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ABSTRACT
In the last few years, we have witnessed the rise of a series of deep
learning methods to generate synthetic images that look extremely
realistic. These techniques prove useful in the movie industry and
for artistic purposes. However, they also prove dangerous if used
to spread fake news or to generate fake online accounts. For this
reason, detecting if an image is an actual photograph or has been
synthetically generated is becoming an urgent necessity. This pa-
per proposes a detector of synthetic images based on an ensemble
of Convolutional Neural Networks (CNNs). We consider the prob-
lem of detecting images generated with techniques not available at
training time. This is a common scenario, given that new image gen-
erators are published more and more frequently. To solve this issue,
we leverage two main ideas: (i) CNNs should provide “orthogonal”
results to better contribute to the ensemble; (ii) original images are
better defined than synthetic ones, thus they should be better trusted
at testing time. Experiments show that pursuing these two ideas im-
proves the detector accuracy on NVIDIA’s newly generated Style-
GAN3 images, never used in training.

Index Terms— Image forensics, synthetic images, GAN, CNN

1. INTRODUCTION

Over the last few years, we assisted in an escalation of methods
for the production of increasingly more realistic synthetically gen-
erated images [1–4]. The first architectures produced blurry and
low-resolution images with a general lack of details. Recently, gi-
ant steps have been made to raise the bar and overcome those issues.
This is evident by the recent release of a new Generative Adversarial
Network (GAN) architecture by NVIDIA, namely StyleGAN3 [5],
which produces high-quality images that can easily fool human eyes.

On the one hand, the authors of image generators put much effort
into generating very realistic pictures. On the other hand, they are
aware of the variety of problems an overly realistic architecture can
create. Generated images can be used over social media for many
malicious intents, from scams to identity stealing, and the general
public is not ready to face this menace. A recent work [6] shows
how is it difficult for humans to tell real and generated faces apart
when they have just a few seconds to make the decision. The inter-
viewed people rated StyleGAN2 [2] images as real in the 68% of
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the cases, whereas real images were rated as real only in the 52% of
the cases. Similarly, the study conducted in [7] shows how synthetic
faces prove even more trustworthy at human inspection. Notice that
these studies do not even consider the more recent StyleGAN3 yet.

Given these premises, it is evident that being able to detect if
an image is a natural photograph or it has been synthetically gen-
erated is becoming a task of utmost importance. For this reason,
the multimedia forensics community is developing a series of tech-
niques to solve the synthetically generated image detection prob-
lem. Some methods are based on hand-crafted features fed to classi-
fiers [8–11]. A wide variety of solutions prefer a purely data-driven
approach based on training an end-to-end detector [12, 13]. How-
ever, many of these techniques tend to suffer in classifying images
that deviate from the characteristics of their training set. Unfortu-
nately, it is nowadays impractical to assume that the characteristic of
any synthetically generated image can be perfectly known at train-
ing stage, as new image generation techniques are developed con-
tinuously. For this reason, the latest research trend is to develop
methods that can generalize well, detecting images generated with
unseen techniques [11, 14].

In this paper, we tackle the problem of GAN-generated image
detection. This is, given an image under analysis, to detect if it is a
real photograph or it has been synthetically generated by a GAN. We
consider the realistic and challenging scenario in which test images
may come from generators that were unknown to the analyst at train-
ing time. To solve the GAN-generated image detection problem, we
propose an ensemble of Convolutional Neural Networks (CNNs).

The proposed method leverages two main ideas to increase the
robustness of unseen generated images. First, CNNs contributing
to the ensemble should be as much “orthogonal” as possible. We
propose a training strategy that increases the diversity among the
different learners for this purpose. This prevents the CNNs from
overfitting the image generators used in training, thus enabling the
ensemble to take a better decision on newly generated images. Sec-
ond, the detection problem is better defined over real images than
synthetic ones. Indeed, it is safer to assume that the analyst can
train on a broad set of real photographs that better represent the real-
image class. On the contrary, it is hard to assume that the analyst
can train on synthetic images generated with all the possible existing
techniques, as these change and get updated too frequently in time.
Therefore, we propose a score aggregation strategy that better favour
decisions towards the real-image class.

Our experimental campaign is designed to test the proposed
training and aggregation strategies on top of a baseline CNN detector
based on EfficientNet [15]. We show that our technique is able to: (i)
better draw the separation line between real and synthetic images by
separating the score distributions of the two classes; (ii) accurately
detect StyleGAN3 images as GAN-generated, even though they have
never been used in training.

ar
X

iv
:2

20
3.

02
24

6v
1 

 [
cs

.C
V

] 
 4

 M
ar

 2
02

2



CNN 1

CNN n

CNN 2
Real 
vs.

Synthetic

Patch
Split

...

Orthogonal CNNs

Patch 
Aggregation

Patch 
Aggregation

Patch 
Aggregation

...

Fusion

Fig. 1: Proposed method for GAN image detection. Given an image, we
split it into patches which are fed to multiple orthogonal CNNs. We aggregate
the patch scores to obtain a single image score per CNN. Eventually, we fuse
the scores into the final image score to classify the image as real or synthetic.

2. PROPOSED METHOD

We can summarize the main objectives of the GAN-generated image
detection problem into three primary tasks: (i) generalize very well
to new GANs unseen during training phase; (ii) be robust against
post-processing operations applied on images; (iii) achieve a missed
detection rate (i.e., the number of synthetic images detected as real)
as low as possible. To improve GAN generalization and robustness
to editing operations, we propose a procedure based on orthogonal
training of multiple CNNs, all based on the same backbone architec-
ture but each trained on a different training dataset. At the testing
stage, we propose a patch selection and aggregation strategy that
considerably reduces the missed detection rate.

Fig. 1 reports the sketch of the proposed testing pipeline. In a
nutshell, given a query image, we classify it as being real or syn-
thetically generated by selecting several patches from it and passing
them through multiple orthogonal CNNs. Then, we aggregate the
patch scores and fuse the CNNs results into a single prediction as-
sociated with the entire image. We provide more details about the
proposed approach in the following lines.

2.1. Orthogonal Training

To improve the generalization of the proposed method against new
GANs, we train multiple CNNs over different training datasets,
which are “orthogonal” one another (with a slight abuse of termi-
nology). For clarity’s sake, we consider two datasets “orthogonal” if
one of the following conditions is met:

• the datasets include images depicting different semantic content
(e.g., cats or humans);

• the datasets include images that underwent different post-
processing (e.g., uncompressed or compressed images);

• the datasets include images that underwent different compressions
(e.g., different JPEG implementations);

• the datasets include images synthesized by different GANs.

The key idea of the proposed training orthogonalization is that every
single CNN should capture slightly different traces with respect to
the others. The ensemble of many CNNs trained in an orthogonal
fashion proves to achieve improvements with respect to training a
unique CNN over the whole entirety of data at disposal.

The common backbone used for all the proposed CNNs is the
EfficientNet-B4 model [15], well known in the computer vision
and multimedia forensics communities due to the outstanding re-
sults achieved in many tasks although requiring few network pa-
rameters [10]. Each CNN works at patch level, always considering
squared RGB patches of N ×N pixels as input and providing a sin-
gle score per patch. Considering an ensemble of C CNNs analyzing

P patches per image, we define as ŷc
p the score estimated by the c-th

CNN for the p-th patch, with c ∈ [1, C] and p ∈ [1, P ].
To improve the robustness against various post-processing op-

erations, we apply strong data augmentations as suggested in many
state-of-the-art works for synthetic image detection [13,14]. The list
of possible augmentations emulates common editing operations that
can be applied by amateur users when retouching their photographs.
Moreover, malicious users could also apply the same operations to
hide the traces left by the synthetic generation process. We consider
horizontal and vertical flip, random 90-degree rotation, histogram
equalization, random blur, random changes in brightness, contrast,
color and saturation, random downscale and upscale, and finally
JPEG Compression with quality factors randomly selected from 30
to 100. Each augmentation is applied with probability 50%, except
for JPEG compression, which is applied with probability 70%. The
parameters are those defined in [16].

At testing stage, for each CNN, we obtain different scores as-
sociated with the patches extracted from the query image. Real and
synthetic patches are associated with negative and positive scores,
respectively. We fuse these scores by following the aggregation strat-
egy presented in the next section to obtain the final image score.

2.2. Patch Aggregation Strategy

Given a test image, every orthogonal CNN returns many scores as-
sociated with the patches extracted from the image. When fusing
the patch scores, we aim at reducing the detection errors on the syn-
thetic images. Thus, the missed detection rate is the most critical
parameter to maintain as low as possible.

The proposed approach is based on the consideration that, when
training a generic GAN detector, it is reasonable to assume that the
characteristics of real images are easier to be captured than those
of synthetic ones. Indeed, everybody could collect a set of origi-
nal photographs and assign them the label “real”, whereas collect-
ing a sufficiently vast and various synthetic dataset might be more
elaborate and certainly requires a little expertise. Moreover, contrar-
ily to the “real” class, the “synthetic” one is constantly and rapidly
evolving, as new proposed methodologies for generating synthetic
content emerge every day, not limited to GANs only [4, 17]. Given
these premises, we can reasonably assume that many CNN detec-
tors trained over orthogonal datasets might correctly classify a real
query image with a high precision level, as long as they are accu-
rately trained. We cannot make the same assumption for synthetic
query images, as they might be generated from novel unseen GANs.

Here comes the proposed patch aggregation strategy. When a
query image passes from a CNN detector and all its extracted patches
are classified as real, the CNN classifies the entire image as real. If at
least one patch among those extracted from the test image is detected
as synthetic, the CNN assigns the entire image to the synthetic-image
class. In particular, the CNN score associated with the image is the
best score achieved among all the patches for what concerns the de-
tected class. Since real and synthetic images are associated with
negative and positive scores, respectively, the image is assigned the
minimum score among the patches if the detected class is real-image.
Otherwise, we assign the maximum score. Formally, the image score
by the c-th CNN is defined as

ŷc =

{
minp ŷ

c
p if ŷc

p < 0, ∀p ∈ [1, P ]

maxp ŷ
c
p otherwise

. (1)

Eventually, we equally weight the orthogonal CNNs to assign
the global image score, which is the arithmetic mean among all the
image scores returned by the networks, i.e., ŷ = 1

C

∑C
c=1 ŷ

c.



3. EXPERIMENTAL ANALYSIS

3.1. Dataset

We perform our investigations over the dataset used for the competi-
tion recently organized by NVIDIA on StyleGAN3 Synthetic Image
Detection [18] within the DARPA’s SemaFor program. The purpose
was to simulate an open-world setting in which new unseen GANs
(e.g., StyleGAN3 [5]) should be detected.

The real class of the testing data consisted of images selected
from three public datasets: the FFHQ [19] (depicting human faces
taken from photographs), the Metfaces [20] (depicting human faces
taken from works of art), and the AFHQ2 [21] (including pho-
tographs of animal faces from three domains of cat, dog, and
wildlife). The synthetic images to be tested were all generated
through the recently released StyleGAN3 network [5], trained on
real images selected from the three previously reported datasets. Ev-
ery real dataset corresponds to two possible synthetic versions of
it, the version r and the version t, according to the specific Style-
GAN3 configuration chosen at generation stage. The images from
Metfaces and AFHQ2 datasets did not undergo post-processing or
compression, while a few synthetic images from the FFHQ dataset
underwent compression and resizing.

The competition did not pose any limit on the kind of training
data to be used for developing the proposed GAN detector, except
for removing from the training data the real images belonging to the
testing dataset and every synthetic image generated through Style-
GAN3. Given these premises, our testing dataset coincides with
the testing dataset of the NVIDIA competition. The training dataset
consists of different datasets, purposely built so to implement the or-
thogonal CNN training described in Section 2.1. Every orthogonal
dataset is exploited for training an EfficientNet-B4, working with
squared RGB patches of size 128 × 128. Following our previous
considerations, we build 5 “orthogonal” datasets:
Dataset D1. This dataset includes all the real images from FFHQ,
Metfaces and AFHQ2 available for training (∼ 116K). The syn-
thetic images (∼ 200K) are selected from the synthetic versions
of the three datasets, generated through state-of-the-art models for
synthetic image generation (i.e., StyleGAN2 [2], StarGAN-v2 [21],
Taming Transformers [22], FaceVid2Vid [23] and Score-based mod-
els [4]). During training, the images undergo multiple augmentations
from the list reported in Section 2.1, JPEG compression included.
Then, 1 patch per image is randomly selected and fed to the CNN.
Dataset D2. This dataset includes the same real and synthetic im-
ages exploited forD1, with the difference that here we first randomly
extract 1 patch per image, then we apply the same augmentations de-
fined for D1. From the point of view of the post-processing applied,
D1 is orthogonal to D2, especially for the JPEG compression. In-
deed, by construction, all the patches from D2 are aligned to the
8 × 8 pixel grid introduced by JPEG compression, while in D1 the
patches can have any random alignment. As already shown in [24],
taking care of the JPEG grid alignment is of paramount importance
for multimedia forensics tasks. The datasets D1 and D2 allow ex-
ploring this issue for the GAN detection problem.
DatasetD3. This dataset includes only the real images from AFHQ2
available for training (∼ 14K) and an equal number of their syn-
thetic versions generated through StyleGAN2 and StarGAN-v2. 10
random patches are extracted per image, then undergo all the aug-
mentations, except for JPEG compression. D3 focuses only on one
semantic category (i.e., the animal faces), on a few GANs and is en-
tirely orthogonal to D1 and D2 for what regards JPEG compression.
Dataset D4. Ideally, this dataset would include only the real images

from Metfaces available for training (∼ 2K) and an equal number of
their synthetic versions generated through StyleGAN2. This would
guarantee complete semantic orthogonality with respect to D3. Ac-
tually, the training process was unstable due to the very limited num-
ber of Metfaces images. To augment the dataset dimensions, we de-
cided to include in D4 also the AFHQ2-related images. We extract
10 random patches per image and apply augmentations, except for
JPEG compression. As well as D3, D4 is entirely orthogonal to D1

and D2 for what concerns JPEG compression.
Dataset D5. This dataset includes only real images from FFHQ
available for training (∼ 100K) and almost 170K synthetic ver-
sions of them generated through StyleGAN2, Taming Transformers,
FaceVid2Vid and Score-based models. We randomly extract 1 patch
per image and pass it through the augmentations, JPEG compres-
sion included. D5 is entirely orthogonal to D3 and D4 concerning
the semantic content and is partially orthogonal for the GANs used.
Moreover, D5 is entirely orthogonal to D1 about JPEG alignment.

At deployment stage, we extract RGB patches 128 × 128 from
the query image in different ways according to the CNN to be fed.
For the CNN trained over D1, we randomly select 200 patches per
image. For the remaining CNNs, we always feed them with around
180 patches per image, aligned with the 8× 8 pixel grid introduced
by JPEG compression. This operation is done to ensure that the
potential editing traces undergone by the test patches match with the
JPEG training augmentations. Indeed, for building D1, the training
patches can be misaligned to the JPEG grid, while the remaining
datasets always match the JPEG grid alignment, if JPEG is present.

3.2. Experimental setup

We keep 80% of the training images for training phase, leaving the
remaining 20% for the validation. As commonly done in CNN
training, we initialize the network weights using those trained on
the ImageNet database. Every CNN is trained using cross-entropy
loss and Adam optimizer with default parameters for a maximum
of 500 epochs. The learning rate is initialized to 0.001 and is de-
creased by a factor 10 if the loss does not decrease for 10 epochs.
Training is stopped if the loss does not improve for more than 20
epochs, then the model providing the best validation loss is selected.
The experimental code is available at https://github.com/
polimi-ispl/GAN-image-detection.

3.3. Results

This section reports the results achieved by the performed experi-
mental campaign. First, we show the performance of the proposed
patch aggregation strategy, then we evaluate the orthogonal CNN
training. Eventually, we compare our results with state-of-the-art.
Patch aggregation. To show the effectiveness of the proposed patch
aggregation strategy, we compare our approach with standard patch
aggregation methodologies. For brevity’s sake, we show the benefits
of our strategy only on the results achieved by one single CNN, as
the trend is the same for all the considered networks.

Fig. 2 depicts the achieved image scores’ distributions by ag-
gregating the patch scores returned by the CNN trained on D2. In
particular, Fig. 2(a) reports the results of the proposed method: if
at least one patch is detected as synthetic, the image is assigned the
“best” score among the synthetic ones. Figs. 2(b)-(c)-(d) show the
results obtained by modifying this strict condition, letting the num-
ber of patches required for assigning the label “synthetic” grow to 5,
10 and 25 patches, respectively. Figs 2(e)-(f) report the results ob-
tained by selecting the arithmetic mean and the median among the
patch scores, respectively. For each scenario, we report the corre-
sponding Area Under the Curve (AUC) of the Receiver Operating

https://github.com/polimi-ispl/GAN-image-detection
https://github.com/polimi-ispl/GAN-image-detection
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Fig. 2: Histogram of the image scores achieved by the CNN trained on dataset D2: (a) reports the scores obtained by following the proposed patch aggregation
strategy; (b), (c) and (d) show the scores obtained by modifying the threshold on the number of “synthetic” patches for assigning the image label to 5, 10 and
25, respectively; (e) and (f) report the results if we aggregate the patch scores by computing their arithmetic mean and median, respectively.

Table 1: AUC achieved in the eight considered testing scenarios and over the global test dataset. In bold, the two best AUCs for each scenario.

AFHQ2-r AFHQ2-t Metfaces-r Metfaces-t FFHQ-r FFHQ-t FFHQ-r, res-comp FFHQ-t, res-comp Global

CNN1 0.9971 0.9995 0.9777 0.9896 0.9999 0.9995 0.9932 0.9932 0.9951
CNN2 0.9884 0.9954 0.8996 0.9347 0.9999 0.9997 0.9997 0.9997 0.9954
CNN3 0.9954 0.9996 0.9909 0.9834 0.9999 0.9994 0.4218 0.4313 0.8092
CNN4 0.9755 0.9986 0.9982 0.9991 0.9999 0.9988 0.8432 0.8534 0.9456
CNN5 0.6021 0.5858 0.6185 0.7322 0.9998 0.9995 0.9997 0.9997 0.9682

Fusion 0.9991 0.9999 0.9919 0.9964 0.9999 0.9999 0.9995 0.9995 0.9995

Characteristic (ROC) curve and the True Positive Rate (TPR) and
False Positive Rate (FPR) achieved in the confusion matrix.

Our approach achieves the highest AUC and an extremely high
detection accuracy for synthetic images at the cost of a few false
alarms. As we increase the number of patches detected as synthetic
for assigning the final score to the image (see Figs. 2(b)-(c)-(d)),
the number of false alarms reduces, but the missed detections also
increase. The arithmetic mean and median of the patch scores are
far from being competitive with the proposed method.
Orthogonal CNN training. Table 1 reports the results of every
single CNN and of the ensemble. We show the AUC achieved on
the global test set, but we also investigate different scenarios in
which only the real images of a particular dataset (e.g., FFHQ, Met-
faces or AFHQ2) are compared with their synthetic versions gen-
erated through StyleGAN3. The considered scenarios are: (i) real
AFHQ2 vs. synthetic AFHQ2 generated with r configuration; (ii)
real AFHQ2 vs. synthetic AFHQ2 generated with t configuration;
(iii) real Metfaces vs. synthetic Metfaces, r-versions; (iv) real Met-
faces vs. synthetic Metfaces, t-versions; (v) real FFHQ vs. syn-
thetic FFHQ, r-versions, without resizing and compression; (vi) real
FFHQ vs. synthetic FFHQ, t-versions, without resizing and com-
pression; (vii) real FFHQ vs. real FFHQ, r-versions, with resizing
and compression; (viii) real FFHQ vs. synthetic FFHQ, r-versions,
with resizing and compression.

The CNN ensemble often reports the best results. Regarding the
single CNNs, the best methods on average are those trained over D1

andD2. This was expected, as these CNNs were trained over a larger
and more various amount of data with respect to the last three of
them. However, every orthogonal training dataset carries important
contributions related to the specific kind of data it is focused on.
For instance, CNN3 and CNN4 achieve extremely high AUCs on
AFHQ2 and Metfaces datasets, respectively. CNN5 achieves almost

perfect AUCs over FFHQ undergone post-processing operations.

All CNNs report acceptable results in the global test scenario.
Nonetheless, due to their specific training implementation, some
CNNs might be more prone to detection errors than others in partic-
ular test scenarios, whereas their ensemble always maintains robust.
Aiming at simulating realistic situations in which test images come
from unknown generative models, the ensemble of multiple CNNs
proves to be a valid option for synthetic image detection, paving the
way towards robust and generalized solutions.

Comparison with state-of-the-art. The proposed GAN detector
ranked first in the competition organized by NVIDIA, outperforming
the results achieved by many expert teams in the field of multimedia
forensics. Indeed, our method achieved the highest AUC over the
global test set, as well as the best results in all the eight testing sce-
narios described previously. We refer the interested reader to [18] for
any additional details and for comparing the state-of-the-art results.

4. CONCLUSIONS

In this paper we proposed a synthetic image detector based on an
ensemble of CNNs, which are trained to increase the diversity within
the ensemble. Our score aggregation strategy takes into account the
fact that some image generators can be unknown at training time.
Results show that these ideas help improving the detector accuracy
on StyleGAN3 images that have never been used for training.

Despite the promising results, the orthogonality among the
trained CNNs is only empirically verified at test time by observing
the detector accuracy. Future work will be devoted to a deeper study
of the CNNs diversity from a more theoretical view point. This will
enable the development of ad-hoc training strategies.
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