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ABSTRACT

Deep neural networks (DNNs) have been used in digital forensics

to identify fake facial images. We investigated several DNN-based

forgery forensics models (FFMs) to examine whether they are secure

against adversarial attacks. We experimentally demonstrated the ex-

istence of individual adversarial perturbations (IAPs) and univer-

sal adversarial perturbations (UAPs) that can lead a well-performed

FFM to misbehave. Based on iterative procedure, gradient infor-

mation is used to generate two kinds of IAPs that can be used to

fabricate classification and segmentation outputs. In contrast, UAPs

are generated on the basis of over-firing. We designed a new objec-

tive function that encourages neurons to over-fire, which makes UAP

generation feasible even without using training data. Experiments

demonstrated the transferability of UAPs across unseen datasets and

unseen FFMs. Moreover, we conducted subjective assessment for

imperceptibility of the adversarial perturbations, revealing that the

crafted UAPs are visually negligible. These findings provide a base-

line for evaluating the adversarial security of FFMs.

Index Terms— forgery forensics, adversarial attack, over-firing

1. INTRODUCTION

Faces appearing in digital media are salient information that directly

reflects personal identity and scene content. Facial manipulation

programs, like DeepFakes [1], Face2Face and FaceSwap [2], can

be used to automatically edit facial identities and expressions so as

to alter the semantic content of the digital media. To deal with this

security threat, many countermeasures [3–12] have been proposed.

Inspired by presentation attack detection, researchers are attempt-

ing to use liveness clues like lip-syncing [3], eye blinking [4],

and inconsistency in head pose [5] to identify fake facial videos.

Another approach is to use inconsistent statistical characteristics

including IQM (image quality metrics) descriptor [6], color dispar-

ity [7], and warping artifacts [8] as telltale indicators for detecting

forgeries. DNNs have also been used to expose fake facial media

[9, 10]. To enhance transferability, Cozzolino et al. [11] designed

a selection-based domain adaptation mechanism over the latent

space of an autoencoder. A variation of this approach [12], using a

multi-task autoencoder, was proposed for simultaneously achieving

the forensic goals of forgery identification and localization. The

reported DNN-based FFMs [9–12] have exhibited outstanding per-

formance and shown great potential in security-sensitive intelligent

systems, such as fake news identification and electronic evidence

investigation.
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However, the security of these DNN-based FFMs [9–12] is prob-

lematic since an attacker may carefully fabricate a fake facial image

or video to circumvent the intelligent systems for getting higher but

illegal privilege. Recent works [13, 14] have revealed that adding a

tailor-made tiny noise to the bona fide input can easily induce a well-

performed DNN to produce misleading output. Previous works on

adversarial attacks mainly focused on tasks involving face recogni-

tion [15], object detection [16], semantic segmentation [17], natural

language processing [18], and malware detection [19]. There has

been a lack of work on whether FFMs are secure against adversarial

attacks. We aim to fill this gap, in this paper, by applying gradient-

based adversarial attacks (white box) to Nguyen’s FFM [12] and

evaluating the transferability of adversarial perturbations (black box)

across unseen datasets and unseen FFMs [10, 11].

Specifically, our contributions are as follows: 1. We show the

existence of IAPs, which can be used to fabricate classification or

segmentation outputs. 2. We show the existence of image-agnostic

UAPs for the FFM [12]. We present a newly designed objective

function that enables latent neurons to be over-fired without the need

for training data. 3. We present experimental results demonstrat-

ing that UAPs have transferability across unseen datasets and un-

seen FFMs [10, 11]. 4. Following an international standard [20],

we conduct subjective assessment for imperceptibility of adversar-

ial perturbations. This is a necessary step oriented towards practical

applications of the adversarial attack.

The experimental results presented in Section 3 support the

above claims and thereby demonstrate that existing FFMs [10–12]

are vulnerable to adversarial attacks. This work provides a warning

that future digital forensics research should take into account the

need to integrate an adversarial defense mechanism into FFMs.

2. BACKGROUND

In this section, we give a brief introduction of the target facial FFMs

[10–12], and then introduce fundamental concepts and impressive

achievements in the field of adversarial attack.

2.1. Target FFMs

In [10], Afchar et al. constructed a lightweight DNN with four con-

volutional layers and two fully connected layers, and furthermore

proposed an advanced network structure called ‘MesoInception-4’.

Inception modules consisting of vanilla convolutions, dilated convo-

lutions and skip-connections (1 × 1 convolutions) were introduced

for adaptively probing low-level image textures.

The ForensicTransfer method [11] is based on an autoencoder

architecture. For a given image xi, its residual map that only con-

tains high-frequency details is regarded as the input. Neurons in the

latent layer are divided equally into two disjoint portions: zero zone
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hi,0 and one zone hi,1. The zone-wise activation energy is calculated

by ai,c = ‖hi,c‖1/Kc, where Kc counts the number of neurons in

the cth zone for c ∈ {0, 1}. The activation loss for an image xi

is defined as Lact(xi, li) = |ai,1 − li| + |ai,0 − (1 − li)|, where

li represents the category label, which takes the value 0 for ‘fake’

and 1 for ‘real’. The activation loss encourages the zone hi,c that

c = li to activate (ai,c > 0) while the other zone hi,1−c remains

silent (ai,1−c = 0). During the training phase, the selection module

compulsively zeros out the off-class zone hi,1−c, which forces the

decoder to complete its reconstruction task using only hi,c. During

the testing phase, an image xi is classified as c if ai,c > ai,1−c. This

encoder-selection-decoder framework forces the latent space to learn

discriminative representations and thus enhances the transferability

across multiple domains of image manipulations.

In [12], Nguyen et al. proposed a Y-shaped network that extends

the network of Cozzolino et al. [11] in three ways. First, the residual

module is abandoned so that a variety of features can be adaptively

probed by convolutional layers without constraints. Second, the au-

toencoder architecture is made deeper (with up to 18 convolutional

layers). Third, the decoder is designed as a two-pronged structure,

which enables three tasks (classification, segmentation, and recon-

struction) to share the information they learn and thereby enhance

overall performance. The segmentation branch is responsible for lo-

cating forged regions. Cross-entropy loss Lseg(xi,mi) is used to

evaluate the segmentation quality, where mi represents the ground-

truth mask.

In this paper, the above three representative FFMs [10–12] are

considered as the target models for examining the existence and ef-

fectiveness of adversarial perturbations. FaceForensics++ database

[21] was used to train or fine-tune the three FFMs. It consists of three

datasets, ‘DeepFakes’, ‘Face2Face’ and ‘FaceSwap’. Each dataset

contains 1000 real facial videos and 1000 manipulated ones. This

database also provides ground-truth masks that highlight the manip-

ulated regions in a pixel-wise manner. Data preparation followed

the procedure previously used in [11,12], so there were 2800 images

in each test set that would be used to evaluate the performance of

adversarial attacks.

2.2. Adversarial Attacks

Given an image xi and a target model f , an adversarial attack aims

to find a tiny perturbation, denoted by ξi, so that the corresponding

adversarial image xadv
i = xi + ξi can change the output of f , i.e.,

f(xi) 6= f(xadv
i ). During the course of seeking ξi, its magnitude,

which is usually measured by the p-norm distance, is bounded by a

small value to ensure its imperceptibility.

In the pioneering work [22], Szegedy et al. generated adver-

sarial perturbations by using a box-constrained L-BFGS. However,

this method is relatively time-consuming. A suitable value of hy-

perparameter c that modulates the balance between two terms in the

objective function is unknown. This therefore requires an additional

line-searching to adaptively update c.

Fast gradient sign method (FGSM) proposed by Goodfellow et

al. [23] is an efficient one-time method without iterations. An adver-

sarial image is generated by slightly adapting each pixel along the di-

rection of the sign of gradient. Basic iterative method (BIM) [24] is

an intuitive extension of FGSM. It iteratively generates an adversar-

ial perturbation with a smaller step size, which enables the updating

direction to be adjusted after each iteration.

Deepfool [25] was proposed for finding a minimal perturbation

ξi that could just push xi outside its own classification region. An

iterative procedure is used to gradually estimate ξi under the as-

sumption that the linearity of f holds around xi at each iteration.

In [26], Moosavi-Dezfooli et al. leveraged the Deepfool method to

craft an image-agnostic UAP Ξ that can fool the target model f , i.e.,

f(xi) 6= f(xi +Ξ), for a vast majority of xi. The crafted UAP was

empirically demonstrated to transfer well across multiple architec-

tures including VGG, CaffeNet, GoogLeNet, and ResNet.

The idea of Mopuri et al.’s work [27] is to seek a UAP that

can over-fire the neurons (maximizing the activation energies) at

each layer. Such a UAP would contaminate the learned features and

thereby lead the target model to misbehave. Particularly interesting

is that the training phase for over-firing can be done in a data-free

manner.

In this paper, the gradient information itself (rather than the

signed version) was used for generating IAPs. Inspired by the idea of

over-firing, we crafted UAPs without using training data. However,

we found that, for autoencoder network [12], it is difficult to achieve

over-firing due to the small magnitude of the perturbation-only in-

put. We solved this problem by designing a new objective function

that strongly promotes over-firing of the latent neurons in the desired

zone (see Section 3.2).

3. ADVERSARIAL PERTURBATIONS FOR FFMS

In this section, we mount the adversarial attacks against the FFM

[12] for different falsification purposes. First, we craft two kinds

of IAPs for each image, one for fabricating classification output and

one for fabricating segmentation output. Next, we craft UAPs in

accordance with the idea of over-firing and evaluate their transfer-

ability across unseen datasets and unseen FFMs [10,11]. Finally, we

describe the settings for the subjective assessment and summarize

the insights gained from the assessment into the imperceptibility of

adversarial perturbations.

3.1. Individual adversarial attacks

Given an image xi, we iteratively generate a tailor-made IAP that

can flip the original classification output. The iterative procedure

can be written as:

ξ
(n+1)
i = Clipǫ

{

ξ
(n)
i − α(∇xi

Lact(xi + ξ
(n)
i , ladv

i ))
}

, (1)

where ξ
(n)
i denotes the adversarial perturbation at the nth iteration

while α represents the step size. The iterative procedure starts with

ξ
(0)
i = 0. At each iteration, the operator Clipǫ(·) restricts the pertur-

bation’s magnitude within [−ǫ, ǫ] to ensure imperceptibility. Adver-

sarial label ladv
i satisfying ladv

i 6= li enables the fabricated output to

be controlled. For a binary classification problem (‘real’ or ‘fake’), it

is easy to prepare the adversarial label: ladv
i = 1−li. The sign opera-

tor previously used in FGSM and BIM is excluded from our iterative

procedure since we consider that not only the direction but also the

length of the gradient is informative in generating IAPs. Note that

only the activation loss is used in Eq.(1) because the classification is

performed in accordance with the zone-wise activation energy. We

set α = 1.0 and ǫ = 2.5 throughout our experiments.

Table 1 shows that adding IAPs drastically reduced classification

accuracies. The small RMSE (root mean squared error) scores, how-

ever, suggest perceptual similarities between xi and xadv
i . More im-

portantly, 20 iterations for each image were sufficient to destory the

well-performed FFM [12] over the three datasets. Furthermore, the

Intersection-over-Union (IoU) scores were dramatically suppressed

at the same time although the segmentation loss Lseg(xi, mi) was

absent from the iterative procedure. This is because only activated

latent features hi,c were selected for the following decoder, so

the classification output greatly affected the segmentation branch.



Table 1. Performance of IAPs (fabricating classification outputs).

(a) (b) (c) (d) (e)

Fig. 1. Resulting examples (selected from: FaceSwap & 20 iters).

(a) Original images. (b) Adversarial images. (c) Adversarial pertur-

bations (min-max scaled for display). (d) Ground-truth masks. (e)

Segmentation outputs.

This phenomenon is reflected in the two resulting examples shown

in Fig.1, in which the segmentation outputs, i.e., the column (e),

agree with the fabricated classification outputs.

We also purposely fabricate incorrect segmentation outputs for

fake images to mislead tampering localization judgement. In this

scenario, the adversarial ground-truth masks madv
i , as shown in

Fig.2 (a), are prepared in advance. The goal is to slightly adapt

the pixels of xi, making segmentation output as similar as possi-

ble to madv
i . To this end, we define a weighted objective function

L = Lact(xi, l
adv
i ) + λ · Lseg(xi,m

adv
i ), where λ is set to 1.8 em-

pirically. Then, this objective function is substituted into Eq.(1) for

iterative computations. Here, the adversarial label ladv
i is assigned

a value close to but less than 0.5 (for example 0.45)1 in this sce-

nario. Such a setting loosens the interaction between classification

and segmentation, while still ensuring that the zero zone h0,i is

activated.

Figure 2 shows the corresponding resulting examples. Obvi-

ously, the fabricated masks (d) closely match the adversarial ones

(a), and are much different from the original ones. For quantitative

evaluation, it is time-consuming to manually create a meaningful ad-

versarial mask for every image. For a quick experiment, we assume

that an adversarial mask follows a simple geometry, i.e., a triangle,

as shown by the bottom image in Fig.2 (a). The location and ori-

entation of the triangle are randomly assigned for each image. The

results of the quantitative evaluation are summarized in Table 2. The

IoU scores w.r.t the adversarial masks were as high as 48.52% while

those w.r.t the original masks were reduced on average from 43.21%
to 22.04%. This means that adding IAPs leads the segmentation out-

1Recall that label ‘fake’ takes the value 0 in this paper.

(a) (b) (c) (d)

Fig. 2. Resulting examples (selected from: FaceSwap & 500 iters).

(a) Adversarial mask. (b) Adversarial images. (c) Adversarial per-

turbations (min-max scaled for display). (d) Segmentation outputs.

Original images and their ground-truth masks are shown in Fig.1.

Table 2. Performance of IAPs (fabricating classification outputs).

Only ‘fake’ images were considered in this scenario, so scores in the

‘original’ rows differ from those in Table 1.

puts being more similar to the adversarial masks. It may be difficult

to further reduce the IoU scores in this quick experiment because a

triangle with a random location and orientation may partly overlap

the original highlighted area. Interestingly, the classification accu-

racy got a rise in this scenario. This is because the setting ladv
i = 0.45

forced the zero zone to activate, which provided a chance to correct

previously misclassified outputs. In addition, fabricating a segmen-

tation output needs 100 or more iterations, which has a higher com-

putational cost than falsification for classification.

3.2. Universal adversarial attacks

In this scenario, we aim to craft a data-free UAP Ξ that can flip

the classification outputs for most images. The iterative procedure

starts with a random perturbation in which the entries obey a uniform

distribution [−ǫ, ǫ]. For the autoencoder network [12], it is nontrivial

to activate the latent neurons at the initial iterations due to the small

magnitude of the perturbation-only input. To overcome this problem,

we designed a new objective function:

L(Ξ) = exp
(κ · ai,1−c

ai,c

)

− ai,c, (2)

where ai,c and ai,1−c denote the activation energy of hi,c and

hi,1−c, respectively. The iterative procedure for updating Ξ can be

formulated as

Ξ(n+1) = Clipǫ

{

Ξ(n) − α(∇L(Ξ(n)))
}

. (3)



Fig. 3. UAPs (min-max scaled for display) generated for fabricating

classification outputs.

Table 3. Performance of UAPs: image-agnostic property and trans-

ferability across unseen datasets.

Clearly, minimizing the objective function in Eq.(2) is equivalent to

maximizing ai,c. At the beginning of the iteration procedure, both

ai,c and ai,1−c are small, and we have ai,c ≈ ai,1−c in most cases.

If we set κ > 1.0, the exponential term in Eq.(2) can amplify the

difference between ai,c and ai,1−c so as to initially provide a suffi-

cient loss. After several iterations, the value of the exponential term

approaches 1 while the negative term becomes a potency to further

minimize the loss.

Only 280 iterations were needed to generate an effective UAP in

our experiments, which were performed in a data-free manner. This

demonstrates that over-firing is a resource-conserving approach for

attackers. Looking at the generated UAPs in Fig.3, we observe sim-

ilar local textures organized with different styles. For each dataset,

two UAPs which can over-fire the two disjoint zones, are crafted

separately. As shown in Table 3, classification accuracy was reduced

on average from 91.98% (orange shading) to 3.17% (blue shading),

which demonstrates the image-agnostic property of UAPs. Evalu-

ation of transferability across unseen datasets showed that adding

UAPs reduced accuracy 33.63% on average (gray shading). As a

reference, uniform random noises (URNs) with the same level of

strength only achieved a slight drop of 11.28% (green shading).

UAP transferability across unseen models is highly desirable,

especially when the adversary has no knowledge of such models.

The UAPs computed for the FFM [12] directly transfer to attack

other target FFMs [10, 11]. Table 4 shows the evaluation results

(brown ink for [11]). Note that the FFM [11] is reimplemented here

without including the residual module. As shown in Table 4, the

UAPs

reduced average accuracies by 19.19% and 24.06%, respectively,

for the two unseen FFMs. Again, the UAPs outperform the URNs,

which demonstrates that an adversarial attack based on over-firing

can probe special noise patterns that contaminate the learned fea-

tures even though the network architectures differ. Interestingly, if

we retain the residual module for the FFM [11], the UAPs and URNs

have comparable performance, i.e., an average drop of around 30%
(not shown in Table 4). The reasons for this are twofold. First, the

residual module extracts high-frequency details, which renders the

Table 4. Performance of UAPs: transferability across unseen FFMs.

Table 5. Results of subjective assessment.

whole model sensitive to both kinds of perturbations. Second, the

residual maps may lie in a region far from the manifold of original

data, so transferability is no longer effective.

3.3. Subjective assessment

Imperceptibility is an essential requirement for adversarial per-

turbations. However, the objective criteria like RMSE can not

dutifully reflect the perceptual loss caused by local but condensed

distortions. We conducted subjective assessment for the visual

quality of adversarial images by using the degradation category

rating method [20]. We asked evaluators to compare a clean image

with its noisy version and then to rate the quality degradation on

a 5-point mean opinion score scale, with 5 being the least degra-

dation. We selected IAPs (all groups of ‘20 iters’), UAPs and

URNs as the distortion sources, and compared the clean image

with itself as a baseline. As such, there were four conditions,

each consisting of 300 pairs selected at random. We exhibited

some pairs at https://nii-yamagishilab.github.io/

Samples-Rong/Image-AE-attack/.

The evaluation was performed through a web-based interface,

with each web page horizontally displaying a pair of images. We

grouped 21 pairs into a set, and each evaluator was permitted to

evaluate at most 5 sets. We collected a total of 39680 legitimate

scores from 775 evaluators. As shown in Table 5, the UAP and URN

scores were comparable and close to baseline 4.49. This demon-

strates that UAPs are visually negligible. The lower IAP score sug-

gests that local but condensed distortions are prone to serious percep-

tual losses. Therefore, future work on individual adversarial attacks

should enforce a constraint based on local smoothness.

4. CONCLUSION

Our study had demonstrated the existence of adversarial perturba-

tions for FFMs. The gradient-based iterative procedure generates

IAPs that can be used to fabricate classification and segmentation

outputs. Without the need for training data, UAPs are crafted to over-

fire the latent neurons. The objective function we designed provides

a sufficient initial loss, which makes the over-firing practical with

lightweight computational cost. Our experiments demonstrated that

UAPs have transferability across unseen datasets and unseen FFMs,

and our subjective assessment showed that the distortions incurred

https://nii-yamagishilab.github.io/Samples-Rong/Image-AE-attack/
https://nii-yamagishilab.github.io/Samples-Rong/Image-AE-attack/


by UAPs are visually negligible. This work can serve as a base-

line for evaluating the adversarial security of FFMs. Future work

includes developing a defense module that can protect FFMs against

adversarial attacks.

5. REFERENCES

[1] https://github.com/deepfakes/faceswap/

[2] https://github.com/MarekKowalski/FaceSwap/

[3] P. Korshunov, S. Marcel, “Speaker Inconsistency Detection in

Tampered Video,” in Proc. 26th Eur. Signal Process. Conf.

(EUSIPCO), pp.2375-2379, 2018.

[4] Y. Li, M.C. Chang, S.W. Lyu, “In Ictu Oculi: Exposing AI

Generated Fake Face Videos by Detecting Eye Blinking,” in

Proc. IEEE Int. Workshop Inform. Forensics Secur. (WIFS),

pp.1-7, 2018.

[5] X. Yang, Y.Z. Li, S.W. Lyu, “Exposing Deep Fakes Using In-

consistent Head Poses,” in Proc. 44th IEEE Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), pp.8261-8265, 2019.

[6] D. Wen, H. Han, A.K. Jain, “Face Spoof Detection with Im-

age Distortion Analysis,” IEEE Trans. Inform. Forensics Se-

cur., 10(4):746-761, 2015.

[7] H.D. Li, B. Li, S.Q. Tan, J.W. Huang, “Detection of Deep

Network Generated Images Using Disparities in Color Com-

ponents,” arXiv preprint:1808.07276v2, 2019.

[8] Y.Z. Li, S.W. Lyu, “Exposing DeepFake Videos by Detecting

Face Warping Artifacts,” in Proc. 2019 IEEE Conf. Comput.

Vis. Pattern Recogn. Workshop (CVPRW), pp.46-52, 2019.

[9] H.X. Mo, B.L. Chen, W.Q. Luo, “Fake Faces Identification via

Convolutional Neural Network,” in Proc. 6th ACM Workshop

Inform. Hiding & Multimedia Secur. (IH&MMSec), pp.43-47,

2018.

[10] D. Afchar, V. Nozick, J. Yamagishi, I. Echizen, “MesoNet: A

Compact Facial Video Forgery Detection ,” in Proc. IEEE Int.

Workshop Inform. Forensics Secur. (WIFS), pp.1-7, 2018.

[11] D. Cozzolino, J. Thies, A. Rössler, C. Riess, M. Nießner,
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