps
into tiles that can be independently run on different edge nodes in
parallel. Extensive quantitative evaluation of five popular DNNs
illustrates that D® outperforms the state-of-the-art counterparts
up to 3.4x in end-to-end DNN inference time and reduces
backbone network communication overhead up to 3.68x.

Index Terms—Distributed computing, Edge computing, DNN
inference acceleration.

I. INTRODUCTION

The proliferation of mobile devices such as smartphones and
smart robotics brings a tremendous amount of data generated
from users. On mobile devices, pervasive data processing
applications including machine translation [1]], object detec-
tion [2], and many others process the data and share the
data over a communication network. The results of these
applications should be exceedingly accurate [3[]. As such, deep
neural networks (DNNs) become one of the de-facto solutions
in the data processing applications due to its high accuracy.
However, DNN inference requires abundant computation re-
sources and consumes considerable energy [4]. Therefore, it
is not suitable to deploy DNNs on mobile devices that have
restricted computation power and limited energy.

One of the popular approaches to tackle this issue is to
offload the intensive DNN inference to a cloud server [5].
However, this approach involves transferring raw data col-
lected by the data processing applications to the cloud server

through a backbone network, which incurs long transmission
delays and privacy concerns. With the observation that the
intermediate result size of a DNN is significantly smaller
than the raw data size, the idea of only transferring the
intermediate result to the cloud server comes into existence.
Recent research employs the edge computing paradigm that
comprises three computing tiers (i.e., device [1_1 edge, cloud)
to solve the problem. Specifically, previous studies propose to
split a DNN into two parts according to the processing time
of DNN layers and the data transmission delay between two
layers [6]—[9]. Generally, a mobile device collects raw data and
passes the input to the first DNN partition located at an edge
node. Next, the edge node processes the input and transmits
the intermediate results to a cloud server. Finally, the cloud
server handles the rest of the DNN inference that requires more
processing capability. The collaborative computation leverages
the resources provided by the edge and the cloud, reducing
DNN inference latency and communication overhead over the
network core.

Nonetheless, the rapid development of hardware makes it
possible to perform partial DNN inference on mobile de-
vices [[10]]. For instance, the latest smartphone has an octa-
core CPU running up to 3.1 GHz and a GPU with 1.37
TFLOPS [11]]. In this context, current solutions fail to lever-
age the synergistic device-edge-cloud computation power [J]].
Besides, prior works require re-partitioning the whole DNN to
accommodate dynamics of computation resources and network
bandwidth [|12]. Moreover, in a joint DNN inference pipeline,
the node with the most processing time becomes the bottleneck
of the overall inference. For an edge node with limited
resources compared with a cloud node, if it is the bottleneck
of the collaborative inference, the state-of-the-art does not
provide a parallel processing strategy for convolutional layers
assigned to the edge node without loss of accuracy [13].

To address these limitations, in this paper, we present a
dynamic DNN decomposition system named D? for lossless
synergistic inference. D3 accelerates DNN inference by lever-
aging the synergistic device-edge-cloud computation power
without precision loss. In D3, we employ a regression model
that takes computation resources and DNN layer configura-
tions as input and estimates the processing time of DNN
layers. According to the per-layer execution time and the trans-

!To avoid ambiguity, we use the term “device” to represent the “device tier
of edge computing paradigm” and the term “node” to denote the “computing
device” throughout this paper.

fcl
fc2
fc3

convl
conv2
conv3
conv4
convs
convé
conv?7
conv8
conv9
conv10
convll
convl2
convl3
convl
blockl
block2
block3

(a) VGG-16

0.75
5 0.6 » 0.101 I
> o >0.50
204 2 2
191 1
5 g0.05 £0.25
802 5 ®
0.0 0.00 < © P 0.00
N TN ") ~ N = I I T s BT B (- R T BN S)
39923095823 232888 FEE R A >>% 2% 28 28 28 "
CCECCcCECcECEE>>>>www S 8§ 8 8 8 8 ¥ 8 8 cc S S c S c 3 e §
00000000606 gcccc g 2 2 2 2 o o 2o o 6 03 63 o6 38 o 3 o6 3
OO0OO0OUUULULUUUOOGOC O U @9 8@ @ @ a9 o o o R e T e
v VULV
o o o o o
= £ ° £ =
o @ 31 o 6
210 Z B3
[T
& 8 21 N4
« « [
= o =
5 5 > 14 221
a a 2
= =
S 5 >
S S ol Oyl

block4

(b) ResNet-18

block5
block6
block7
block8
fc

convl
conv2
residuall
conv3
residual2
conv4
residual3
conv5
residual4
convé
residual5
fc

(c) Darknet-53

Fig. 1: With the input size of 3 x 224 x 224, we measure the layer-wise inference latency and the per-layer output size of
VGG-16, ResNet-18, and Darknet-53 on a Raspberry Pi 4 model B running at 1.5GHz with 4 GB system memory. Each block

or residual contains several convolutional layers.

mission delay between layers, a heuristic algorithm, which we
refer to as horizontal partition algorithm (HPA), partitions a
DNN into three parts, each of which runs on one computing
tier. In the case of changes in the DNN layer processing
time or the transmission delay, HPA can partially adjust the
DNN segmentation, adapting to the changes via local updates.
At a finer granularity, a vertical separation module (VSM)
further splits a stack of feature maps of convolutional layers
into blocks spatially. We assign a block of correlated feature
maps to an edge node. In this way, we can run feature
maps of convolutional layers on the edge nodes in parallel
independently, utilizing the edge resources.

We implement D3 and evaluate its performance based on
ImageNet dataset using various real-world DNNs includ-
ing AlexNet [I5], VGG-16 [16], ResNet-18 [17], Darknet-
53 [18], and Inception-v4 [19]. Our experimental results
show that compared with the state-of-the-art counterparts, D3
accelerates the DNN inference time up to 3.4x and reduces
the communication overhead up to 3.68x.

The rest of this paper is organized as follows. First, we
review related work in section [l Then, we describe the
proposed system in section [[IIl Section [[V] introduces the
implementation and the test-bed of D3. Extensive comparisons
and evaluations between D> and its counterparts follow in
section [V} Finally, we conclude in section [VI]

II. RELATED WORK

Before delving into the D3 system, we first provide an
overview of the existing DNN inference acceleration mech-
anisms. The status-quo approaches that are related to our
method can be classified into two categories. The first group
aims to split a DNN model into partitions according to per-
layer processing time and inter-layer transmission delay. The
partitions are distributed to multiple computation nodes. We
denote such approaches as horizontal partition. The second
group, which we refer to as vertical separation, focuses on

dividing the feature map of a convolutional layer spatially to
multiple tiles hosted by multiple computation nodes.

To accelerate DNN inference without sacrificing accuracy,
a few previous works focus on the DNN horizontal parti-
tion. Neurosurgeon offloads computation from resource-
constrained mobile devices to cloud servers. It splits a DNN
of chain topology at a layer granularity to minimize processing
latency and energy consumption. IONN [20] models a chain
topology DNN as an auxiliary DAG and finds the optimal
incremental offloading with the shortest path algorithm on the
DAG. DADS extends the layer-wise partition to multi-
branch DNNs represented by DAGs and exploits the min-
cut algorithm to find the optimal cutting points. It employs
edge computing and deploys DNN layers to an edge node and
a cloud server. However, DADS cannot generalize the min-
cut approach to separate a DNN into more than two parts.
DINA presents an adaptive partition algorithm to divide
DNN layers into pieces that can be smaller than a layer. It
offloads the pieces to fog nodes based on a swap-matching
algorithm. DDNN [6] introduces the idea of early-exit that
sacrifices accuracy in exchange for reducing inference delay
and communication overhead. However, this requires a specific
training process to ensure the prediction confidence. Thus, it
is not suitable for accelerating the lossless inference of the
trained DNN discussed in this paper. Edgent combines
the chain topology DNN segmentation and the early-exit
method and performs collaborative device-edge DNN infer-
ence. SPINN applies the early-exit strategy to progressive
inference and designs a scheduler to flexibly handle service-
level agreements.

The convolutional layer, which is commonly deployed in
current data processing applications, is one of the most
resource-intensive components of a DNN [24]. Fig. [T] il-
lustrates the per-layer inference latency and the inter-layer
output size of three widely used DNNs. We notice that some
convolutional layers require substantial computation resources.

Profiler
i

Input Device |

-

*

SRl

~

Online execution engin

Cloud Output

g s
&6 |

—

---->Data flow

— System flow

~

Offline partition

HPA: Horizontal partition algorithm
framework P &

VSM: Vertical separation module

Tile 4

%

Fig. 2: D? system architecture.

To explore inference parallelism for convolutional layers, prior
works aim to separate feature maps spatially. MoDNN [25]]
proposes layer-wise parallelism that divides one feature map
of a convolutional layer into pieces. Each computation node
executes a part of the feature map and generates an output.
A host node gathers the output and re-partitions the feature
map for parallel processing of the next convolutional layer.
This procedure results in significant communication overhead.
DeepThings [13] removes the communication overhead by
introducing a fused tile partition (FTP) that slices a stack
of correlated feature maps spatially and distributes the stack
to a computation node. AOFL [9]] extends the idea of fused
tiles and offers an algorithm to find the optimal tile partition
according to resources of each computation node.

III. PROPOSED SYSTEM

This section formally describes D3, a system that dy-
namically decomposes a DNN to segments for collaborative
inference over device, edge, and cloud with no precision loss.
We first discuss the edge computing framework, based on
which our system is designed. We then give an overview of
D3, followed by the modeling of our system. A regression
model is provided to estimate the per-layer execution latency
of a DNN. Next, we propose our horizontal partition algorithm
that splits a DNN into three parts. Finally, we describe the
vertical separation module that enables parallel convolutional
layer inference.

A. Edge Computing Paradigm

The edge computing architecture comprises three tiers that
are device, edge, and cloud. Each layer consists of multiple
computation nodes. From a computation perspective, edge
nodes provide high computation capabilities compared with
device nodes. Even so, as the edge nodes are often hetero-
geneous, the computation power of the edge nodes is still
bounded compared with the cloud servers. Consequently, we

say that the computation resources are gradually increasing
over device, edge, and cloud [26]. From a communication
perspective, since we deploy edge nodes close to the data
source, network bandwidth maintains high between device
and edge. Nonetheless, as device nodes and edge nodes
connect to cloud servers through a backbone network (e.g., the
Internet backbone), the bandwidth to the cloud nodes remains
limited [27]. Compared with the transmission delay between
the computing tiers, the in-memory transmission delay of
a node or the transmission delay between two computation
nodes within the same computing tier is negligible. To simplify
the problem, without loss of generality, we assume that the
transmission delay within each computing tier is infinitesimal.

B. System Overview

We show the D3 system architecture in Fig. [2| D3 comprises
a profiler, an offline partition framework, and an online exe-
cution engine. The profiler collects the operating conditions
of computation nodes at device, edge, and cloud as well as
the network status between tiers. A regression model takes
the computation statistics as input and estimates the inference
time of each DNN layer processed at different computing tiers.
The offline partition framework comprises two components.
A horizontal partition algorithm splits a DNN model into
three parts according to the per-layer inference time and the
transmission delay between layers. D? distributes the three
DNN segments to three computation nodes located at device,
edge, and cloud respectively. Considered that the computation
resource of a single edge node is limited, if convolutional lay-
ers locate at an edge node, to further accelerate the inference,
a vertical separation module divides a sequence of correlated
feature maps to multiple feature map stacks, each of which is
processed on an edge node independently. Fig. 2] illustrates the
condition that D? breaks a sequence of feature maps into four
stacks. The online execution engine orchestrates the distributed
and parallelism processing, handling communication among

(a) The grid module.

(b) The DAG representation.

Fig. 3: The grid module of the Inception-v4 network and its
DAG representation.

partitions. For the online DNN inference, a computation node
located at the device tier collects input and processes the input
through its allocated DNN partition. The device node passes
the output to an edge node, which splits the feature maps
into multiple tiles and diffuses the tiles to other available
edge nodes. After the processing, an edge node gathers and
integrates the results, and passes it to a cloud server for further
execution. The cloud server produces the final output.

C. System Model

The smallest computation unit in a DNN model is a mathe-
matical operator such as matrix multiplication and convolution.
A DNN layer comprises one or multiple mathematical opera-
tors. DNN layers constitute a computation graph that describes
the DNN inference process. We describe that the computation
graph can be modeled as a Directed Acyclic Graph (DAG).

Given a DNN model, we refer to the DNN layers in the
model as a set of vertices {v1,va,...,v,} in a graph where
n is the number of layers in the model and v; corresponds to
the ¢-th DNN layer in the model. To facilitate our algorithm,
we introduce a virtual input vertex in the graph to indicate
the starting point of a DNN and represent it using vy. For any
two vertices v; and v; in the graph, we introduce a directed
link (v;,v;) in the graph if and only if layer ¢ is computed
before layer j and the output of layer ¢ serves as the input of
layer j. The graph is a DAG.

With above settings, we denote the given DNN model by
the following DAG

G=W,1L) 6]

where V = {vg,v1,...,v,} and L C V X V is the set
of directed links in the DAG. As an example, Inception-v4
network [19] is a multi-branch DNN that is depicted as a DAG.
Fig. Ba]shows the grid module of the Inception-v4 network and
Fig. [3b| illustrates its DAG representation.

Next, we define relations between two vertices in G. If there
is a directed link from v; to v;, then v; is a direct predecessor
of v; and v; is a direct successor of v;. For v; € V, we refer
to the set of its direct predecessors as Vf where Vf Cc V.

The processing time of a DNN layer varies when the layer
locates at different computing tiers. We use d, e, c to express
device, edge, and cloud tier respectively. For v; € V), let
l; € {d,e,c} indicate the tier where vertex v; is processed.

B Actual time N
0:005 Predicted time §

B Actual time
Predicted time

Fig. 4: With the input size of 3 x 224 x 224, the per-layer actual
processing time and the predicted processing time of AlexNet
on Intel Core i7-8700 CPU [28]] and NVIDIA GeForce RTX
2080 Ti GPU [29].

Considered that the data of a DNN model flows from a device
node, across an edge node, to a cloud node, to assist our
algorithm, we define an order d > e > ¢, from which the
l; of v; is selected. We employ t¢,t¢, and t¢ to signify the
processing time of v; at d, e, ¢ accordingly. Typically, we have
td > t¢ > t¢. Vu; € V, we assign T,, = {tZ,t¢,1¢} as vertex
weight of v;. For a directed link (v;,v;), if v; and v; are at
distinct computing tiers, there is a transmission delay for data
output from v; to v;. We refer to the transmission delay from v;
to v; over device and edge, edge and cloud, device and cloud
as tfj’e], t;’c], and tg’c] respectively. We assume that the two-
way transmission delays between the two tiers are the same,
which means tE?’e] = ¢l gled = yleel and tg’c] = tgj’d]
Generally, we have t%’eﬂ < ti%’c] < tl[]?’c]. For the condition
that v; and v; locate at the same tier, the transmission delay is
approximately 0. Therefore, V(v;,v;) € L, we allocate weight
Ty = {157, 8199, 41290} to the directed link (v;, v)).
D. Latency Estimation

To determine the vertex weight 7,, for all v; € V ,
one of the methods is to process DNN layers on the spot.
However, executing every DNN layer at device, edge, and
cloud nodes is impractical and time-consuming. Moreover,
the computation resources of the nodes vary timely, thus
tli of the actual measurement is inaccurate to resolve the
optimal tier assignment of every DNN layer. Hence, such an
approach is not feasible. To solve this problem, we employ
a regression model that considers computation resources and
DNN layer configurations to estimate the processing time
of each DNN layer. We refer to the computation resources
as the computation capabilities defined by CPU, GPU, and
memory size. The DNN layer configurations include DNN
layer types (e.g., convolution, ReLU, etc.) and DNN layer
hyper-parameters (e.g., stride, input size, etc.). In Fig. 4 our
regression model demonstrates that the actual processing time
and the predicted processing time of each AlexNet [[15] layer
are similar. We compute the link weight 7,, ,;) between v;
and v; by using the output data size of v; divided by the
network bandwidth between [; and [;, which is monitored
by the profiler. Note that if [; = [;, the transmission latency
between v; and v; is 0.

EER

piiiiic |

EER
Cloud Node

/U

out
. @
J

B

Device Node

N
(a) (b)

Fig. 5: The potential tier of a vertex depends on its direct
predecessors. The optimal tier of a vertex depends on its input
and output size.

E. Horizontal Partition Algorithm

Our main objective is to minimize the DNN inference
time by leveraging the collaborative computation provided by
three computing tiers. To achieve this goal, we propose to
split the DNN model into three parts that are executed over
device, edge, and cloud. Given a DNN layer, the total latency
includes the DNN layer processing time and its input data
transmission delay. Theoretically, for v; € V and a set of its
direct predecessors V?, the total latency is ¢\ 4 o eV t[lh”l"].
The optimal tier of a vertex v; is de01ded by comparing the
latencies of attaching v; to different computing tiers. We regard
the tier that is possible to yield the smallest latency as a
potential tier. A set of potential tiers of v; is denoted by I';,
where I'; C {d, e, c}.

To this end, mathematically, our major goal is to split the
DAG in (I) into three sub-graphs by assigning each vertex
to one of the three computing tiers and minimizing the total

latency
P IL DD

v; €V (vi,vj)EL

@(UO,Ul,"' » U [l“l]'

Each sub-graph contains a subset of V that have the same
optimal tier. However, partitioning a DAG according to mul-
tiple vertex weights and link weights falls into an NP-hard
problem [30f], [31]]. Thus, heuristics are essential to partition
the DAG.

With the DAG in representing a DNN, the horizontal
partition algorithm (HPA) first computes the longest distance
from vy to v;, denoted by d(v;), Yv; € V. We get the longest
distance with the dynamic programming method mentioned
in [32]]. The time complexity of the method is O(|V| + |£|).
Subsequently, we define a partition of V by

Zy i =A{vi 1 0(vs) = q,v; € V},

and HPA arranges v; to the graph layer Z,. To illustrate,
in Fig. 3b] HPA assigns the vertices to 7 graph layers that
are Z() = {’Uo}, Zl = {’Ul}, ZQ = {Ug,’Ug,’U4,’U5}, Zg =
{ve,v7, 08,00}, Z4 = {v10}, Z5 = {v11,v12}, Z6 = {vi3}.
In graph layer Z, where ¢ € ZT, to decide the optimal tier
of each vertex in Z,;, HPA must assign all vertices in Z,_; to

q=0,1,....,.n—1

)

TABLE I: The total latencies of processing v; and v;.

Location of | Location of Total Latency
v; v

device device tg + t?

device edge td + t + AU /G ge

edge edge i+ A /Cde

edge cloud t5 15 + X" /oge + AP oec
cloud cloud 5+t + A" [oge
device cloud t 15 + A age

their optimal tiers. By mathematical induction, we know that
HPA starts from graph layer Zy and calculates the optimal
tiers layer by layer.

For a vertex v;, its potential tiers and the tiers of its direct
predecessors have the relation described in the Proposition [T}
As an example, if the direct predecessors of vertex v; are
assigned to an edge node, then the potential tiers for v; are
edge and cloud.

Proposition 1. For a vertex v; € V and a set of its direct
predecessors VP = {vp1,vp2,- -+ ,vpm }, the potential tier ;
of v; has the subsequent relation with the tiers of its direct
predecessors, i.e., max{lp1,lp2, JApm } = 1

Proof. We prove the proposition by contradiction.
Consider a vertex wv; with multiple direct predecessors
{vpr,++ ,Upi, Ups+1, -+ ,vpm } shown in Fig. We assume
that the DNN layers represented by {vp:,--- ,vps} are as-
signed to a cloud node and the DNN layers denoted by
{vpi+1,- -+ ,opm } are assigned to an edge node. Suppose that
we assign the DNN layer described by v; to a device node,
which means I; >~ max{lhl,lh ,Ipm }. The total latency
of v; is t + Z —|— Zy i1 tfyi], which is larger than
the delay t¢ + Z C,e] when the DNN layer signified by
v; 1s assigned to an edge node. Assigning v; to the device tier
cannot yield the smallest latency. By contradiction, we prove
maX{lhl,lh27"' ,lhm} >~ lz O]

We now derive the optimal tier selection strategy for a
vertex v; € V. Intuitively, for a single vertex v; € V, the

optimal tier I is calculated as:

[Lsls
197" = arg min(tl + Z th;”] (2)
L€l 1)h€Vf
Specially, Ig” * — d for the virtual input vertex vg. However,

Equation only selects the local optimal location for v;.
To further optimize the selection, we take the input and
output size of a DNN layer into consideration. Assuming
that a vertex v; has multiple direct successors, if we place
the DNN layers represented by these successors on the same
computation node and give them the same input, we call
the successor representing the DNN layer with the longest
processing time as the largest direct successor of v;. Fig. [5b|
depicts two vertices v; € V and v; € V, where v; is the largest
direct successor of v; and T'; = {d, e, c}. The total input size
of v; is A", and its output size is A?“!. The network bandwidth

(2)
V..@
®’

Fig. 6: Illustration of SIS relation between vertices.

between a device node and an edge node, an edge node and a
cloud node, a device node and a cloud node are o4, Tec, Ode
respectively. We list the total latencies of allocating the DNN
layers indicated by v; and v; to computation nodes at different
tiers in TABLE |l The inputs of v; are from the device
tier. Heuristically, HPA selects the optimal tier of v; via the
following mechanism. On one hand, if)\2" > Af“t, ;'8
optimal tier 197" is computed via Equation (Z). On the other
hand, if A" < \9“!, HPA chooses the largest direct successor
of v; and computes the total latencies of processing v; and
its largest direct successor as in TABLE [l According to the
smallest value among these total latencies, HPA selects the
optimal tier of v;.

Given a vertex v; € Z,, we refer to a vertex v; as the
subset input sibling (SIS) vertex of v; if V¥ C VP. We clarify
the SIS relation with an example in Fig. [6| where 7 vertices
are connected via directed links. In the example, vg is the SIS
vertex of vz since VE C VP, whereas vy is not the SIS vertex
of vs in that V! ¢ VP. After deciding the optimal tier for
all vertices in layer Z,, for each v; € Z,, if the optimal tier
of v;’s SIS vertex v; is before 17" (i.e., 19" = '), HPA
updates the optimal tier of the SIS vertex to 19", We regard
this approach as SIS update that follows the Proposition

Proposition 2. SIS update optimizes the processing delay and
the transmission latency of a SIS vertex.

Proof. Given a vertex v; and one of its SIS vertices v; where
15" = I9P'. Since the inputs of v; are already transmitted to
the tier lf P t, therefore relocating the SIS vertex that is at the
previous tier /7¥ " to 197" reduces the processing time and brings
no transmission delay overhead. O

We now show the HPA in Algorithm [I} The algorithm
calls get_longest_path() to calculate the longest path from
vo to all vertices in G. With the result of the longest path,
HPA constructs the graph layers by invoking the function
get_graph layer(). In each graph layer Z,, HPA computes
the optimal tiers for all vertices. For every vertex v; in
the layer, the algorithm uses the function get_pred_loc()
to get the optimal tiers of wv;’s direct predecessors. Next,
it leverages the idea presented in Proposition [I] and em-
ploys get_loc_choice() to get all potential tiers of v;. In
particular, if the potential tier of v; is ¢, the optimal tier
I is c. Otherwise, HPA computes the optimal tier for v,

Algorithm 1: Horizontal Partition Algorithm: HPA()
Data: DAG: G = (V, L) ;
Vertex weights: 7T, ;
Link weights: T .
Result: Optimal tiers [?"" where 4 = 1,2,--- | |V| .
1 Q < get_longest_path(G) ;
2 A + get_graph_layer(Q,V) ;
3 foreach Z, in A do

4 foreach v; in Z, do

5 ®, < get_pred_loc(v;) ;

6 I'; « get_loc_choice(®;) ;
7 if I'; = {c} then

8 | 1P e

9 else

10 ‘ lfpt + get_opt_loc(v;, I';, T, T¢) ;
11 end

12 end

13 sis_update(Z,);

14 end

via function get_opt_loc() which leverages the heuristics
in the optimal tier selection strategy. After the calculation of
all vertices in the graph layer Z,, sis_update() performs
SIS update for all vertices in Z,. HPA stops when it finishes
processing all the graph layers.

Resource changes and network dynamics lead to variations
of DNN layer processing time and input data transmission
latencies, which further affect the optimal locations to process
DNN layers. Assuming that the optimal tier of a vertex
changes, HPA can accommodate the modification by locally
adjusting the optimal tiers of its SIS wvertices, its direct
successors, and the SIS vertices of its direct successors. For
instance, in Fig. supposing that [o”" of v changes to
a different value, HPA recalculates I3’ of v1q since vig is
the direct successor of vg. To avoid constantly calculating the
optimal tier to respond to the resource and network fluctuation,
we can set upper and lower thresholds to limit the scope of the
optimal tier alteration. HPA only recalculates the optimal tiers
when DNN layer processing time or the network bandwidth
is outside of the threshold range.

FE. Vertical Separation Module

The preliminary experimental results in TABLE [lIf show the
inference latencies of DNNs after HPA given an input image
of 3 x 224 x 224. The device node is an NVIDIA Jetson Nano
2GB Developer Kit [33], the edge node is a Linux machine
with Intel Core i7-8700 CPU and 8 GB system memory, and
the cloud node is a Linux server with NVIDIA GeForce RTX
2080 Ti GPU and 256 GB system memory. We observe that
the processing time of the edge node is longer than that of
the cloud node, causing the cloud node to be idle and waiting
for the results from the edge node in the inference pipeline.
The edge node becomes the bottleneck of the synergistic
inference. To accelerate the inference at the edge tier, we

TABLE II: The synergistic inference time at three nodes.

DNNs Deyi?e Node E(‘ig‘e Node le)u.d Node
(millisecond) (millisecond) (millisecond)
AlexNet 2.2 3.6 14
VGG-16 5.7 46.7 0.5
ResNet-18 6.1 7.5 0.5
Darknet-53 27.9 48.1 0.1
Inception-v4 21.4 46.4 16.7

design a parallel processing strategy to avoid the bottleneck
condition. The parallelization option is not suitable for the
resource stringent device node since processing raw input in
parallel incurs privacy concerns and amount of communication
overhead. Next, we introduce our parallel processing method.

The parameters of a convolutional layer are a set of learn-
able filters [34]. Each filter is a weighted tensor spatially
defined by its hyper-parameters that are width, height, and
depth. An input feature map is the input activation for a given
filter. The number of input feature maps is the same as the filter
depth in a convolutional layer. Besides, a convolutional layer
contains two hyper-parameters that are filter stride and padding
for input feature maps. If padding exists, the convolutional
layer adds entries to the borders of an input feature map, result-
ing in an input feature map with paddings. The convolutional
layer systematically performs a dot product between the entries
of the padded input feature maps and the filter. The results
are assembled to an output feature map. We call this process
a convolution operation. In order to optimize the inference
latency at the resource constrained edge node, we leverage the
idea of separating a sequence of correlated input feature maps
to multiple feature map stacks. This idea is firstly proposed in
DeepThings [9]. However, DeepThings does not consider input
feature maps with paddings, leading to the precision loss that
affects the inference accuracy. To settle this issue, we derive a
parallel convolutional layer inference module without loss of
accuracy referred to as vertical separation module (VSM).

Given a sequence of k convolutional layers, we describe
each convolutional layer as ¢; where ¢ = 1,2, - - - | k. The input
feature maps of layer ¢; have the dimension of W; x H; X D;
(width x height x depth). For the filter of c;, we designate
the filter size as F* x F* x D; (width x height x depth)
with a horizontal stride of S} and a vertical stride of S”. The
padding is P horizontally and P! vertically. Consequently,
the input feature map size of layer ¢; has the coming relation
with the input feature map size of layer c¢;_1:

W¢,1—]:iuil+2><77iw_1

W, = . +1,
Z e 3)
2y — Hi—1 —]:Z-h71 +2 % Pz'}il 1
i= 7 + L
81'—1

We divide the input feature maps of layer ¢; into A x B
non-overlapping continuous files whose depth is D;. Gen-
erally, we index an entry of the input feature map with
two-dimensional coordinates. Therefore, we use the coor-
dinates of the top left corner and the bottom right cor-

éayer Ci—1 Inp(ut f()‘,ﬂmrc maps with paddings \ Layer ¢; \
X) 1,0 v

(0,0)

Input feature maps

Input feature maps

N

Fig. 7: Layer c;_; has an input feature map of 2 x 2 x 3 with a
padding of P, = P! , = 1 and a stride of S ;= S | = 1.

ner of a tile to locate the tile in the input feature maps.
Mathematically, the tile 7" = (a{*?, {*") at layer ¢,
where ¢« = 0,1,---, A —1; b=0,1,--- ,B—1. Specifi-
cally, the tile at the top left corner of the layer c;’s input
feature map is T(O’). We represent the top left coordinate
of 7 @b _ gloo(@l yles(@bly ang the bottom
right coordinate as 8" = (/7@ B0y particularly,
aEO’O) = (0,0). In the light of Equation (3), given the
coordinates of T(a b (i > 1), we compute the coordinates
of the correlated tile with paddings at layer c;_; denoted by
#ad) (& Zaf ,ﬂ(“ b)) where dl(»a,’f) = (&} 3o (a b)] g[a (a, b)])

as «y

Ti—1 ' v Ji—1

and /3(a b = (92?_5 ol Al[ﬁ_’l(a’b)]) in following manner:
ikiv%avb)] — Szw—l X T [a,(a,b)]
BEOD) — i yfnto, 4)
AL _ g P00 1
P 2 e 1)1 78,

Considering the paddings added to the input feature maps
of layer c¢;_1, given the coordinates of a padded tile %zalb)
(¢ > 1), to compute the coordinates of tile 7'(’1), we need to
A(a’). This alters the coordinates of

(7) (,)

remove the paddings from 7,

the padded tile, transformlng 7,1 to 7;_ . The coordination
of Ti(_’l) is described as follows.
(" = max(0, 22" —PL)),
L)~ mas(0, 04001 Pl)
LB @) _ W;_q, if x[ﬁ (@b)] _ =Wi1+2xPY2,,
o max(0, m[(a b)] "), otherwise,

B.(ap) _ J i1, if Qz[ﬁ @O =94 r2x Pl
T Lo g2 L),

Hilk otherwise.

max(0, J;
&)

Fig. [7] depicts the process of generating layer ¢;_1’s input
feature maps from the input feature maps of layer c;. When
the stride is 1 x 1 at layer ¢;_1, the 3 x 3 x 3 filter moves one
entry at a time, producing the input feature map of layer c;.

Algorithm 2: Vertical Separation Module: VSM()

Data: £ correlated convolutional layers: ¢; where
1=1,2,--- 7k;
Decision of separation: A x B tiles;
The tiles at layer cgi1: Thi1 = {T,Ei’lf)
(a=0,1,--- ,A-1;0=0,1,--- ,B-1).
Result: Coordinates of the tiles at ¢; .
1 foreach T,g‘jr’ll’) in T4+1 do
2 foreach i < k t0o 1 do

s || 7Y e rTe(e, n)
4 end
5 end

Reversely, given the input feature maps of layer ¢;, we separate
the feature maps into 2 x 2 tiles. With the coordinates of the
four tiles at layer c;, we find the corresponding padded tiles
at layer ¢;_; with Equation (@). Then, we obtain the tiles at
layer c;_; by offsetting the paddings from the padded tiles
via Equation @ We regard the procedure of computing tile
70 from (%) as reverse tile calculation (RTC).

To accelerate the inference at the edge tier without loss of
accuracy, we develop VSM whose overall procedure is shown
in Algorithm 2] Assuming that a sequence of & convolutional
layers are assigned to an edge node, to help to describe our
algorithm, we add a virtual convolutional layer ci;, whose
input feature maps are the output feature maps of layer cy.
VSM separates the input feature maps of layer ¢ 1 into Ax B
non-overlapping continuous tiles. For each tile at layer ¢y 1,
VSM finds the coordinates of corresponding tiles from layer
c, to layer c; via a series of RTC operations. We refer to a
stack of correlated tiles from layer c; to ¢y as fused tiles. Next,
VSM locates the tiles at layer c; and splits the input feature
maps of c; according to the coordinates of the tiles. VSM
then feeds the tiles at layer ¢; to A x B edge nodes, each of
which holds the inference parameters and hyper-parameters of
the k convolutional layers. Each edge node possesses one tile
and processes a fused tile stack independently via convolution
operations, generating the tile of the output feature maps at
layer cj. Finally, an edge node gathers and combines the
A x B tiles of the output feature maps at layer ci. The
results are the output feature maps of layer cp, which are
transferred to a cloud node. We neglect batch normalization
layers and activation layers in the middle of two convolutional
layers, since their operations do not change the volume of
input feature maps. Moreover, pooling layers that are used
to sub-sample feature maps between two convolutional layers
are separated and fused by VSM in the same way as the
convolutional layers. Fig. [§] shows four fused tile stacks of
three consecutive convolutional layers. We assign the four
fused tile stacks to four edge nodes.

IV. IMPLEMENTATION

We introduce our implementation details in this section. We
consider a scenario where the device node is mobile. The

Wi

Fused tile (0, 0) Fused tile (0, 1)

g /\/ N
> ‘ = & =

‘--v_ Edge Edge
7

| - - :>\ node 1)\ node 2/
W
v W

Layer ¢;

=

Edge Edge
N node y N node y

Fused tile (1, 0) Fused tile (1, 1)

5

N (7 N

Fig. 8: A sequence of input feature maps of three consecutive
convolutional layers are divided into 2 x 2 fused tile stacks.
Each fused tile stack is assigned to an edge node.

edge node and the device node are in the same local area
network (LAN), both of which connect to the cloud node via
the Internet [26]. Hence, we use a Raspberry Pi 4 model B
with 4 GB system memory as the device node. The edge node
is a Linux machine with Intel Core i7-8700 CPU and 8 GB
system memory. We employ a remote server with NVIDIA
GeForce RTX 2080 Ti GPU and 256 GB system memory.

Responsibility. We implement the profiler and the offline
partition framework on a dedicated computation node, which
monitors running conditions, performs dynamic partitioning
according to the conditions, and distributes partitions to the on-
line execution nodes. For the online execution procedure, the
device node is responsible for collecting the input, processing
through the DNN layers allocated to it, and transferring the
output to an edge node or a cloud node. The edge node handles
the output from the device node and passes the intermediate
inference results to the cloud node for further computation.
Depending on the partition decision, the inference pipeline
may involve only part of the computing tiers.

Software stack. We implement a client-server interface
using gRPC [35] in each node to accommodate inter-process
communication. The dedicated computation node loads a
trained DNN in the ONNX [36] format. We process the DNN
models with PyTorch [37] and build the DAG representation of
the DNN with NetworkX [38]]. After applying HPA, we rebuild
the computation graph from the partitioned DAG, transform
the computation graph into a partial DNN by reconstructing
the forward() function in PyTorch, and store the partial DNN
in the ONNX format.

Datasets and models. We evaluate D? on the ImageNet
(ILSVRC2012) [14] dataset that contains 150000 validation
and test images of 1000 categories. We compress the size of
the input images to 3 x 224 x 224. Then, we feed the images
to the device node at 30 FPS for 100 seconds and test the per-
image average end-to-end latency. We evaluate our methods
across 5 widely used DNNs: AlexNet, VGG-16, ResNet-18,
Darknet-53, and Inception-v4, all of which are trained before
deployment.

Latency Speedup (times)

=
AlexNet

(2) Wi-Fi (b) 4G

7
/NE

VGG-16 ResNet-18 Darknet-53 Inception-v4

AlexNet

(c) 5G (d) Optical Network

Fig. 9: End-to-end latency speedup comparison among HPA, device-only, edge-only, and cloud-only under different network

conditions.

Latency Speedup (times)
Latency Speedup (times)

AlexNet VGG-16

(b) 4G

AlexNet VGG-16

(a) Wi-Fi

ResNet-18 Darknet-53 Inception-v4 ResNet-18 Darknet-53 Inception-vd

Fig. 10: End-to-end latency speedup comparison among HPA,

conditions.

V. EVALUATION

This section presents the performance comparison of D3
with its counterparts. In addition to executing a DNN model
solely on a device node, an edge node, or a cloud node, we
choose two state-of-the-art precision lossless DNN offloading
systems Neurosurgeon [7] and DADS [8] for comparison.
We mainly examine the effectiveness of HPA and VSM
from two performance metrics: end-to-end inference speedup
and per-image communication overhead. To investigate the
performance of D? in various network settings, we test the per-
formance metrics under different network conditions shown in
TABLE which shows the average uplink rate. Particularly,
we consider the following scenarios. The communication link
between the device node and the edge node is a Wi-Fi running
at 5 GHz (Gigabit Ethernet 802.3, Wi-Fi 5 IEEE 802.11ac).
Both the device node and the edge node connect to the the
cloud node with the same type of communication link, which
is Wi-Fi, 4G, or 5G. Besides, when the edge node employs
optical network to bridge to the cloud node, the device node
connects to the cloud node via the 5 GHz Wi-Fi. In our
experiment, we alter the type of communication link between
the LAN and the cloud node (i.e., Wi-Fi, 4G, 5G, Optical
Network), and examine the performance of our algorithms.

A. End-to-end Inference Speedup

This subsection compares the end-to-end inference speedup
of D3 with device-only, edge-only, cloud-only, Neurosurgeon,
and DADS under different network conditions. In the edge-
only and the cloud-only method, input data is collected by the
device node and transmitted to the edge node and cloud node
respectively for processing. The experimental results validate
the effectiveness of HPA and VSM.

Fig. [9] demonstrates the end-to-end latency speedup of HPA
over device-only approach, edge-only approach, and cloud

w

Latency Speedup (times)
Latency Speedup (times)

ResNet-18 Darknet-53 Inception-v4 AlexNet VGG-16

(c) 5G

VGG-16

ResNet-18 Darknet-53 Inception-v4

(d) Optical Network

AlexNet

Neurosurgeon [7], and DADS [8|] under different network

TABLE III: The average uplink rate (Mbps) between two
nodes.

S Optical

DNNs Wi-Fi 4G 5G Nelt’work
device to edge 84.95 N.A. N.A. N.A.
edge to cloud 31.53 13.79 22.75 50.23
device to cloud 18.75 6.12 11.64 N.A.

only approach. We set the device-only as the baseline for
our comparison. The result shows that HPA accelerates the
end-to-end latency up to 28.2x, 3.85x, and 5.90x compared
with device-only, edge-only, and cloud-only approaches re-
spectively. We discover that the device-only is constrained by
the computation resources. When the model demands more
computation power, offloading part of the model to the edge
node obtains a higher inference speedup. Meanwhile, the
cloud-only method is limited by the low bandwidth between
the device node and the cloud node. By increasing the band-
width between the device node and the cloud node, the cloud-
only method achieves a lower inference latency in that the
input data transmission time between the device node and
the cloud node is smaller. Fig. [I0] illustrates the end-to-end
latency speedup among HPA, Neurosurgeon, and DADS. Since
Neurosurgeon can only partition the DNN of chain topology,
it is not applicable for ResNet-18, Darknet-53, and Inception-
v4, which are of DAG topology. The experimental results show
that HPA outperforms Neurosurgeon up to 2.33 in the chain
topology DNNs. Compared with DADS, HPA accelerates the
inference latency up to 2.97x in DNNs of DAG topology.
Notably, we observe that HPA attains more inference speedup
when the model gets larger, which requires more computa-
tion resources. To show the impact of network bandwidth
variations, we apply HPA to Inception-v4 and measure its

34

32
1]
) N S E (S S o A E—
€261 ¥ geeT
B241 7 et
Q221 AT e —e - Device-only

2047w —4- Edge-only
g %g T --@- Cloud-only
l% 14 DADS
>121 5 —¥— HPA
2 101 [
9 8 ===] SE e TSy Sy S
g e

4_

5' p S yp—— Sy sy pym—— y——— py— p——— —

10 20 30 40 50 60 70 80 90
Bandwidth (Mbps)

100

Fig. 11: We measure the latency speedup of Inception-v4 under
various bandwidth between the LAN and the cloud node.

301 =3 Device-only

= 281 Edge-only =
9 26 1 =<3 Cloud-only =
€ 241 B
S 22 EEH Neurosurgeon g
o 204 E=3 DADS g
3 18 { E=3 HPA+VSM =
$ 16 =
Q 14 1 =
%) g
> 121 B
o 10 A E
o 81 =

41 =

! A

0 + L] ¥ L + +

AlexNet VGG-16 ResNet-18 Darknet-53 Inception-v4

Fig. 12: The latency speedup when applying both HPA and
VSM. The device node and the edge nodes connect to the
cloud node via Wi-Fi.

«
w

PP s PO ‘ PP s PO ‘ PO, P e ‘. Berrraens denaeans PO .
@ o o
g g g
w4 w4 w4
< < <
S S S
8 43 43
€ ES £23
+ 4+ Cloud-only H +#+ Cloud-only £3 7| -4+ Cloudony 53
0ADS £ 0ADS £g 0ADS £2
~=- D3 89 |-==o03 29 |-==o03 2%
852 852 852
° 28 Y
3 3 3
3 3 3
£ £ £
. / g ! S
g g &
0 0 0
4G 5G Wi-Fi Optical 4G 5G Wi-Fi Optical 4G 5G Wi-Fi Optical 4G 5G Wi-Fi Optical 4G 5G Wi-Fi Optical

Network Network

(a) AlexNet (b) VGG-16

(c) ResNet-18

Network Network

(d) Darknet-53

Network

(e) Inception-v4

Fig. 13: Per-image communication overhead comparison among D?, Cloud-only, and DADS [8] for different models under

different network conditions.

end-to-end latency speedup under different network bandwidth
between the LAN and the cloud node. From Fig. [IT] we
monitor that when the network bandwidth between the LAN
and the cloud node increases, HPA tends to offload more
DNN layers to the cloud to optimize the end-to-end inference
latency.

We apply VSM to the convolutional layers that are assigned
to the edge node under HPA. We employ four Linux machines
with Intel Core 17-8700 CPU and 8 GB system memory as the
edge nodes. Both the device node and the edge nodes connect
to the cloud node via Wi-Fi. From Fig. [I2] we can see the
latency speedup when both HPA and VSM are applied. The
D3 system surpasses the device-only, edge-only, cloud-only,
Neurosurgeon, and DADS up to 31.13 %, 4.46%, 6.28%, 3.4x%,
and 3.4 x respectively. When VSM is deployed, the processing
time of convolutional layers at the edge tier does not shrink
to 1/4 of the original processing time compared with the HPA-
only approach, since there are spatial overlaps among the fused
tile stacks, which in turn leads to computational redundancy.

Under the condition that both the device node and the edge
nodes connect to the cloud node via Wi-Fi, HPA improves the
end-to-end latency to 1.29x - 1.8x, and HPA+VSM acceler-
ates the latency to 1.96x - 3.4x, where the state-of-the-art
is the baseline. Overall, the end-to-end latency measurements
verify the effectiveness of D3.

B. Per-image Communication Overhead

Typically, a cloud node locates at a remote place, which
is accessible from a LAN through the Internet. A lower data
transmission between the LAN and the cloud server reduces
the data transmission over the network core hence mitigating
the Internet congestion [39]. Transferring the intermediate
results of a DNN to the cloud curtails the data transmission
between the LAN and the cloud. We test the per-image
communication overhead to the cloud node of D? and its
counterparts and show the outcomes in Fig. D3 shrinks
the per-image data transmission size on the Internet backbone
to 27.21% - 66.67% of the cloud-only approach. D? reduces
the per-image data transmission size on the Internet backbone
to 27.21% - 80.42% when DADS is the baseline. When the
network bandwidth between the LAN and the cloud server
becomes larger, D? tends to offload more DNN layers and
transmit more intermediate data to the cloud server.

VI. CONCLUSION

With the increasing computation capability of mobile de-
vices and the growing need of accelerating DNN inference,
there is an expansion demand of performing synergistic DNN
inference across device, edge, and cloud without precision
loss. In this work, we introduce D?, a system that consists of
HPA and VSM. HPA partitions a DNN model into three parts
according to the per-layer processing time and the inter-layer

transmission delay of the DNN. Besides, VSM further divides
the feature maps of DNN layers assigned to the edge node into
multiple fused tile stacks for parallel processing. Under our
experiment settings, D3 system provides up to 3.4 x end-to-end
inference speedup on chain topology DNNs and accelerates the
end-to-end inference up to 2.35x on DAG topology DNNs
compared to the state-of-the-art. In addition, the per-image
data transmission size reduces to 27.21% of the state-of-the-

art,

which relieves network congestion and communication

cost.

[1]

[2]

[3]

[4

=

[5

=

[7

—

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

Z. He, J. Li, D. Liu, H. He, and D. Barber, “Tracking by animation:
Unsupervised learning of multi-object attentive trackers,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 1318-1327.

D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y. Ma, “Dual
learning for machine translation,” in Advances in neural information
processing systems, 2016, pp. 820-828.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks,” Synthesis Lectures on Computer Architecture,
vol. 15, no. 2, pp. 1-341, 2020.

X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp.
869-904, 2020.

S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). 1EEE, 2017, pp. 328-339.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS 17, 2017, pp. 615-629.

C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. 1EEE, 2019, pp. 1423—
1431.

L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, 2019, pp. 195-208.

S. Wang, A. Pathania, and T. Mitra, “Neural network inference on mobile
socs,” IEEE Design & Test, 2020.

Qualcomm Snapdragon 865+ 5G mobile platform, 2020 (accessed
September 30, 2020). [Online]. Available: https://www.qualcomm.com
/media/documents/files/qualcomm-snapdragon-865-5g-mobile- platfor;
m-product-brief.pdf

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738-1762,
2019.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348-2359, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.
A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]
[36]

[37]
[38]

(391

A. Farhadi and J. Redmon, “Yolov3: An incremental improvement,”
Computer Vision and Pattern Recognition, cite as, 2018.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, ser. AAAT’17, 2017, pp. 4278-4284.

H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proceedings of the ACM Symposium on Cloud Computing,
2018, pp. 401-411.

T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco, “Dis-
tributed inference acceleration with adaptive dnn partitioning and of-
floading,” in IEEE INFOCOM 2020-1EEE Conference on Computer
Communications. 1EEE, 2020, pp. 854-863.

E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447-457, 2019.

S. Laskaridis, S. I. Venieris, M. Almeida, 1. Leontiadis, and N. D. Lane,
“Spinn: synergistic progressive inference of neural networks over device
and cloud,” in Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking, 2020, pp. 1-15.

B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in
multi-access edge computing: A state-of-the-art review and framework,”
IEEE Communications Magazine, vol. 57, no. 3, pp. 56-62, 2019.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural network,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. 1IEEE, 2017, pp. 1396-1401.

N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450-465, 2017.

C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia er al., “Machine learning at
facebook: Understanding inference at the edge,” in 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2019, pp. 331-344.

Intel Core i7-8700 Processor, 2020 (accessed October 10, 2020).
[Online]. Available: https://www.intel.com/content/www/us/en/products
/processors/core/core-vpro/i7-8700.html

NVIDIA GeForce RTX 2080 Ti GPU, 2020 (accessed October 12,
2020). [Online]. Available: https://www.nvidia.com/en-us/geforce/graph
ics-cards/rtx-2080-t1/

J. Hartmanis, “Computers and intractability: a guide to the theory of
np-completeness (michael r. garey and david s. johnson),” Siam Review,
vol. 24, no. 1, p. 90, 1982.

J. Nossack and E. Pesch, “A branch-and-bound algorithm for the acyclic
partitioning problem,” Computers & operations research, vol. 41, pp.
174-184, 2014.

R. Sedgewick and K. Wayne, “Algorithms,” 2011.

NVIDIA Jetson Nano 2GB Developer Kit, 2020 (accessed October 22,
2020). [Online]. Available: https://developer.nvidia.com/embedded/jets
on-nano-2gb-developer-kit

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

Google, LLC, “grpc.” [Online]. Available: https://grpc.io/

Facebook, Inc. & Microsoft Corporation, “Onnx.” [Online]. Available:
https://onnx.ai/

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
“Pytorch.” [Online]. Available: https://pytorch.org/

Aric Hagberg, Pieter Swart, Dan Schult, “Networkx.”
Available: https://networkx.org/

Y. Harchol, A. Mushtaq, V. Fang, J. McCauley, A. Panda, and
S. Shenker, “Making edge-computing resilient,” in Proceedings of the
11th ACM Symposium on Cloud Computing, 2020, pp. 253-266.

[Online].

https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-865-5g-mobile-platform-product-brief.pdf
https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-865-5g-mobile-platform-product-brief.pdf
https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-865-5g-mobile-platform-product-brief.pdf
https://www.intel.com/content/www/us/en/products/processors/core/core-vpro/i7-8700.html
https://www.intel.com/content/www/us/en/products/processors/core/core-vpro/i7-8700.html
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://grpc.io/
https://onnx.ai/
https://pytorch.org/
https://networkx.org/

	I introduction
	II related work
	III proposed system
	III-A Edge Computing Paradigm
	III-B System Overview
	III-C System Model
	III-D Latency Estimation
	III-E Horizontal Partition Algorithm
	III-F Vertical Separation Module

	IV implementation
	V evaluation
	V-A End-to-end Inference Speedup
	V-B Per-image Communication Overhead

	VI conclusion
	References

