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Abstract—Data collection is indispensable for spatial crowd-
sourcing services, such as resource allocation, policymaking,
and scientific explorations. However, privacy issues make it
challenging for users to share their information unless receiving
sufficient compensation. Differential Privacy (DP) is a promising
mechanism to release helpful information while protecting indi-
viduals’ privacy. However, most DP mechanisms only consider a
fixed compensation for each user’s privacy loss. In this paper,
we design a task assignment scheme that allows workers to
dynamically improve their utility with dynamic distance privacy
leakage. Specifically, we propose two solutions to improve the
total utility of task assignment results, namely Private Utility
Conflict-Elimination (PUCE) approach and Private Game Theory
(PGT) approach, respectively. We prove that PUCE achieves
higher utility than the state-of-the-art works. We demonstrate the
efficiency and effectiveness of our PUCE and PGT approaches
on both real and synthetic data sets compared with the recent
distance-based approach, Private Distance Conflict-Elimination
(PDCE). PUCE is always better than PDCE slightly. PGT is
50% to 63% faster than PDCE and can improve 16% utility on
average when worker range is large enough.

Index Terms—Spatial Crowdsourcing, Differential Privacy

I. INTRODUCTION

With the popularity of mobile computing, spatial crowd-
sourcing has emerged as a new paradigm for spatial task
solutions involving human participation. Workers are encour-
aged to share their data with servers in exchange for benefits.
However, sometimes workers are reluctant to share due to vital
privacy leakage (e.g., location) which can lead to extensive
attacks such as identity theft, physical surveillance and stalking
and leakage of other sensitive information (e.g., individual
health status, racial types, and religion views). For example,
in ride-sharing, if a taxi driver submits his locations to the
platform for task requests over a period of time (i.e., a month),
a malicious platform attacker is able to guess the driver’s range
of activity and surveil him or her.

Differential Privacy (DP) [1] is often used to protect individ-
ual data. It trades off utility and privacy by well designing the
privacy budget (ε). However, different people have different
demands for both utility and privacy. For example, some

Fig. 1: Workers’ locations with service areas and tasks’ locations.

confidential agencies pay great attention to privacy. They
would rather gain high-level privacy protection by sacrificing
some utility. In ride-sharing, some taxi drivers would like to
sacrifice some personal location privacy for higher incomes by
serving more passengers. Users need to adjust their utility by
altering the privacy protection level themselves.

In this paper, we propose a dynamic private task assignment
scheme such that workers can trade their location privacy for
higher utilities. Consider the motivation example as follows:

Example 1. As shown in Figure 1, there are three workers:
w1, w2 and w3, and three tasks: t1, t2 and t3. Each worker wj
competes for tasks with smaller distances. However, in order
to protect their locations, all workers employ a differential
privacy mechanism to obfuscate their distances to tasks, and
send the obfuscated distances to the server. Assume the server
will assign workers to tasks based on their reported obfuscated
distances to minimize the total distance as: {〈t1, w3〉, 〈t2, w1〉,
〈t3, w2〉}. We also assume that the server is untrusted in this
example, which means the obfuscated distances on the server
can be accessed by workers if they want. Then, worker w3

can sacrifice some of his location privacy to report a closer
obfuscated distance with task t3. The updated assignment will
be {〈t1, w2〉, 〈t2, w1〉, 〈t3, w3〉} with a smaller total distance.

In this paper, we study the privacy-aware task assignment
(PA-TA) problem in spatial crowdsourcing, where workers
can dynamically adjust their privacy protection levels for
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higher utilities. Specifically, we assume a privacy setting where
spatial crowdsourcing workers are curious and want to protect
their location privacy thus only report obfuscated distances to
the server during the task assignment phase without relying
on a trusted server. Similar to the existing location protection
studies in spatial crowdsourcing [2], [3], [4], we assume the
server is untrusted, and thus cannot guarantee the security of
received obfuscated distances, which means that other entities
(e.g., curious workers) have access to the obfuscated distances
from the server. In this paper, we handle the task assignment
in a multi-proposal enabled batch-based style, where in a
given time window each worker can propose to an available
task for multiple times with different obfuscated distances
to improve their utilities until the end of the time window.
We first formally define the PA-TA problem. To improve the
accuracy of comparing obfuscated distances, we propose a new
comparison method, Partial Probability Comparison Function
(PPCF), which can resolve the comparison between a real
distance and an obfuscated distance. We prove our PPCF is
better than the existing method, Probability Compare Function
(PCF) [3], both theoretically and practically. To solve PA-TA,
we propose two solutions, namely Private Utility Conflict-
Elimination (PUCE) and Private Game Theoretic Approach
(PGT). PUCE is a greedy-based algorithm. PGT is on a
game-theoretic approach and can achieve higher accuracy than
PUCE when the worker range is larger than 1.4 on synthetic
data sets. The contributions of this paper are as follows.

(1) We formally define the privacy-aware task assignment
problem to support dynamic privacy budget adjustment for
workers in spatial crowdsourcing in Section III.

(2) We propose a greedy-based algorithm, namely Pri-
vate Utility Conflict-Elimination (PUCE), in Section V, and
a game-theoretic approach, namely Private Game Theoretic
Approach (PGT), in Section VI.

(3) We test our approaches on both synthetic and real data
sets to show their efficiency and effectiveness in Section VII.

II. RELATED WORK

Task Assignment in Spatial Crowdsourcing. Most task
assignments in spatial crowdsourcing focus on maximizing
total utility. Deng et al. [5] define the total utility as the total
number of performed tasks. Zhang et al. [6] maximize the
total acceptance ratio of workers. Zhao et al. [7] propose
algorithms to maximize the total rewards of the assigned
tasks. Tong et al. [8] and Wang et al. [9] maximize the
total expected rewards of the assigned tasks. The conventional
methods to achieving optimized total utility are exact methods
[10], [11] and greedy methods [12], [13], [14]. In order
to achieve higher utilities, game-theoretic methods for task
assignment are proposed recently. Ni et al. [15] declare that the
tasks may have some dependencies among them and give the
definition of dependency-aware spatial crowdsourcing (DA-
SC). They propose a game-theoretic approach to solve DA-
SC, and the experiment demonstrates that the game-theoretic
approach is superior to the greedy algorithms. Zhao et al. [16]
focus on the problem of Fairness-aware Task Assignment,

which is to minimize the payoff difference among workers
and to maximize the average worker payoff. They model
the problem as a multiplayer game and propose two game-
theoretic methods.
Privacy Protection in Spatial Crowdsourcing. Differential
Privacy [1] is a golden tool for privacy protection and private
data release. According to the existing of the trusted entity, it
can be classified into two categories: 1) Central Differential
Privacy (CDP) [17]; 2) Geo-Indistinguishability (Geo-I) [18]
and Local Differential Privacy (LDP) [19].

To et al. [20] adopt Private Spatial Decomposition (PSD)
[21] to create obfuscated data releases of workers and devise
a geocast mechanism for task request dissemination to protect
the privacy of workers’ locations. However, it needs a trusted
entity to help sanitize workers’ location data. Wang et al. [22]
study Bayesian attack [18], [23] on sparse mobile crowdsourc-
ing and propose a privacy-preserving framework to reduce the
data quality loss caused by differential location obfuscation.
They provide the method to get the optimal location obfusca-
tion matrix satisfying ε-differential privacy. It can be used to
protect workers’ location without relying on the trust entity.
To et al. [2] propose a privacy-aware framework that protects
the privacy of both tasks and workers in spatial crowdsourcing
without any trusted entity. It employs Geo-I to transform both
tasks’ and workers’ locations into obfuscated locations. The
platform can identify a set of candidate workers for the task
requester through these obfuscated locations without knowing
the real locations of both workers and the task. Wang et al.
[3] also assume that no trusted entity exist, but they propose
a method that achieves local differential privacy. These works
get rid of reliance on trusted third parties. However, they only
protect individual privacy without inspiring tasks or workers
to participate in the platform.
Private Data Compensation. In order to motivate requesters
and workers to join spatial crowdsourcing platforms while pro-
tecting their location privacy, we need a connection between
their utility and privacy cost. Jin and Zhang [24] provide a
framework for spectrum-sensing participants selection, which
achieves differential location privacy, approximate social cost
minimization, and truthfulness simultaneously. Ghosh et al.
[25] model the utility of competing agents considering privacy
cost. They hold the privacy cost related to some unknown
quantities v and suppose the privacy cost is changing linearly
with privacy budget ε (εv). Nissim et al. [26] argue that εv
should be the upper bound rather than the total privacy cost.
They propose a privacy-aware mechanism with v below a
certain threshold. Xiao [27] proposes two models for quan-
tifying an agent’s privacy cost using mutual information and
max divergence, respectively. However, it requires the privacy
variable δ > 0. Wang et al. [3] propose a personalized privacy-
preserving task allocation method. They define Probability
Compare Function (PCF) to compare two noise values with
the acknowledgment of their privacy budget. Besides, they pro-
pose Probabilistic Winner Selection Mechanism to minimize
the total travel distance and Vickrey Payment Determination
Mechanism to determine the appropriate payment to each



TABLE I: Notations.
Variable Description
ti the i-th task
wj the j-th worker
di,j the real distance from ti to wj
d̂i,j the obfuscated distance from ti to wj
d̃i,j the effective obfuscated distance from ti to wj
εi,j the privacy budget vector owned by wj to propose to ti
ε
(u)
i,j the u-th element in εi,j
ε̃i,j the effective privacy budget
bi,j the state vector corresponding to εi,j
b
(u)
i,j the u-th element in bi,j recording whether ε(u)i,j has been used
si,j the state recording whether ti matches wj

winner of workers satisfying truthfulness, profitability, and
probabilistic individual rationality. However, all workers can
only have a fixed budget for each task and cannot dynamically
compete for tasks with higher utilities.

III. PROBLEM DEFINITION

Definition 1 (Spatial Tasks). Let ti denote a task. Its location
and value are denoted as li and vi, respectively.

Here, vi is an inherent property of ti, and a worker will
gain vi revenue if he serves ti.

Definition 2 (Spatial Workers). Let wj denote a worker
located at lj . His service area is denoted as Aj with a service
radius rj .

Aj is a circle area centered at lj with radius rj (also called
worker range in the experiment). Let set Rj denote all tasks
in Aj . wj only proposes to those tasks in Rj .

To make the distance and the privacy budget comparable
with the task value, we define the Distance Value Function
(fd) in Definition 3 and Privacy Budget Function (fp) in
Definition 4 to unify the measurement.

Definition 3 (Distance Value Function, fd). Given a distance
d ∈ R∗, a function fd : R∗ → R∗ is called distance value
function, which takes d as the input and outputs a value v. It
satisfies that fd(0) = 0, f

′

d(·) ≥ 0.

Definition 4 (Privacy Budget Value Function, fp). Given a
privacy budget ε ∈ R∗, fp : R∗ → R∗ is a privacy budget
value function, which takes ε as input and outputs a value v.
It satisfies that fp(0) = 0, f

′

p(·) ≥ 0 and ∀ε1, ε2 ∈ R, fp(ε1)+
fp(ε2) = fp(ε1 + ε2).

fd transforms a distance value into a task value. fp trans-
forms a privacy budget value into a task value. fd and fp
are defined as monotone increasing functions and fd(0) =
fp(0) = 0. Besides, fp is a linear function in this paper and
we will consider other types of functions in the future work.

Definition 5 (Privacy-aware Task Assignment Problem).
Given a set of tasks T , a set of workers W , and a set of
obfuscated worker-and-task distances {d̂i,j |i ∈ [m], j ∈ [n]},
where each d̂i,j is added with a noise ηi,j subjecting to
distribution DF (εi,j), a PA-TA problem is to find a match

M between workers and tasks subject to the working area
constraint of workers, such that

max
∑
ti∈T

∑
wj∈W

(si,j · (vi − fd(di,j))− fp(bi,j · εi,j))

s.t.
∑
ti∈T

si,j ≤ 1, ∀i = 1, 2, ...,m

∑
wj∈W

si,j ≤ 1, ∀j = 1, 2, ..., n

∑
z∈Z

b
(z)
i,j ≤ Z, ∀z = 1, 2, ..., Z

si,j , bi,j ∈ {0, 1}, ∀i = 1, 2, ...,m; ∀j = 1, 2, ..., n

where si,j is the matching state representing whether task
ti is allocated to worker wj . si,j = 1, if ti is allocated
to wj ; otherwise, si,j = 0. vi is the value of task ti. fd
is a Distance Value Function transforming distance to value
cost. fp is a Privacy Budget Value Function transforming
privacy cost to value cost. εi,j = 〈ε(1)

i,j , ..., ε
(Z)
i,j 〉 is the

privacy budget vector between task ti and worker wj , where
ε
(u)
i,j (u ∈ Z) stands for the u-th proposal of worker wj to task
ti. bi,j = 〈b(1)

i,j , ..., b
(Z)
i,j 〉 is the state vector corresponding to

εi,j . Take b1,2 = 〈1, 1, 0, 0, 0〉 as an example. It means in
the total competition, w2 can propose to t1 five times and has
already proposed twice with the privacy leakage ε(1)

1,2 and ε(2)
1,2.

The objective of PA-TA is to find a one-to-one match that
maximizes the total profit on the platform. In the objective
function, there are three important parts to construct the
matching profit between ti and wj : task value vi, distance
value cost fd(di,j) and privacy cost fp(bi,j · εi,j). We model
the matching profit as the linear combination of the three parts.
Note that, the privacy cost is concerned for the process of “wj
proposing to ti” but not for the final matching state. Thus,
fp(bi,j · εi,j) is not affected by si,j .

We give some of the frequently used variables in Table I.

IV. REVIEW OF CONFLICT ELIMINATION ALGORITHM

Conflict Elimination Algorithm (CEA) [3] is a related work
that can resolve the winner conflict problem and can be used as
a subroutine in our proposed algorithm, thus we first quickly
review CEA. Here, workers are regarded as competitors. When
there are more than one worker competing for one task, there
will be a conflict, called winner conflict. The problem of
resolving all these conflicts is called winner conflict problem.

Given all distances from each task-worker pair, CEA con-
structs the distance rank matrix Am×n = (ai,k)m×n where
ai,k stands for the index of the worker who is the k-th nearest
from ti. For example, ai,k = j means wj is the k-th nearest
worker of ti.

For any conflict worker wc selected by ϕ tasks, CEA
allocates only one task to wc and finds another candidate other
than wc for each of the rest ϕ−1 conflict tasks. Thus, for each
conflict worker wc, there will be ϕ candidate distance choices
as shown in equation 1:

C1 : Dc1 = D(ac1,1) +D(ac2,2) + ...+D(acϕ,2)
C2 : Dc2 = D(ac1,2) +D(ac2,1) + ...+D(acϕ,2)
...
Cϕ : Dcϕ = D(ac1,2) +D(ac2,2) + ...+D(acϕ,1)

(1)



TABLE II: Distance rank matrix.
Task/Rank 1 2 3

t1 w1 (9.06) w2 (9.85) w3 (12.04)
t2 w3 (2.09) w1 (10.44) w2 (12.59)
t3 w3 (2.00) w2 (11.28) w1 (18.87)

where Cu(1 ≤ u ≤ ϕ) stands for the u-th solution: allocating wc
to tcu and other tasks are allocated to the successive workers.

To choose the best solution from ϕ choices in equation 1,
we need to compare four distance values. For example, to
compare Cu and Cv (1 ≤ u, v ≤ ϕ), we need to compare
D(acu,1) +D(acv,2) with D(acv,1) +D(acu,2).

If the distances are obfuscated distances, we have to com-
pare four Laplace random variables. In CEA, it supposes that
the difference between the travel distances for different tasks is
relatively small for the same worker (i.e., D(acu,1) ' D(acv,1)).
Then, CEA only needs to compare two Laplace random
variables, which can be calculated by Probability Compare
Function [3].

Definition 6 (Probability Compare Function [3]). Given two
values da and db with their obfuscated values d̂a = da +
Lap(x, 1/εa) and d̂b = db + Lap(x, 1/εb) (Lap(x, y) is a
random variable drawn from Laplace distribution with param-
eters x, y), a function f : R4 → [0, 1] is called a probability
compare function (PCF) if PCF (d̂a, d̂b, εa, εb) = Pr[da < db].

For Example, suppose there are 3 tasks and 3 workers, their
distance rank matrix is shown in Table II. Each element in the
table stands for the worker and his relative distance to the
corresponding task.

For w3, both t2 and t3 will choose him first. Thus w3 is
a conflict worker. We have C1 : D2 = D(a2,1) + D(a3,2)
and C2 : D3 = D(a2,2) + D(a3,1). To make a choice
between C1 and C2 (choose the minimal one), it supposes
D(a2,1) ' D(a3,1), and thus only needs to compare D(a3,2)
with D(a2,2). Since D(a2,2) < D(a3,2), C2 is selected.

V. PRIVATE UTILITY CONFLICT-ELIMINATION (PUCE)
A direct method to solve our matching problem is collecting

all workers’ proposals to tasks with privacy budgets and
obfuscated distances and using the Hungarian algorithm to get
the optimal matching. Here, the Hungarian matching algorithm
[28], also called the Kuhn-Munkres algorithm, is one classical
method to exactly solve maximum bipartite matching problem
with the time complexity of O(n3), where n is the number
of vertices in either part of the bipartite graph. However, to
use the Hungarian algorithm, we have to compare the path
length calculated by summing many obfuscated distances,
which needs complex comparisons and has low accuracy. In
this section, we propose a private utility conflict-elimination
(PUCE) algorithm to solve PA-TA problem. Due to each
worker can propose to multiple tasks in each round, PUCE
greedily chooses the worker-and-task pair that maximizes the
subjective function of PA-TA.

A. Comparison and Estimation of Obfuscated Distances

Before introducing PUCE algorithm, we first explain three
necessary techniques for solving: 1) how to calculate a suitable

obfuscated distance when there is a series of obfuscated
distances for a given task and a given worker; 2) how to
compare a real distance with an obfuscated distance; 3) how to
compare two utilities when knowing the obfuscated distances.

In this paper, according to the objective function of PA-TA,
we define the utility of worker wj conducting task ti as:

Uj(i) = vi − fd(di,j)−
∑
ti∈T

fp(bi,j · εi,j) (2)

Effective Obfuscated Distance and Effective Privacy Bud-
get. In the process of our task assignment, wj may propose
to ti many times, which means wj will submit more than
one obfuscated distance d̂i,j to the server. For the server, it
needs to determine an obfuscated distance (we call it effective
obfuscated distance) for di,j to make comparison. For other
workers, they also need the effective obfuscated distance to
compare with the distances of themselves. Thus, we need a
method to calculate the effective obfuscated distance in a series
of obfuscated distances and ensure the effective obfuscated
distance supports comparison (i.e., supporting PCF).

We first adopt maximum likelihood estimation (MLE) [29]
to get a distance interval ď from a worker w’s release
set DE = {(d̂1, ε1), (d̂2, ε2), ..., (d̂u, εu)} for a task t. Let
DE.d̂ denote the set {d̂1, d̂2..., d̂u} in DE. Let L(X) =
L(d̂1, d̂2, ..., d̂u;X) =

∏u
k=1 Pr[d̂k;X], where Pr[d̂k;X] is the

probability function of Lap(εk). When the server gets DE, it
calculates the estimation of d as follows.

ď = arg maxd

u∏
k=1

εk

2
exp(−|d̂k − d| · εk)

= arg mind

u∑
k=1

εk · |d̂k − d|.

The value of ď is all points on a line segment. We limit
the domain of d in DE.d̂ to get the only estimation of d
(supporting comparison). This estimation of d is the effective
obfuscated distance, and we denote it as d̃. We call the
corresponding privacy budget (denoted by ε̃) of d̃ in the pair
as effective privacy budget and call the pair (d̃, ε̃) as effective
distance-budget pair.

For example, suppose w1 releases 3 pairs of ob-
fuscated distance and privacy budget to t1: DE =
{(0.1, 0.2), (0.2, 0.9), (0.3, 0.1)}. Then we can calculate the
effective distance-budget pair as (d̃ = 0.2, ε̃ = 0.9).
Partial Probability Compare Function (PPCF). If wj1 want
to compare his distance from himself to ti with the effective
obfuscated distance d̂i,j2 of wj2 to t1, wj1 can utilize the
real distance di,j1 instead of d̂i,j1 or d̃i,j1 to achieve a more
accurate comparison result. Thus, we need a method for the
comparison between a real distance and an obfuscated dis-
tance. Suppose there are two values di and dj . The obfuscated
value of dj is d̂j , which is calculated by adding noise ηj drawn
from a type of distribution DF (εj). Then, we have

d̂j = dj + ηj , ηj ∼ DF (εj),

Pr[di < dj ] = Pr[di < d̂j − ηj ]

= Pr[ηj < d̂j − di].



Algorithm 1: WorkerProposal
Input: Not winning worker set NWW
Output: Candidate list CL

1 Initialize candidate list CL as m empty sets;
2 for each worker wj in NWW do
3 for each task ti in Rj do
4 if wj ’s privacy budget has been exhausted then
5 continue;

6 Uj(i) = vi − fd(di,j)−
∑
ti∈T

fp(bi,j · εi,j);
7 if Uj(i) ≤ 0 then
8 continue;

9 Get (d̃i,win(i), ε̃i,win(i)) of wwin(i) from the server;
10 Calculate new (d̃i,j , ε̃i,j);
11 Calculate d̃′i,win(i),j by Equation 4;
12 if PPCF(di,j , d̃

′
i,win(i),j , εi,win(i)) ≤ 0.5 then

13 continue;

14 if PCF(d̃i,j , d̃
′
i,win(i),j , ε̃i,win(i), ε̃i,j) ≤ 0.5 then

15 continue;

16 Add d̃i,j to CL[i]

17 return CL;

Let f(x) be the probability density function of ηj , then

Pr[di < dj ] =

∫ d̂j−di

−∞
f(ηj)dηj .

Similar to PCF, we define PPCF(di, d̂j , εj) = Pr[di < dj ].
If the distribution of DF (εj) is symmetric about the y-axis
(e.g., Laplace distribution), then

PPCF(di, d̂j , εj) >
1

2
⇔ di < d̂j . (3)

Our PPCF is better than PCF as shown in Theorem V.1.
Please refer to the details of the proof in Appendix A.

Theorem V.1. For any given distance dx, dy, εx, εy satisfying
dx < dy . Let ηx ∼ Lap(0, 1/εx), ηy ∼ Lap(0, 1/εy). Let
d̂x = dx + ηx, d̂y = dy + ηy . Then Pr[PCF (d̂x, d̂y, εx, εy) >
1
2 ] ≤ Pr[PPCF (dx, d̂y, εy) > 1

2 ].

Comparison Transformation from Utility to Distance. After
receiving proposals of workers, the server needs to eliminate
conflict among workers for each task. We can easily use CEA
directly to choose only one worker for each task. However, in
CEA, the comparison is based on obfuscated distances rather
than utility functions, which does not satisfy our optimized
goal. If we use the utility directly as the comparison object,
the server will know the utility value in each round, which
leaks the real distance between tasks and workers.

In order to handle the problem above, we convert the utility
comparison into the distance comparison and then use CEA to
choose the high-utility one under the distance form. For any
two workers wa and wb, they hold tasks tx and ty , respectively.
Their utilities are Ua(x) and Ub(y), respectively. Let Va(x) =
Ua(x)+fd(dx,a) and Vb(y) = Ub(y)+fd(dy,b). Then we have

Pr(Ua(x) > Ub(y)) = Pr(Va(x)− fd(dx,a) > Vb(y)− fd(dy,b))

= Pr(f−1
d (Va(x))− dx,a > f

−1
d (Vb(y))− dy,b)

= Pr(dx,a < dy,b + f
−1
d (Va(x))− f−1

d (Vb(y))).

Let d̂
′
y,b,a = d̂y,b + f

−1
d (Va(x))− f−1

d (Vb(y)), (4)

thus, Pr(Ua(x) > Ub(y)) = Pr(ηx,a − ηy,b > d̂x,a − d̂′y,b,a)

= PCF(d̂x,a, d̂
′
y,b,a, εx,a, εy,b).

Algorithm 2: WinnerChosen
Input: Candidate list CL, last term allocation list AL′

Output: Allocation list AL, updating state upd
1 if All set in CL are empty then
2 return (AL′, false)

3 Initialize AL as m null values;
4 Initialize competing table CT as empty table;
5 for Each candidate set CSi in CL do
6 if CSi is empty then
7 Set AL[i] = AL′[i];

8 else
9 Set CT [i] = CSi ∪ {d̃i,win(i)};

10 Calculate d̂′i,a,b for each pair in CT [i];
11 Sort CT [i] in descending order by PCF(d̂′i,a,b, d̂i,b, εi,a, εi,b);

12 Get updated matching M set by using CEA for CT ;
13 Add M to AL;
14 return (AL, true);

Therefore, we can calculate d̂′y,b,a for each pair of wa and
wb with the same task ty and use PCF function to compare the
utility. Similarly, we can compare Ua(x) and Ub(y) through
PPCF: Pr(Ua(x) > Ub(y)) = Pr(ηy,b < d̂

′
y,b,a − dx,a)

= PPCF(dx,a, d̂
′
y,b,a, εy,b).

B. The PUCE Algorithm

We suppose that wj will propose to all tasks Rj within area
Aj . In order to further decline unnecessary privacy costs, we
add an extra judgment for workers through the PPCF function.

The worker proposal process and winner-chosen algorithm
are respectively shown in Algorithm 1 and Algorithm 2.

In Algorithm 1, each worker wj checks all the tasks in his
service area and judges whether it is worth to complete for
the tasks (check whether Uj(i) > 0 for ti ∈ Rj). Besides,
he also judges whether he has advantages over the before-
winner worker for these tasks by utility comparison. The
utility comparison is shown from line 9 to line 15. If the two
conditions are satisfied, wj will propose to this task with a
new privacy budget and obfuscated distance.

Algorithm 2 takes candidate list CL (constructed by Al-
gorithm 1) and last term allocation list AL′ as the input. It
outputs the updating allocation list with the updating state
upd. The false value of upd means there is no change for
AL. The candidate list will be partitioned into two parts. Ones
with no workers’ proposal are the same as the last term ones,
which is shown from line 6 to line 7. The others containing
workers’ proposals will be added to a new competing table
with the winners of the last term. Each set of workers for
applied tasks in competing table will be sorted by the utility
value (compared by PCF(d̂′x,a,b, d̂x,b, εx,a, εx,b)) in descending
order. The process is shown from line 9 to line 11.

By executing Algorithm 1 and Algorithm 2, we can con-
struct our PUCE algorithm as shown in Algorithm 3. The total
task set and the total worker set can be divided into several
time window slices. We execute PUCE on each time window
in a batch-based style. In the beginning, the not winning
worker set NWW is initialized as the whole worker set W ,
and the allocation list AL is initialized as an empty set. We
execute Algorithm 1 to get candidate allocation list CL. Then



Algorithm 3: PUCE
Input: Tasks T and workers W in the current time window
Output: The task-worker matching pairs TWM

1 Initialize not winning worker set NWW as W ;
2 Initialize halt state hs as false;
3 Initialize allocation list AL as m empty set list;
4 while hs is not true do
5 Get CL by executing Algorithm 1;
6 Get AL and upd by executing Algorithm 2;
7 Update NWW by removing new winners and adding new losers;
8 Set hs = upd;

9 Set TWM as AL;
10 return TWM ;

TABLE III: Task-worker distances.
Worker/Task t1 t2 t3

w1 12.2 3.61 17.12
w2 5 10.44 12.21
w3 9.43 18.25 7.28

we execute Algorithm 2 to pick a new allocation list AL and
get a updating state upd. When there are still some workers
proposing to tasks (CL is not empty), upd will be set as true.
We also update NWW by removing the new winner workers
and adding the new loser workers. When no workers propose
to any task, upd will be set as false. Thus, we get the final
task-worker matching pairs TWM as AL.

Example 2 (Running Example of PUCE). We give a run-
ning example of the whole process of PUCE following the
motivation example. As shown in Figure 1, three workers w1,
w2 and w3 have service areas 15, 15 and 10, respectively.
Three tasks t1, t2 and t3 have task values 12.4, 11 and 13,
respectively. The distance between each task and worker is
shown in Table III.

Suppose there are three privacy budgets for each task-
worker pair. The corresponding effective distance, the privacy
budget and utility are shown in Table IV.

At the beginning, NWW is set as {w1, w2, w3}. CL is set
to NULL. w1 firstly judges whether the tasks within his service
area will be added to the CL. He calculates the utility for t1
as U1(1) = 0.1 > 0 and adds d̃1,1 to CL[1]. Besides, he adds
d̃2,1 to CL[2]. And w2, w3 also add their selected tasks (by
the judgement in Algorithm 1). And we can get the data in CL
as shown in Table V (the utility values are shown in square
brackets). Then we get CT by sorting CL, which is shown in
Table VI.

After that, we find t1 is allocated to w3. Besides, t2 and t3
fall into conflict for w2. After the comparison of CEA, t3 is
allocated to w2. In the next round, there is only t2 unallocated.
And w1 has not matched any task yet. w1 can only propose
for t2. However the utility of U1(2) in this round is −3.1 ≤ 0.
Thus there is no worker proposing to any tasks in this round.
And the process is end.

Privacy Analysis. We define the query data set of worker wj
as Xj , which consists of all tasks in the service area of wj
(i.e., Rj). The neighboring data set of Xj is noted as X ′j . It
satisfies that ‖Xj −X ′j‖ = 1, which means there is only one
different task item between Xj and X ′j . We focus on the query
f as ‘Get each distance from wj to his service tasks Rj’. That
means f(Xj) = [di1,j , ..., di|Rj |,j ].

TABLE IV: Effective obfuscated distance, privacy budget and utility.
Matchable pair (d̃, ε(1)), utility (d̃, ε(2)), utility (d̃, ε(3)), utility

(t1, w1) (12.7,0.1) 0.1 (12.4,0.3) (12.3,0.4)
(t1, w2) (5.5,4.6) 2.8 (5.3,4.65) (5.1,4.8)
(t1, w3) (9.93,0.1) 2.87 (9.63,0.4) (9.53,0.4)
(t2, w1) (4.11,6.99) 0.4 (4.01,7.1) -3.1 (3.81,7.2)
(t2, w2) (10.94,0.1) 0.46 (10.64,0.2) (10.54,0.5)
(t3, w2) (12.71,0.1) 0.69 (12.51,0.3) (12.31,0.4)
(t3, w3) (7.78,5.4) 0.32 (7.58,5.5) (7.38,5.6)

TABLE V: Candidate list CL.
CL
1 d̃1,1=12.7, [0.1] d̃1,2=5.5, [2.8] d̃1,3=9.93 [2.87]
2 d̃2,1=4.11, [0.4] d̃2,2=10.94, [0.46]
3 d̃3,2=12.71, [0.69] d̃3,3=7.78, [0.32]

TABLE VI: Competing table CT .
CT 1 2 3
1 d̃1,3=9.93 [2.87] d̃1,2=5.5, [2.8] d̃1,1=12.7, [0.1]
2 d̃2,2=10.94, [0.46] d̃2,1=4.11, [0.4]
3 d̃3,2=12.71, [0.69] d̃3,3=7.78, [0.32]

Theorem V.2. PUCE satisfies (
∑
ti∈Rj

bi,jεi,jrj)-local differ-
ential privacy for each worker wj .

Proof. Let Aj be the mechanism PUCE applying to wj with
query f defined above. Let Xj be the location of wj . For query
f(Xj) = [di1,j , ..., di|Rj |,j ], we extend it to an equivalent
query f̂(Xj) = f(Xj)·J , where J is a block diagonal matrix:

J =


CP (bi1,j)

CP (bi2,j)

. . .
CP (bi|Rj |,j)


Here, CP (b) is the compression of b, which means removing

all zero element of b. For example, if b = [1, 1, 0, 0, 0], then
CP (b) = [1, 1]. f̂(Xj) means query diu,j for sum(biu,j) times
for u ∈ [|Rj |], where sum(biu,j) means the sum of all
elements in biu,j . We denote the size of f̂(Xj) as |f̂ | and
the a-th element of f̂(Xj) as f̂(Xj)a.

Let Yj denote the set of all published obfuscated distances
of the worker wj to tasks in Rj . Then we have Yj = f̂(Xj)+
[η1, η2, ..., η|f̂ |], where ηa(1 ≤ a ≤ |f̂ |) is an i.i.d random
variable drawn from Lap(1/εa). Hence we have

Pr[Aj(Xj) = Yj ]

Pr[Aj(X′j) = Yj ]
=

∏
a∈[|f̂|]

(
exp(−εa|Yj,a − f̂(Xj)a|)
exp(−εa|Yj,a − f̂(X′j)a|)

)

=
∏

ti∈Rj

∏
u∈[sum(bi,j)]

(
exp(−ε(u)i,j |d̃

(u)
i,j − di,j |)

exp(−ε(u)i,j |d̃
(u)
i,j − d′i,j |)

)

≤
∏

ti∈Rj

∏
u∈[sum(bi,j )]

(exp(ε
(u)
i,j (|di,j − d′i,j |)))

=
∏

ti∈Rj

exp(bi,jεi,j(|di,j − d′i,j |))

≤ exp(
∑
ti∈Rj

bi,jεi,jrj).

Because Xj contains only one element, then we have PUCE
satisfies (

∑
ti∈Rj bi,jεi,jrj)-local differential privacy for each

worker wj .

Time Cost Analysis. There are m tasks and n workers. Each
worker has Z privacy budget for each task. Therefore, the
worst time cost for PUCE is O(m · n · Z).
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Fig. 2: Utility change.

VI. PRIVATE GAME THEORETIC APPROACH (PGT)

In this section, we declare that each worker can compete for
each task within their service area, whether they have already
won a task. We model our problem as an exact potential
game with at least one Nash equilibrium in pure strategy. To
make the utility value support comparison under a privacy
circumstance, we approximate our utility function by replacing
real distance with effective obfuscated distance.

A. Cases of Utility Change in Competition
There are three cases of utility change in each time of

competition for each task-worker pair. They are Winning
Change, Abandoned Change and Defeated Change. We denote
them as ∆UWj (i), ∆UAj (i) and ∆UDj (i) respectively, which
are expressed as follows:

∆U
W
j (i) = vi − fd(d̃i,j)− fp(ε

(z)
i,j ),

∆U
A
j (i) = −vi + fd(d̃i,j),

∆U
D
j (i) = −vi + fd(d̃i,j).

∆UWj (i) means the utility change of winning task ti for
worker wj . ∆UAj (i) means the utility change of abandoning
task ti (because each worker can only match one task at most)
for worker wj . ∆UDj (i) means the utility change of being
defeated by some other competitor in competing for task ti for
worker wj . It is the same with ∆UAj (i). We use ∆U

W (k)
j (i),

∆U
A(k)
j (i) and ∆U

D(k)
j (i) to denote the above three utility

change in k-th competition.
We give examples of these three utility changes. Suppose

there are two workers w1, w2 and two tasks t1, t2. At the
first stage, w1 competes for t1 and w2 competes for t2.
Then the corresponding ∆UW1 (1) and ∆UW2 (2) are shown
in Figure 2(a). At the second stage, w1 competes for t2 and
gets it successfully. As is shown in Figure 2(b). The utility
change between w1 and t2 is ∆UW1 (2). The utility change
between w1 and t1 is ∆UA1 (1). The utility change between
w2 and t2 is ∆UD2 (2).

B. Game Modeling and Nash Equilibrium

We approximate our PA-TA as Privacy-aware Approximate
Task Assignment (PAA-TA) problem by replacing the real
distance as effective distance. We formulate PAA-TA as an
n-player strategic game, G =< W,S,UT >. G consists of
players W , strategy spaces S, and utility functions UT . We
specify these three components as follows:

(1) W = {w1, ..., wn} denotes the finite set of n workers with
n ≥ 2. We will use worker and player interchangeably in the
rest of the paper.

(2) S = {Sj}nj=1 is the strategy spaces (i.e., the overall
strategy set of all players). Sj is the finite set of strategies

Algorithm 4: PGT
Input: Tasks T and workers W in the current time window
Output: The allocation list AL

1 Initialize AL as a list with m null value;
2 Initialize halt state hs as false;
3 while hs is false do
4 Set hs as true;
5 for each worker wj ∈ W do
6 Get the maximal UTj for each task ti ∈ Rj \ {AL[b]};
7 if UTj(st) is null or UTj(st) ≤ 0 then
8 continue;

9 Set hs as false;
10 Set tc as wj ’s already mateched task;
11 Set tb as the task with maximal UTj ;
12 Set wf as the worker matched tb before;
13 Update effective distance-budget pair between tb and wj ;
14 Set AL[c] = null;
15 Set AL[b] = wj ;

16 return AL;

available to worker wj . Here, one strategy of worker wj
indicates an action that he proposes to some task ti with a
privacy budget ε(u)

i,j for the u-th proposal.
(3) UT = {UT (k)

j }
n
j=1 is the utility functions of all players

wj where k is the total competition number. For each chosen
strategy st ∈ S, UT (k)

j (st) ∈ R is the utility of player wj . We
calculate UT

(k)
j (st) as follows:

UT
(k)
j (st) = ∆U

W (k)
j (i2) + ∆U

D(k−1)

win(i2)
(i2) + ∆U

A(k−1)
j (i1)

= vi2 − fd(d̃
(k)
i2,j

)− fp(ε
(zk)

i2,j
)− vi2 + fd(d̃

(k−1)

i2,win(i2)
)

− vi1 + fd(d̃
(k−1)
i1,j

)

= −fd(d̃
(k)
i2,j

)− fp(ε
(zk)

i2,j
) + fd(d̃

(k−1)

i2,win(i2)
)− vi1 + fd(d̃

(k−1)
i1,j

).

(5)

In equation 5, wj wins ti1 and wwin(i2) wins ti2 in (k−1)-th
competition. wj will compete for ti2 in k-th competition.

In the following part, we define exact potential game (EPG)
and prove that PAA-TA is an EPG.
Definition 7 (Exact Potential Game). A strategic game, G =<
W,S,UT >, is an Exact Potential Game (EPG) if there exists
a function, Φ : S → R, such that for all stj ∈ S, it holds
that, ∀wj ∈ W , ∀k ∈ N+,

UT
(k)
j (st

′
j , st−j)− UT

(k)
j (stj , st−j)

=Φ
(k)

(st
′
j , st−j)− Φ

(k)
(stj , st−j).

Theorem VI.1. PAA-TA is an Exact Potential Game (EPG).
Proof: We define a potential function as

Φ
(k)

(st) =
∑
ti∈T

∑
wj∈W

(s
(k)
i,j · (vi − fd(d̃i,j))− fp(b

(k)
i,j · εi,j))

which represents the total utility value of the matching result
in k-th competition that all worker gain. Let Ũ

(k)
j (i) = vi −

fd(d̃
(k)
i,j )−

∑
ti∈W

fp(b
(k)
i,j ·εi,j) be the approximate value of Uj(i)

by replacing the real distance di,j with the effective obfuscated
distance d̃i,j . Then we get the recurrence relation of Ũ (k)

j (i)
for k as

Ũ
(k)
j (i) =


Ũ

(k−1)
j (i) + vi − fd(d̃

(k)
i,j )− fp(ε

(zk)

i,j ) ]1

Ũ
(k−1)
j (i)− vi + fd(d̃

(k−1)
i,j ) ]2

Ũ
(k−1)
j (i) ]3

where condition ]1 means wj wins ti in k-th competition,
condition ]2 means wj gives up his original task or is defeated
in k-th competition and condition ]3 means there is no change



between ti and wj . Suppose that wj , wjx , wjy wins ti1 , ti2 , ti3
in (k − 1)-th competition respectively and wj will compete
for ti2 (stj) or ti3 (st′j) in k-th competition, then we obtain

Φ
(k)

(st
′
j , st−j)− Φ

(k)
(stj , st−j)

=Ũ
(k)
j (i1) + Ũ

(k−1)
j (i2) + Ũ

(k)
j (i3) + Ũ

(k)
jy

(i3) + Ũ
(k−1)
jx

(i2)

− (Ũ
(k)
j (i1) + Ũ

(k)
j (i2) + Ũ

(k−1)
j (i3) + Ũ

(k−1)
jy

(i3) + Ũ
(k)
jx

(i2))

=Ũ
(k)
j (i3)− Ũ(k−1)

j (i3)− (Ũ
(k)
j (i2)− Ũ(k−1)

j (i2))

+ Ũ
(k)
jy

(i3)− Ũ(k−1)
jy

(i3)− (Ũ
(k)
jx

(i2)− Ũ(k−1)
jx

(i2))

=vi3 − fd(d̃
(k)
i3,j

)− fp(ε
(zk)

i3,j
)− (vi2 − fd(d̃

(k)
i2,j

)− fp(ε
(zk)

i2,j
))

− vi3 + fd(d̃
(k−1)
i3,jy

)− (−vi2 + fd(d̃
(k−1)
i2,jx

))

=− fd(d̃
(k)
i3,j

)− fp(ε
(zk)

i3,j
) + fd(d̃

(k−1)
i3,jy

)

+ fd(d̃
(k)
i2,j

) + fp(ε
(zk)

i2,j
)− fd(d̃

(k−1)
i2,jx

)

=vi3 − fd(d̃
(k)
i3,j

)− fp(ε
(zk)

i3,j
)− vi3 + fd(d̃

(k−1)
i3,jy

)− vi1 + fd(d̃
(k−1)
i1,j

)

− (vi2 − fd(d̃
(k)
i2,j

)− fp(ε
(zk)

i2,j
)− vi2 + fd(d̃

(k−1)
i2,jx

)− vi1 + fd(d̃
(k−1)
i1,j

))

=∆U
W (k)
j (i3) + ∆U

D(k−1)
jy

(i3) + ∆U
A(k−1)
j (i1)

− (∆U
W (k)
j (i2) + ∆U

D(k−1)
jx

(i2) + ∆U
A(k−1)
j (i1))

=UT
(k)
j (st

′
j , st−j)− UT

(k)
j (stj , st−j)

According to Definition 7, the strategic game of the PAA-
TA is an exact potential game. Therefore, PAA-TA has pure
Nash equilibrium according to Theorem 2.3 in Ref [30].
PGT Algorithm. The server executes the competition process
with the aid of workers. Each worker wj needs to repeat
choosing the best task tb for the maximal utility value. If
the maximal value is positive, wj will update his effective
distance-budget pair for tb and ask the server to update the
allocation list.

We give the process in Algorithm 4. The critical step is to
calculate the best response information (maximal UTj) shown
in line 6. The state variable hs is a boolean variable that
indicates whether there still exists a task that can improve
a utility function UTj for any wj ∈ W . If there is no such
task, the process will halt.

Example 3 (Running Example of PGT). Consider the example
in Table III, and the effective obfuscated distance and privacy
budgets are shown in Table IV. As shown in Table VII, suppose
in the k-th competition, the winners of t1, t2 and t3 are w1,
w2 and w3 respectively. And w1, w2 and w3 have consumed
their first privacy budgets ε1 for all three tasks. Besides, they
public the obfuscated distances relevant to ε1 for all tasks (so
that all the effective obfuscated distances related to ε1 are able
to calculated by the server and all workers). Suppose fd and
fp are both identity functions (i.e., fd(x) = x, fp(x) = x).

In the (k + 1)-th competition, it is w1’s turn to compete.
w1 can only compete for t2. He first uses his new privacy
budget ε

(zk+1)

2,1 = ε
(2)
2,1 = 7.1 and calculates the new effective

obfuscated distance d̃
(k+1)
2,1 = 4.01. After that, he calculates

UT
(k+1)
1 = −fd(d̃

(k+1)
2,1 ) − fp(ε

(zk+1)

2,1 ) + fd(d̃
(k)
2,2) − v1 + fd(d̃

(k)
1,1) =

0.13 > 0. Then, he publishes his privacy budget ε
(2)
2,1 = 7.1

with the corresponding obfuscated distance d̂
(2)
2,1 to the server.

The server can also calculate the new effective obfuscated
distance d̃

(k+1)
2,1 and UT

(k+1)
1 . It finds that UT (k+1)

1 is positive,
which means w1 wins t2. The server then alters the allocation

TABLE VII: Allocation list from the k-th competition.
Task k-th (k + 1)-th (k + 2)-th – (k + 6)-th
t1 w1 NULL w2

t2 w2 w1 w1

t3 w3 w3 w3

TABLE VIII: The timeline of effective distances and privacy budgets.
Pair/Times k k + 1 k + 2 k + 3 k + 4 k + 5 k + 6

(t1, w1) (12.7,0.1) (12.7,0.1) (12.7,0.1)(12.4,0.3)

(t1, w2) (5.5,4.6) (5.5,4.6) (5.3,4.65)(5.3,4.65)

(t1, w3) (9.93,0.1) (9.93,0.1) (9.93,0.1) (9.93,0.1)
(9.63,0.4) (9.63,0.4)

(t2, w1) (4.11,6.99) (4.11,6.99) (4.01,7.1)(4.01,7.1)

(t2, w2) (10.94,0.1) (10.94,0.1) (10.94,0.1)(10.64,0.2)

(t3, w2) (12.71,0.1) (12.71,0.1) (12.71,0.1) (12.71,0.1) (12.71,0.1)(12.51,0.3) (12.51,0.3)
(t3, w3) (7.78,5.4)

table AL by setting the winner of t2 as w1 and the winner of
t1 as NULL.

In the (k + 2)-th competition, it is w2’s turn to com-
pete. w2 can compete for both t1 and t3. He calculates
UT

(k+2)
2 [t1] = v1 − fd(d̃

(k+2)
1,2 ) − fp(ε

(zk+2)

1,2 ) = 2.45 > 0 and
UT

(k+2)
2 [t3] = −fd(d̃

(k+2)
3,2 ) − fp(ε

(zk+2)

3,2 ) + fd(d̃
(k+1)
3,3 ) = −5.03 < 0.

After that, w2 sets UT (k+2)
2 as UT (k+2)

2 [t1], which is the maximal
positive value in set {UT (k+2)

2 [t1], UT
(k+2)
2 [t3]}. Then, w2 applies

to the server for t1 by proposing (d̂
(2)
2,1, ε

(2)
2,1). After similar

calculations, the server alters AL by setting the winner of
t1 as w2.

In the (k+3)-th competition, it is w3’s turn to compete. w3

can only propose to t1. However, the value UT (k+3)
3 = −9.95 < 0.

Therefore, w3 does not compete for any tasks.
These three steps are repeated until all workers do not pro-

pose to any tasks (i.e., until the 6-th competition). Table VIII
records the changing of effective obfuscated distances and
privacy budgets. The red one (with UT > 0) means there is a
new winner who publishes a new privacy budget and updates
the corresponding effective obfuscated distance. The green one
(with UT ≤ 0) means the competitor fails to compete for the
task and will publish neither his new obfuscated distance nor
his new privacy budget.

Convergence Analysis. In order to answer the convergence
speed of PGT, we need to know how many rounds it takes to
find a pure Nash equilibrium. For the corresponding potential
game of a PAA-TA instance, G =<W,S,UT >, we assume
there is an equivalent game with potential function ΦZ(st) =
d ·Φ(st), where d is a positive multiplicative factor satisfying
that ΦZ(st) ∈ Z for ∀st ∈ S. Let st∗ be the best strategy the
workers can choose in this PAA-TA game instance. Based on
the above assumption, we prove that PGT executes at most
ΦZ(st∗) rounds.

Theorem VI.2. PGT executes at most ΦZ(st∗) rounds to
achieve a pure Nash equilibrium, where ΦZ(st∗) = d ·Φ(st∗)
is a scaled potential function with integer value d and st∗ is
the optimal strategy the workers can choose in the potential
PAA-TA game instance.

Proof. We say PGT converges when no workers deviate from
their current strategies. If PGT has not converged, then at
least one worker wj deviates from his current strategy in
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Fig. 3: Orders and taxies of Chengdu Didi data set.

each round. Besides the new change strategy st′j of wj is
better than his current strategy stj . And the change will
improve at least 1 (i.e., ΦZ(st′i, s−i) − ΦZ(sti, s−i) ≥ 1)
for potential games. Because the maximum value of scaled
potential function is ΦZ(st∗), and the total utility is always
positive, PGT needs at most ΦZ(st∗) rounds to converge to a
pure Nash equilibrium.

Quality Analysis. Since the distance in our game is rather real
distance than effective obfuscated distance, here we give the
upper bound of expectation of price of stability (EPoS) and
the lower bound of expectation of price of anarchy (EPoA).
Let

U
L
j (i) = vi − fd(di,j)− fp(

∑
tk∈Rj

sum(εk,j))

U
H
j (i) = vi − fd(di,j)− fp(min(εi,j))

U
+
min(i) =

 min
Rj3ti,ULj (i)>0

ULj (i), if there exists ULj (i) > 0

0, otherwise

U
+
max(i) =

{
max
Rj3ti

UHj (i), if there exists UHj (i) > 0

0, otherwise

Then we have Theorem VI.3 as follows.

Theorem VI.3. In the strategic game of PGT, the lower bound
of EPoA is

∑
ti∈T U

+
min

(i)∑
ti∈T U

+
max(i)

(
∑
ti∈T

U+
max(i) 6= 0) and the upper

bound of EPoS is 1.

Please refer to details of the proof of Theorem VI.3 in
Appendix B.

Theorem VI.4. PGT satisfies (
∑
ti∈Rj

bi,jεi,jrj)-local differ-
ential privacy for each worker wj .

The proof is similar to Theorem V.2, and please refer to the
details in Appendix C.

VII. EXPERIMENT

A. Data Sets

We test our mechanisms in real and synthetic data sets.
Real Data Set. We use Didi Chuxing[31] in Chengdu, China,
as our real data set. We choose the day with the most requests
for evaluation (November 18, 2016 in Chengdu) and perform
the same preprocess in the existing work [32], which is
denoted as chengdu.

Chengdu contains 259347 orders and 30000 taxis. Each
order tuple is a taxi request consisting of a release time, a
pickup location, a drop-off location, and some passengers.
Each taxi tuple is a basic message consisting of the original
location of the taxi and its capacity. The location distribution
of taxis is shown in Figure 3(b).

TABLE IX: Methods.
Private version Non-Private version Non-PPCF version

Distance Elimination PDCE [3] DCE PDCE-nppcf
Utility Elimination PUCE UCE PUCE-nppcf

Game Theory PGT GT —
Greedy — GRD —

TABLE X: Experimental settings.
Parameters Values

worker-task ratio 1, 1.5, 2, 2.5, 3
task values 1.5, 3, 4.5, 6, 7.5
worker range 0.8, 1.1, 1.4, 1.7, 2.0

privacy budget [0.5, 0.75], [0.75, 1.00], [1.00, 1.25],
[1.25, 1.50], [1.50, 1.75]; [0.5,1.75]

privacy budget group size 7

Synthetic Data Set. We generate two data sets with 2-
dimensional uniform distribution and normal distribution, re-
spectively. For the uniform distribution data set, we randomly
generate 300k points for tasks and 900k for workers in a plane
with a range of 100×100. Each point follows a 2-dimensional
uniform distribution with an average of 0.

For the normal distribution data set, we generate 300k and
900k points for tasks and workers, respectively. The expecta-
tion and variance for all points are 0 and 150, respectively.

B. Experimental Setup

We split the orders into batches by timestamp. Each batch
contains at most 1000 orders. Figure 3(a) is a batch example
of the order distribution. We also split the taxis into ten groups
for the real data set, each containing 3000 taxis. We use each
worker group circularly for each batch. We set the pickup
locations of orders as task locations and the original locations
of taxis as worker locations.

Let ST and SW be two sets for tasks and workers. We define
the value pwt = |SW |

|ST | as worker-task ratio which stands for
the ratio between the worker number and the task number.

We alter the method in Ref [3] by constraining the workers’
proposing range in his service area and replacing PCF with
PPCF in order to get reasonable comparison with our PUCE.
We denote this altering method in Ref [3] as Private Distance
Conflict-Elimination (PDCE). The difference between PUCE
and PDCE is the optimization objective. In PDCE, the goal is
to minimize all the travelling distance on the platform, which
only considers the distance variable. However, in PUCE, the
goal is to maximize the utility function of the platform, which
considers the task value, travel distance and privacy budget.

We compare our PUCE and PGT with PDCE. Besides,
we construct the non-private solution of each private solution
by eliminating the privacy budget cost in the utility function
and replacing obfuscated distance with real distance. These
non-private solutions are Utility Conflict-Elimination (UCE),
Game Theory (GT), Distance Conflict-Elimination (DCE) and
Greedy (GRD). Here, GRD always greedily chooses the cur-
rent best worker-task pair (with the highest utility) for each
worker. We also construct the non-PPCF solution of PUCE
and PDCE by replacing the PPCF part with the PCF part. We
denote these non-PPCF solutions as PUCE-nppcf and PDCE-
nppcf. We compare all these methods above and summarize
them in Table IX.
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Fig. 4: The impact of the worker ratio on the time cost.
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(b) Relative Deviation of Utility
Fig. 5: The impact of the task value on the utility (chengdu).

We show the parameter settings in table X, where the default
values are marked in bold. As for distance value function
fd and privacy budget value function fp, we model them as
linear functions and use fd(x) = αx and fp(x) = βx in our
experiment. We set α = 1 and β = 1.

We run our experiment on an Intel(R) Xeon(R) Silver 4210R
CPU @ 2.4GHz with 128 GB RAM in Java.

C. Measures

We design a utility-based empirical measure of the effi-
ciency of our proposed mechanisms.

Average Utility: We define the average utility UAVG as∑
(i,j)∈M Uj(i)

|M | , which means the average utility value of a
successful task-worker pair.

Relative Deviation of Utility: Let the utility of non-private
solutions be UNP and privacy ones be UP. We define the relative
deviation of utility URD as UNP−UP

UNP
.

Average Travel Distance: We define the average travel
distance DAVG as

∑
(i,j)∈M di,j

|M | , which means the average travel
distance of a successful task-worker pair.

Relative Deviation of Distance: Let the distance of non-
private solutions be DNP and privacy ones be DP. We define
the relative deviation of distance DRD as DP−DNP

DNP
.

D. Experimental Result

1) Time Cost: Figure 4 shows the time cost on different
worker ratio from 1 to 3 while the other parameters are in
the default values in Table X. We can see that the time cost
increases linearly with the worker ratio. That is because when
we fix the task quantity, as the worker ratio becomes larger,
the competition between workers will become more fierce, and
it will cost more time to finish the whole competition.

Besides, we can find that PUCE costs nearly the same time
over the change of worker ratio. PGT costs much less time than
PUCE and PDCE. Compared with PDCE, PGT costs about
52%–63% less time in chengdu and 50%–63% in normal.
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(b) Relative Deviation of Utility
Fig. 6: The impact of the task value on the utility (normal).
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Fig. 7: The impact of the worker range on the utility (chengdu).

2) Average Utility: Figure 5 and 6 show the relation be-
tween the utility and the task value on chengdu and normal
respectively. We change the task value from 1.5 to 7.5 and set
other parameters as the default values.

In Figure 5(a) and 6(a), the utility increases approximately
linear with the task value. We can see that PGT performs worse
than PDCE slightly in chengdu, but better in normal. PGT
even performs better than PUCE in normal. The reason is that
PGT takes advantage over the other two when the workers’
service area contains many tasks. The data in chengdu is of
road network data which is sparser than that in normal. Thus
when we fix the service area, a worker in chengdu can propose
to fewer tasks than that in normal on average, which leads
to poor utility for PGT. (The following experiment result in
Figure 7(a) proves this inference.) PUCE performs better than
PDCE in both of the two data sets. The relative deviation of
utility impacted by the task value is shown in Figure 5(b)
and 6(b). We can see that the relative deviation of utility
decreases with the task value increase from 1.5 to 7.5, which
means the absolute deviation between the private and non-
private solutions keeps nearly stable. And when the task value
becomes larger and larger, the utility of private solutions equals
that of non-private solutions asymptotically.

Figure 7 and 8 show the relation between the utility and the
worker range on chengdu and normal respectively. The worker
service area (denoted as worker range) increases from 0.8 to 2,
and the other parameters are set as default values. The average
utility depends on the total utility and the matching quantity.
Specifically, in Figure 7(a), the average utility of all solutions
decreases when the worker range increases from 0.8 to 2. It
is because when worker service areas become larger, more
workers (who have no task to propose to in some small range
conditions, denoting them as WL) will be able to propose
to some tasks. With the ratio of WL becoming larger, the
average distance to all matching tasks becomes larger, making
the average utility smaller.

Besides, we can see that the utility of PGT decreases slower
than both PUCE and PDCE. The utility of PGT is no less than



PUCE PDCE PGT UCE DCE GT GRD

0.8 1.1 1.4 1.7 2

worker range

2

3

4

5

av
er

ag
e 

u
ti

li
ty

(a) Average Utility

0.8 1.1 1.4 1.7 2

worker range

0.2

0.3

0.4

re
la

ti
v
e 

d
ev

ia
ti

o
n
 o

f 
u
ti

li
ty

(b) Relative Deviation of Utility
Fig. 8: The impact of the worker range on the utility (normal).
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Fig. 9: The impact of the worker ratio on the utility (chengdu).

88% when the worker range is no more than 1.6. And as the
worker range increases, the utility of PGT will exceed the
other two. The reason why PGT keeps lower decrease is that
PGT can avoid ineffective competition. When the service area
becomes larger, the competition becomes more intense, and
the advantage of PGT becomes more apparent.

Figure 7(b) shows the relative deviation of utility affected
by the worker range. We can see that the utility of PGT
will tend to that of its non-private solution when the worker
range becomes larger and larger. However PUCE and PDCE
deviate more as the worker range becomes larger. That is
because when the worker’s service area becomes larger, it
has a greater possibility of disturbing a large real distance
to a small obfuscated distance or a small real distance to
a large obfuscated distance. Without the guarantee of total
utility function ST , the total proposing workers’ utilities in
PUCE and PDCE decrease dramatically when the worker
range increases.

From Figure 8(a), we can get the similar conclusion to that
in Figure 7(a). Besides, we can find when the worker range
becomes large enough, the decline rate of average utility for
PUCE and PDCE tend to be small. That is because being
too far away will make the utility value non-positive, and the
server will not choose. The average utility of PGT increases
slightly, which is 16% larger than PDCE on average. That is
because PGT can increase the total utility more rapidly than
the matching quantity.

Figure 9 and 10 show the relation between the utility and
the worker ratio. From figure 9(a) and 10(a), we can see that
the worker ratio does not affect the average utility very much.
That is because the increase of workers does not significantly
increase proposing workers. Besides, we can see that PUCE
always keeps a higher average utility than PDCE. And PGT
performs worse than PDCE in chengdu but better in normal.

3) Average Travel Distance: Figure 11 to Figure 16 show
the influence of the task value, worker range and worker ratio
on the distance. PDCE is better than PUCE and PGT in most
cases. That is because the goal of PDCE is only to minimize
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Fig. 10: The impact of the worker ratio on the utility (normal).
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Fig. 11: The impact of the task value on the distance (chengdu).

the total travel distance on the platform without considering
task value and privacy budget cost. Besides, we can see that
different data sets lead to different comparison results for
PUCE, PGT and PDCE. The average travel distance of PDCE
on normal outperforms the other two on chengdu.

Figure 11 and 12 show the relation between the average
distance and the task values. We can see that task values do not
affect the average distance when the task value is larger than 3.
That is because when the task value is large enough, it will not
affect the difference between the two utility values. Workers
will not choose many tasks in their range when the task value
is minimal, leading to a small average distance. Besides, PUCE
is better than PGT slightly but worse than PDCE. However, the
difference of the distances between PUCE and PDCE keeps
stable as task value increases.

Figure 13 and 14 show the relation between the average
distance and the worker service area. We can see that the
average distance increases when worker range increases. That
is because a larger range will lead to more proposing workers
with far distance, making the average distance larger. The
average distances of PUCE and PGT are nearly equal. They
are worse than PDCE with nearly fixed difference distance
value when the worker range is larger than 1.4.

Figure 15 and 16 show the relation between the average
distance and the worker ratio. Especially in figure 15(a), the
average distance in non-privacy solutions decreases when the
worker ratio increases. That is because, with the increase in
workers, the competition has become rigorous. The number
of tasks limits the increase of workers’ proposals, and a task
will be allocated to the worker at a small distance. Therefore,
the average becomes smaller with the worker ratio becoming
larger. As for privacy solutions, competition will also cost
more privacy budget on utility value, which will relieve the
reduction in privacy solutions. Similar to the comparison result
before, PDCE is better than the other two schemes when the
worker ratio is larger than 1.5.

4) PPCF and Non-PPCF: We compare our PUCE and the
PDCE with non-PPCF ones (PUCE-nppcf and PDCE-nppcf).
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Fig. 12: The impact of the task value on the distance (normal).

PUCE PDCE PGT UCE DCE GT GRD

0.8 1.1 1.4 1.7 2

worker range

0

0.5

1

1.5

av
er

ag
e 

d
is

ta
n
ce

 (
k
m

)

(a) Average Distance

0.8 1.1 1.4 1.7 2

worker range

0

0.005

0.01

0.015

re
la

ti
v
e 

d
ev

ia
ti

o
n
 o

f 
d
is

ta
n
ce

(b) Relative Deviation of Distance
Fig. 13: The impact of the worker range on the distance (chengdu).
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Fig. 14: The impact of the worker range on the distance (normal).

We fix the task value as 4.5, the worker range distance as 1.4,
and the worker ratio as 2. We divide the privacy budget range
into 5 groups shown in Table X.

Figure 17 shows the relation between the average utility and
the privacy budget. We mark the median of each interval as
the value of the x-axis.

The solutions with PPCF are better than that without PPCF
when the privacy budget is small. It means PPCF is suitable
for high-privacy situations and is continuously more effective
than that without PPCF. As the privacy budget increases, the
average utility decreases. That is because large privacy budgets
give large average privacy budget cost for workers. Although
high privacy budgets are able to lead to high utility match, it
also leads to high privacy budget cost. Besides, as the privacy
budget increases, the difference between PPCF and non-PPCF
is eliminated. That is because the larger the privacy budget,
the more accurate the obfuscated distance, and the smaller
difference between PPCF and PCF.

VIII. CONCLUSION

In this paper, we formalize the Privacy-aware Task Assign-
ment (PA-TA) Problem, which assigns a task to a worker to
get a high utility value. In order to make use of obfuscated dis-
tance published by workers, we propose new notations called
effective obfuscated distance and effective privacy budget. To
get a higher utility value, we offer a new comparison function
called PPCF and prove that it achieves better effectiveness than
PCF in both theory and practice. Besides, we propose another
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Fig. 15: The impact of the worker ratio on the distance (chengdu).
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Fig. 16: The impact of the worker ratio on the distance (normal).

PUCE PDCE PUCE-nppcf PDCE-nppcf

0.6 0.9 1.1 1.4 1.6

privacy budget

2

2.5

3

3.5

av
er

ag
e 

u
ti

li
ty

(a) chengdu

0.6 0.9 1.1 1.4 1.6

privacy budget

-2

0

2

4

av
er

ag
e 

u
ti

li
ty

(b) normal

Fig. 17: The impact of privacy on the utility.

game theoretic approach to solve the problem. Extensive
experiments have been conducted to show the efficiency and
effectiveness of our methods on both real and synthetic data
sets.

Our PUCE and PGT only consider the distance privacy
of one worker in his service area. If the service area of a
worker is small enough and the quantity of tasks in this area
is large enough, attackers can locate the worker’s position
through trilateration by viewing the entire area as a position.
That is because too much effective obfuscated distance from
a worker to many tasks will outline the worker’s service area.
Our subsequent work will focus on this problem and consider
how to hide correlation privacy caused by the relation between
different worker service areas. Besides, in our goal function,
we suppose the task value is only related to the task itself.
Our subsequent work will extract the payment from the task
value and research on the assumption that: the task value is
related to task itself, travel distance and privacy cost.
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eds.), pp. 314–323, ACM, 2013.

[6] L. Zhang, T. Hu, Y. Min, G. Wu, J. Zhang, P. Feng, P. Gong, and J. Ye,
“A taxi order dispatch model based on combinatorial optimization,” in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Halifax, NS, Canada, August
13 - 17, 2017, pp. 2151–2159, ACM, 2017.

[7] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng, “Preference-
aware task assignment in on-demand taxi dispatching: An online stable
matching approach,” in The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 2245–2252,
AAAI Press, 2019.

[8] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile micro-
task allocation in spatial crowdsourcing,” in 32nd IEEE International
Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016, pp. 49–60, IEEE Computer Society, 2016.

[9] Y. Wang, Y. Tong, C. Long, P. Xu, K. Xu, and W. Lv, “Adaptive
dynamic bipartite graph matching: A reinforcement learning approach,”
in 35th IEEE International Conference on Data Engineering, ICDE
2019, Macao, China, April 8-11, 2019, pp. 1478–1489, IEEE, 2019.

[10] L. Kazemi and C. Shahabi, “Geocrowd: enabling query answering with
spatial crowdsourcing,” in SIGSPATIAL 2012 International Conference
on Advances in Geographic Information Systems (formerly known as
GIS), SIGSPATIAL’12, Redondo Beach, CA, USA, November 7-9, 2012
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X. APPENDIX

A. Proof for Theorem V.1

Before the proof of Theorem V.1, we declare and prove
Lemma X.1 and Lemma X.2 as follows.



Lemma X.1. For any dx, dy, εx, εy , d̂x = dx + Lap(0, 1/εx), d̂y =

dy + Lap(0, 1/εy), we have PCF (d̂x, d̂y, εx, εy) > 1
2 ⇔ d̂x < d̂y.

Proof. Let ηx ∼ εx, ηy ∼ εy . Then we have

PCF (d̂x, d̂y, εx, εy) =

∫∫
DR

f(ηx, ηy)

where f(ηx, ηy) =
εxεy

4 e−εx|ηx|−εy|ηy| and DR is the plane
set satisfying DR = {(ηx, ηy) : ηy − ηx < d̂y − d̂x}.
Note that f(ηx, ηy) is symmetry about both x-axis and y-
axis and DR is part of plane split by line lη : ηy =
ηx + d̂y − d̂x. Thus, we know that only when lη crosses
the origin (d̂y = d̂x), PCF (d̂x, d̂y, εx, εy) equals 1

2 . When
d̂y − d̂x < 0, PCF (d̂x, d̂y, εx, εy) < 1

2 , and d̂y − d̂x > 0,
PCF (d̂x, d̂y, εx, εy) > 1

2 . Therefore, PCF (d̂x, d̂y, εx, εy) >
1
2 ⇔ d̂x < d̂y .

Lemma X.2. For any two continue and differentiable non-
negative functions f, g defined in R, if there exists an interval
[a,+∞) satisfying that

∫ +∞
a

f(x)dx =
∫ +∞
a

g(x)dx and
there exists a point x0 ∈ (a,+∞) satisfying f(x) ≥ g(x)
for x ∈ (a, x0] and f(x) ≤ g(x) for x ∈ (x0,+∞), then∫ x
a
f(x)dx ≥

∫ x
a
g(x)dx for all x ∈ [a,+∞).

Proof. For any x ∈ [a,+∞), we can divide it into two cases:
(1) x ∈ [a, x0]; (2) x ∈ (x0,+∞]. If (1) holds, according to
f(x) ≥ g(x) for x ∈ (a, x0], we have∫ x

a

f(x)dx ≥
∫ x

a

g(x)dx for x ∈ [a, x0]. (6)

If (2) holds, then we have
∫ +∞
x0

f(x)dx ≤
∫ +∞
x0

g(x)dx. And
we can get∫ x

a

f(x)dx−
∫ x

a

g(x)dx

=

∫ +∞

a

f(x)dx−
∫ +∞

x0

f(x)dx− (

∫ +∞

a

g(x)dx−
∫ +∞

x0

g(x)dx)

=

∫ +∞

x0

g(x)dx−
∫ +∞

x0

f(x)dx ≥ 0.

Therefore, we have∫ x

a

f(x)dx ≥
∫ x

a

g(x)dx for x ∈ (x0,+∞). (7)

From Equation 6 and 7, we can have
∫ x
a
f(x)dx ≥

∫ x
a
g(x)dx

for x ∈ [a,+∞).

Based on Lemma X.1 and Lemma X.2, we give the proof
of Theorem V.1 as follows.

Proof. From Lemma X.1, we have PCF (d̂x, d̂y, εx, εy) >
1
2 ⇔ d̂x < d̂y . From Equation 3, we have Pr[dx < dy] >
1
2 ⇔ dx < d̂y . Therefore, we only need to prove Pr[d̂x <
d̂y] ≤ Pr[dx < d̂y] for any dx, dy satisfying dx < dy .

According to the definition, we have

Pr[d̂x < d̂y ] = Pr[dx + ηx < dy + ηy ] = Pr[ηy > ηx + dx − dy ]

=

∫ +∞

−∞

(∫ ηy−dx+dy

−∞

εxεy

4
e
−(εx|ηx|+εy|ηy|)dηx

)
dηy

and
Pr[dx < d̂y ] = Pr[dx < dy + ηy ] = Pr[ηy > dx − dy ]

=

∫ +∞

dx−dy

εy

2
e
−εy|ηy|dηy.

Let s = dy − dx. Let F : s → Pr[d̂x < d̂y] and G : s →
Pr[dx < d̂y]. From the definition, we know s > 0, lim

s→0
F (s) =

lim
s→0

G(s) = 1
2 and lim

s→+∞
F (s) = lim

s→+∞
G(s) = 1. And we

have
∂F (s)

∂s
=
εxεy

4
(
e−sεx + e−sεy

εx + εy
−
e−sεx − e−sεy

εx − εy
)

=
εxεy

2
·
e−sεy εx − e−sεxεy
(εx + εy)(εx − εy)

> 0,

∂G(s)

∂s
=
εy

2
e
−sεy > 0,

∂F (s)

∂s
/
∂G(s)

∂s
=
εx(εx − es(εy−εx)εy)

(εx + εy)(εx − εy)
.

Let ∂F (s)
∂s /∂G(s)

∂s ≤ 1. Then we have s ≤ 1
εx−εy ln εxεy . Let

∂F (s)
∂s /∂G(s)

∂s ≥ 1. Then we have s ≥ 1
εx−εy ln εxεy . That is to

say ∂G(s)
∂s ≥ ∂F (s)

∂s for s ∈ (0, 1
εx−εy ln εxεy ) and ∂G(s)

∂s ≤ ∂F (s)
∂s

for s ∈ ( 1
εx−εy ln εxεy ,+∞). According to Lemma X.2, we have

F (s) ≤ G(s) for s ∈ (0,+∞).

B. Proof for Theorem VI.3
Proof. Let Û(st) be the overall utility of the strategy st with
(i.e., Û(st) = Φ(st)). Besides, we note the global optimal
strategy as ŝt, the strategy of achieving best competing utility
value as st∗ and the worst competing utility value as st]. Then
we have Û(ŝt) = Φ(ŝt), Û(st∗) = Φ(st∗) and Û(st]) =
Φ(st]). Thus,

EPoS =
E(Û(st∗))

E(OPT )
=
E(Û(st∗))

E(Û(ŝt))
≤ 1.

If we get the lower bound of E(Û(st])) and upper bound
of E(Û(ŝt)), then we can get the value of EPoA. As for
E(Û(st])), we have

E(Û(st
]
)) ≥ min

k

∑
ti∈T

∑
wj∈W

(s
(k)
i,j · (vi − fd(di,j))− fp(b

(k)
i,j · εi,j))

≥
∑
ti∈T

min
Rj3ti,ULj (i)>0

U
L
j (i) =

∑
ti∈T

U
+
min(i)

As for E(Û(ŝt)), we have

E(Û(ŝt)) ≤ OPT (
∑
ti∈T

∑
wj∈W

(si,j · (vi − fd(d̃i,j))− fp(bi,j · εi,j)))

≤
∑
ti∈T

max
Rj3ti

U
H
j (i) =

∑
ti∈T

U
+
max(i)

Therefore, we have

EPoA =
E(Û(st∗))

E(OPT )
≥

∑
ti∈T

U+
min(i)∑

ti∈T
U+
max(i)

C. Proof for Theorem VI.4
Proof. Let Aj be the mechanism PGT applying to wj with
query f defined above. Let Xj be the location of wj . For query
f(Xj) = [di1,j , ..., di|Rj |,j ], we extend it to an equivalent
query f̂(Xj) = f(Xj) · J , where

J =


CP (bi1,j)

CP (bi2,j)

. . .
CP (bi|Rj |,j)





is a block diagonal matrix. Actually, f̂(Xj) means query diu,j
for sum(biu,j) times for u ∈ [|Rj |]. We denote the size of
f̂(Xj) as |f̂ | and the a-th element of f̂(Xj) as f̂(Xj)a.

Let Yj denote the set of all published obfuscated distances
of the worker wj to tasks in Rj . Then we have Yj = f̂(Xj)+
[η1, η2, ..., η|f̂ |], where ηa(1 ≤ a ≤ |f̂ |) is an i.i.d random
variable drawn from Lap(1/εa). Hence we have

Pr[Aj(Xj) = Yj ]

Pr[Aj(X′j) = Yj ]
=

∏
a∈[|f̂|]

(
exp(−εa|Yj,a − f̂(Xj)a|)
exp(−εa|Yj,a − f̂(X′j)a|)

)

=
∏

ti∈Rj

∏
u∈[sum(bi,j)]

(
exp(−ε(u)i,j |d̃

(u)
i,j − di,j |)

exp(−ε(u)i,j |d̃
(u)
i,j − d′i,j |)

)

≤
∏

ti∈Rj

∏
u∈[sum(bi,j)]

(exp(ε
(u)
i,j (|di,j − d′i,j |)))

=
∏

ti∈Rj

exp(bi,jεi,j(|di,j − d′i,j |))

≤ exp(
∑
ti∈Rj

bi,jεi,jrj).

Because Xj contains only one element, then we have PGT
satisfies (

∑
ti∈Rj bi,jεi,jrj)-local differential privacy for each

worker wj .

D. Experiment Result for the Uniform Data set

The experiment result of the uniform data set is shown in
this section.

The time cost is shown in Figure 18.
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Fig. 18: The impact of the worker ratio on the time cost.

The impact of task value on utility is shown in Figure 19.
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Fig. 19: The impact of the task value on the utility for uniform.

The impact of worker range on utility is shown in Figure 20.
The impact of worker ratio on utility is shown in Figure 21.
The impact of task value on travel distance is shown in

Figure 22.
The impact of worker range on travel distance is shown in

Figure 23.
The impact of worker ratio on travel distance is shown in

Figure 24.
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Fig. 20: The impact of the worker range on the utility for uniform.
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Fig. 21: The impact of the worker ratio on the utility for uniform.
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Fig. 22: The impact of the task value on the distance for uniform.
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Fig. 23: The impact of the worker ratio on the distance for uniform.
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Fig. 24: The impact of the worker ratio on the distance for uniform.

The impact of worker ratio on PPCF and non-PPCF is
shown in Figure 25.
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Fig. 25: The impact of privacy on the utility.

E. Additional Definitions

Definition 8 (One-to-one Match). Let G = (U,E, V ) be a
bipartite graph, and M ⊆ E be a match in G. M is called a
one-to-one match if for any two different edges eu,v, eu′,v′ ∈
M , eu,v ∩ eu′,v′ = φ.

Let SG(M) = [su,v]u∈U,v∈V denote a state matrix of M .
Here, su,v = 1 when eu,v ∈M , su,v = 1; otherwise, su,v = 0.

We utilize Differential Privacy [17] to disturb the raw data
and measure the privacy cost of workers’ proposals for tasks.
Definition 9 (Differential Privacy [17], DP). A randomized
algorithm A with domain N|X | is (ε, δ)-differential private if
for all S ⊆ Range(A) and for all x, y ∈ N|X | such that ||x−
y||1 ≤ 1:

Pr[A(x) ∈ S] ≤ exp(ε)Pr[A(y) ∈ S] + δ,

where || · ||1 is the `1 norm of an vector, Pr[·] denotes the
probability of an event. Especially, when δ = 0, A is ε-
differential private.

When x and y consists of single element, S is also called
a local randomizer, which provides local differential privacy
(LDP) guarantees [33].

The Laplace mechanism [17] is the most well know pertur-
bation methods for numeric values that satisfy the definition of
differential privacy. Given a function f outputting a numeric
value vector f(·), the laplace mechanism is able to transform
f into a differentially private algorithm by adding random
noise to each entry of f(·). The random noise is sampled
from laplace distribution.

The scale of the random noise is relevant to the `1-sensitivity
of f as well as a predetermined privacy budget ε. The `1-
sensitivity of f is defined as the maximum possible difference
between any two vector x and y with their `1 distance as 1:

Definition 10 (`1-sensitivity [17]). The `1-sensitivity of a
function f : N|X | → Rk is:

∆f = maxx,y∈N|X|,||x−y||1=1||f(x)− f(y)||1.

Thus, the laplace mechanism is stated as follows:

Definition 11 (The Laplace Mechanism [17]). Given any
function f : N|X | → Rk, the Laplace mechanism is defined
as: AL(x, f(·), ε) = f(x) + (Y1, ..., Yk)

where Yi (i ∈ [k]) is an i.i.d. random variable drawn from
Lap(∆f/ε).

In order to compare two disturbed value conveniently, we in-
troduce the Probability Compare Function [3] in Definition 6.


