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ABSTRACT 
 
This paper presents a novel level set approach to 
simultaneous tissue segmentation and bias correction of 
Magnetic Resonance Imaging (MRI) images. We first 
model the distribution of intensity belonging to each tissue 
as a Gaussian distribution with spatially varying mean and 
variance. Then a sliding window is used to transform the 
intensity domain to another domain, where the distribution 
overlap between different tissues is significantly suppressed. 
A maximum likelihood objective function is defined for 
each point in the transformed domain, which is then 
integrated over the entire domain to form a variational level 
set formulation. Tissue segmentation and bias correction are 
simultaneously achieved via a level set evolution process. 
The proposed method is robust to initialization, thereby 
allowing automatic applications. Experiments on images of 
various modalities demonstrated the superior performance 
of the proposed approach over state-of-the-art methods.      
 

Index Terms— level set, segmentation, bias field, 
variational method, energy minimization 
 

1. INTRODUCTION 
 
The intensity inhomogeneity often exists in magnetic 
resonance imaging (MRI) images due to the imperfection of 
imaging devices. The intensity inhomogeneity can be 
generally modeled as a smooth and spatially varying field, 
multiplied by the constant true signal of the same tissue in 
the measured image. This spatially varying field is named as 
the bias field. Bias correction is a procedure to estimate the 
bias field and restore the true signals, thereby eliminating 
the side effect of the intensity inhomogeneity [2][3]. Among 
various bias correction methods, those based on 
segmentation are most attractive. The parametric model 
based on the maximum-likelihood (ML) or maximum a 
posterior (MAP) probability is often used to unify 
segmentation and bias correction [2], whose parameters can 
be estimated by the expectation maximization (EM) 
algorithm [3][4]. However, such algorithms are sensitive to 

the initialization of the variables [1][3], which limits their 
applications in automatic segmentation.  
    Recently, Li et al. [2] proposed a variational level set 
approach to simultaneous segmentation and bias correction, 
which has many advantages such as robustness to 
initialization and good approximation to bias fields of 
general profiles. Their method is motivated by the weighted 
K-means clustering, and we name it as weighted K-means 
variational level set (WKVLS) method. However, as we 
will see from the following discussions, the WKVLS 
method can be viewed as a special case of our proposed 
SVMLS (statistical and variational multiphase level set) 
method, while the latter is more accurate. 
     In this paper, we first define a maximum likelihood 
objective function for each point in a transformed domain, 
where the distribution overlap between different tissues can 
be suppressed to some extent, and then an energy functional 
is defined by integrating the maximum likelihood function 
over the entire image domain. We then incorporate this 
energy functional into a multiphase level set formulation. 
Tissue segmentation and bias correction are obtained via a 
level set evolution process. A salient advantage of our 
method is that the smoothness of the computed bias field is 
ensured by the normalized convolution [5] without extra 
cost. Moreover, the evolution is less sensitive to the 
initialization, thus well suited for automatic applications.  
 

2. METHODOLOGY 
 

2.1 Statistical Model of Images with Intensity Inhomogeneity 
 
We adopt the following commonly used model to describe 
images with intensity inhomogeneity [3]: 

(x) (x) (x) (x), xI b J n= + ∈Ω                     (1) 
where I(x): Ω→R is the measured image; b(x): Ω→R is the 
bias field which is spatially variant; J(x): Ω→R is the true 
signal which is assumed to be piecewise constant, i.e. 
J(x)=ci for x∈Ωi , where ci is a constant; and Ωi denotes the 
ith object domain, i=1,…,N, where N is the total number of 
object domains. Noise n(x) is assumed to be Gaussian 
distributed with zero mean and variance σ2 [3]. Thus the 



image intensity can be approximated by Gaussian 
distribution with mean bJ and variance σ2. However, using 
only a single Gaussian model is not accurate enough to 
describe the statistical characteristics of the image intensity. 
In order to accurately model the intensity distribution, the 
intensity distribution in each object domain should be 
ascribed to a Gaussian model. The intensity corresponding 
to the object domain Ωi is modeled by [6] 
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where αi={b, ci, σi}; σi is a constant corresponding to the 
standard deviation of intensity in domain Ωi. and b(x)ci is 
the local mean that is spatially varying.  
 
2.2 Energy Functional Formulation 
 
For each position x in the image domain Ω, we consider a 
circular neighborhood center on it, i.e., Ox= {y | ||y−x||≤ ρ}, 
where ρ is the radius of the region Ox. We define a mapping 

: (x| ) (x| )i iT I Iα α→ from the original image intensity 
domain D  (T) to another domain R   (T) as follows 
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where mi(x)=||Ωi∩Ox||. Since the intensity of pixel y can be 
assumed to be independently distributed [10], (x| )iI α  is 

also normal distributed with mean bci and variance 
2
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We can intuitively observe from Fig.1 that the overlap 
between adjacent regions can be suppressed (see the red 
dashed curves). 

Since the intensity inhomogeneity varies smoothly across 
the entire image domain [3], we have the approximation 

x(y ) (x ), yi i iI I Oα α≈ ∀ ∈Ω ∩ . Because the product of 
Gaussian probability density functions (PDF) is still 
Gaussian, we have 
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Let { (x | ), 1,..., }iD I i Nα= = , we have the following 
likelihood function 
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where α={αi, i = 1,…, N}. 
We integrate this likelihood function over the entire 

image domain to define the following energy functional 
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Let (x, y)ρK  be the characteristic function of region Ox  
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With Eqs. (2) and (7), and eliminating the trivial constant 
term, ( )E α can be re-written as  

( )( )2

2

(y) (x)

2
1

( ) (x, y) log( 2 ) dydxi

ii

N
I b c

i
i

E ρ σ
α πσ −

Ω Ω
=

= +∑∫ ∫ K  (8) 

In [2], Li et al proposed the weighted K-means 
variational level set (WKVLS) method. The energy 
functional of WKVLS is defined as follows 
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where α={b,ci,i =1,…,N} and Gρ(x,y) is a truncated 
Gaussian kernel where Gρ(x,y) = 0 for ||y−x||>ρ.  
      Obviously, if we set σi in Eq. (8) to 1

2π , and ρK  to a 

Gaussian kernel, ( )E α  in Eq. (6) and WKVLSEα  in Eq. (9) 
will be the same except for some trivial constant. However, 
our model considers the variance differences among 
different tissues, which makes it more accurate than the 
WKVLS method. 
 
2.3 Level Set Formulation 
 
We use multiple level set functions (LSF) { , 1,..., }i i nφ =  to 
represent the regions { , 1,..., }i i NΩ =  with N=2n as in [8]. 
Let ( )( )i NM Φ ⋅  be the characteristic function of region Ωi, 
where ( )NΦ ⋅  is a function of set { , 1,..., }i i nφ = . The energy 
functional ( )E α  in Eq. (6), which is called statistical and 
variational multiphase level set (SVMLS) in this paper, can 
be re-written as 
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We only describe the energy minimization for four-
phase case in this paper. (For two-phase case or other cases, 
the procedure is similar.) In the four-phase case, iM  is 
defined as follows [8] 

Fig. 1. Distributions of adjacent regions in the original image 
intensity domain (blue solid curves) and the transformed domain 
(red dashed curves). 
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where ( )H φ is the Heaviside function, and we often use the 

regularized version 1 2
2( ) [1 arctan( )]H φ

ε π εφ = +  in practice. 

The minimizer of 
4
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,E αΦ in each variable is obtained by 

fixing other variables. The minimizers of the variables 
c={ci,i=1,…,4}, b and σ={σi,i=1,…,4} are given as follows, 
respectively 
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Obviously, the smoothness of the bias field b is ensured by 
the normalized convolution [5], so it is general to images of 
various modalities. 

Minimizing the energy functional 
4
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,E αΦ  w.r.t 1φ  and 2φ , 

respectively, we derive the corresponding gradient descent 
as follows 
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where ( )δ φ  is the Dirac function. In practice, we often use 
the regularized version 2 2

1( ) ε
ε π ε φ
δ φ

+
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2.4 Implementation 
 
Theorem1. A signed distance function (SDF) φ  satisfies 
| | 1φ∇ =  [7]. Conversely, any functionφ  satisfies | | 1φ∇ =  
is an SDF plus a constant [9].■ 
Proposition1. An SDF φ  convolving by a ζ ζ× normalized 
constant kernel cKζ  is an SDF plus a constant.■ 

Proof: Let new cKζφ φ= ∗ . There is 
new 2 2

2 2

( ) ( ) ( ) ( )

          .

c c c c
x y

c c
x y

K K K K

K K

ζ ζ ζ ζ

ζ ζ

φ φ φ φ φ

φ φ φ

∇ = ∇ ∗ = ∇ ∗ = ∗ + ∗

= + ∗ = ∇ ∗

For | | 1φ∇ =  and 1 d 1c cK Kζ ζ∗ = Ω =∫ , we have new| | 1φ∇ = . 

So newφ  is an SDF plus a constant. End of proof. ■ 
 
The main steps of the algorithm can be summarized as 

A. Initialize 1φ  and 2φ to be SDFs or constants with 
different signs inside and outside contour, respectively. 

B. Keep 1φ  and 2φ  fixed, optimize and update the variables 
c, b, and σ by Eq. (12), respectively. 

C. Keep c, b, and σ fixed, evolve 1φ  and 2φ  according to 
Eq. (13), respectively. 

D. Check whether the convergence has been reached. If 
not, return to B. 

During the evolution process, the LSFs (level set 
function) need to be periodically regularized in order to 
keep numeric stability. In this paper, we regularize 1φ  
and 2φ by convolving a constant kernel (degenerated 
Gaussian kernel) after each iteration in step C, which can be 
seen as a special case of the method proposed in [7], while 
the later uses a Gaussian kernel. As Proposition 1 shows, 
with our approach, the LSF keeps the property of SDF, so it 
can make the evolution stable. The size of the kernel ζ ζ×  
should not be too large. In our experiments, we set 3ζ =  
for efficiency. We also found that in step A, it is reliable to 
simply initialize 1φ  and 2φ  to be constants with different 
signs inside and outside contour. With this initialization, the 
convergence speed is much faster than that by SDF, and the 
tissue segmentation results are also much more accurate.  
 

3. EXPERIMENTAL RESULTS 
 
We compare our method with the WKVLS method [2], 
which has better performance than the well-known methods 
proposed by Well et al. [4] and Leemput et al. [1]. We use 
the same initializations in both models for fair comparisons, 
and initialize {σi=1,i=1,…,4}, ρ=4.5 in our algorithm. The 
code of the proposed method can be downloaded at 
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm. 
    Fig. 2 shows the result for a 3T MRI image. There are 
four classes of tissues: whiter matter (WM), gray matter 
(GM), cerebrospinal fluid (CSF) and the background. As 
Fig. 2(d) shows, the histogram of the bias corrected image 
by our method has three well-separated peaks, which 
correspond to the background, GM, and WM from left to 
right, respectively, while the peak of the CSF (the one 
between the background and GM) is not distinct since its 
volume is relatively small. However, the histogram by the 
WKVLS has no obvious well-defined and well-separated 
peaks. The tissue segmentation result by our method (see 
Fig.2 (a)) is much more accurate than that by the WKVLS 
method (see Fig.2 (b)) (e.g. the regions that the red arrows 
point to). It should be noted that it is very flexible to 
initialize the LSFs in our method. The initial contours can 
be set inside, outside or across the object boundary. As 
shown in Fig.2 (a) and (c), the results are similar. To save 
space, we did not show the results of other initializations. 

Fig. 3 shows the result on a 7T MR image, whose 
intensity inhomogeneity is so severe that even the experts 
are difficult to tell the structures. By applying our method, 
the image quality can be significantly improved. Many 
regions (e.g. the regions inside the red circles and ellipses) 



that are difficult to distinguish can be much better viewed 
after the bias correction. 

 
4. CONCLUSION 

This paper presents a novel statistical and variational 
multiphase level set (SVMLS) approach to simultaneous 
bias correction and tissue segmentation for MRI image. The 
smoothness of the bias field is intrinsically ensured by the 
normalized convolution without any extra costs, which 
makes our method well fitted for images of various 
modalities, such as 3T and 7T MRI images. Moreover, the 
proposed SVMLS algorithm is robust to the initializations, 
therefore allowing for fully automatic applications. 
Comparisons with state-of-the-art method on real MRI 
images show the advantages of the proposed algorithm. 
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Fig. 2. (a) and (b): From left to right: the initializations of level set functions, estimated bias fields, tissue classification results, and 
bias corrected images by our method (SVMLS) and the WKVLS method, respectively. (c): An arbitrary initialization of level set 
functions and the corresponding experimental results. (d) Histograms of original image (HOI), bias corrected image by our method 
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Fig.3. Experiments on 7T MR image.  Column 1: Initial contours; Column 2: Estimated bias field. Column 3: Bias correction image. 
Column 4: Original image.  


