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ABSTRACT

This paper presents a fast, principled approach for detecting
anomalous and out-of-distribution (OOD) samples in deep
neural networks (DNN). We propose the application of lin-
ear statistical dimensionality reduction techniques on the se-
mantic features produced by a DNN, in order to capture the
low-dimensional subspace truly spanned by said features. We
show that the feature reconstruction error (FRE), which is
the `2-norm of the difference between the original feature
in the high-dimensional space and the pre-image of its low-
dimensional reduced embedding, is highly effective for OOD
and anomaly detection. To generalize to intermediate features
produced at any given layer, we extend the methodology by
applying nonlinear kernel-based methods. Experiments using
standard image datasets and DNN architectures demonstrate
that our method meets or exceeds best-in-class quality perfor-
mance, but at a fraction of the computational and memory cost
required by the state of the art. It can be trained and run very
efficiently, even on a traditional CPU.

Index Terms— Anomaly detection, out-of-distribution
detection, uncertainty estimation, subspace modeling.

1. INTRODUCTION

Deep networks deployed in real-world conditions will in-
evitably encounter out-of-distribution data, which leads to
outputs that are unpredictable, unexplainable and sometimes
catastrophic. The ability to detect OOD data is therefore criti-
cal for the deployment of safe and transparent systems.

OOD detection is typically performed by making the net-
work provide an uncertainty score (along with the output) for
each input. Early methods include the softmax score [1] and
its temperature-scaled variants [2]. Bayesian neural networks
[3] and ensembles of discriminative classifiers [4] are more
recent and can generate high quality uncertainty, but at the cost
of complex model representations, and substantial compute
and memory. Deep generative models learn distributions over
the input data, and then evaluate the likelihood of new inputs
with respect to the learnt distributions [5, 6, 7]. Gradient-based
characterization of abnormality in autoencoders is highlighted
in [8]. Finally, there are methods [9, 10] that learn parametric
class-conditional probability distributions over the features and
use the likelihoods (w.r.t the learnt distributions) as uncertainty

scores.
Within the more general problem of OOD detection,

anomaly detection has become particularly important in in-
dustrial applications. Its goal is to identify rare and abnormal
events from the observation of data. Anomaly detection algo-
rithms rely on good, defect-free samples during the training
stage, and identify anomalous samples by comparing against
the learned distribution of good data. Since this is really
a specific type of OOD detection, state-of-the-art methods
in anomaly detection are based on the same principles as
the general OOD problem. For instance, [11, 12] use deep
generative models to model the distribution of good samples.
Alternately, methods such as [13, 14] model clusters or dis-
tributions on a multi-level pyramid of deep-features. [15]
uses greedy coreset subsampling (which is NP-hard) on the
feature-banks to reduce memory requirements. These methods
show impressive results to varying degrees, but at the cost
of significant computational and storage complexity during
training or inference.

We present here a method for anomaly and OOD detection
based on appropriately modeling the subspace of the interme-
diate features produced by a DNN. The high dimensionality of
this feature space makes it very challenging, both computation-
ally and algebraically, to perform a variety of otherwise routine
tasks on the features, a phenomenon known as the curse of
dimensionality. For instance, it leads to rank-deficiency in the
data-matrix of the features. The manifold hypothesis states,
however, that real-world high-dimensional data lie on low-
dimensional manifolds embedded within the high-dimensional
space. [16] prescribes that these high-dimensional spaces
should be modeled by appropriate low-dimensional manifolds
and sub-spaces. In the computer vision field, the problems
highlighted by the manifold hypothesis are well understood for
the image space: despite its very high dimensionality, many
points in that space do not correspond to realistic natural im-
ages. In the context of the intermediate features of a DNN, this
implies that the features sparsely occupy the high-dimensional
space they live in. Hence, the true subspace spanned by the
features can be accurately captured by appropriately mapping
the original high-dimensional feature space to a reduced lower-
dimensional subspace.

In this work, using a single-layer of a pretrained DNN, we
show that the feature reconstruction error (FRE), the `2-norm
of the difference between the original feature in the high-
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Fig. 1. Proposed system.

dimensional space and the pre-image of its low-dimensional
reduced embedding, is a highly effective uncertainty score
for anomaly and OOD detection. This circumvents the need
to perform any subsequent processing in the reduced feature
space, thereby greatly simplifying the procedure both during
modeling and inference. We show that this approach achieves
state-of-the-art anomaly and OOD detection performance (sec-
tion 3.1), but with significantly lower complexity compared to
other methods. This makes it very attractive for deployment
in real-world industrial usages on low-cost edge platforms
without requiring investment into expensive discrete GPUs.
Furthermore, the approach does not modify the network’s pa-
rameters, which is a significant advantage for trained networks
already deployed.

2. APPROACH

Consider a deep neural network (DNN) trained on an N -class
classification problem. For an input x, let f(x) denote the
output at an intermediate layer of the network. The features
induced by the training dataset do not fully span the high-
dimensional space in which they reside. Hence, for a training
dataset of size M , the data-matrix D = [f(x1)| . . . |f(xM )]
constructed from the features is rank deficient. Table 1 shows
how severe the rank deficiencies in the higher-dimensional
inner layers of a Resnet18 deep network used in our exper-
iments are. Hence, we learn a transformation T that maps
the high-dimensional features onto an appropriate subspace,
T : H → L with dim(L) � dim(H). The parameters of
the inverse transformation T † are also learnt simultaneously.
During inference, this transformation is applied to a test fea-
ture sample to obtain its reduced-dimension embedding. This
reduced embedding is inverse-transformed into the original
space and a feature reconstruction error (FRE) score is calcu-
lated as the `2 norm of the difference between the original and
reconstructed vectors, as given by

FRE(x) = ‖f(x)− (T † ◦ T )(f(x))‖2 (1)

This score can be used as an uncertainty score for OOD detec-
tion. In what follows, we explain the various aspects of the
subspace modeling process. A complete flow-diagram of our
approach is shown in Figure 1.

Fig. 2. Distribution of features in 3D space. The features for
Class 1 have spread mainly in the Z-dimension.

Table 1. Feature dimensions and data-matrix ranks for
Resnet18 trained on CIFAR10

Layer Layer 0 Layer 1 Layer 2

Dimension 512 256 512
Rank 85 255 478

With 99.5% PCA 29 239 463

2.1. Global vs Per-Class Subspace Modeling

Subspace modeling can be applied either on the features from
all classes of the training set at once, or on a per-class basis.
In what follows, we refer to the former as global and the latter
as per-class. Global modeling is appealing when the number
of samples per class is small relative to the feature dimension,
such as when dealing with a large number of classes but with
limited training data per class. It is also an option when class
labels are not available (semi-supervised OOD). However,
it may not adequately model the feature space’s underlying
structure as it does not take advantage of the fact that there may
be multiple well-separated clusters, corresponding to separate
classes or groups of classes. Modeling subspaces separately
for each class can then often result in much better performance.
This situation is clearly demonstrated in Figure 2 which shows
the distribution of features from the penultimate layer of a
simple CNN model trained with four classes.

2.2. Linear vs Non-Linear Subspace Modeling

Linear Subspace Modeling: One popular choice for dimen-
sionality reduction is principal component analysis (PCA) [17].
In this framework,H and L are, respectively, Euclidean spaces
Rd and Rm, with m� d. T can then be calculated from the
singular value decomposition (SVD) [18] of the data matrix D.
Table 1 provides an intuition for the extent of dimensionality
reduction achieved when applying PCA. For instance, we see
that for Layer 0, the subspace dimension after applying PCA
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Table 2. AUROC results for OOD detection performance.
Mahal LL FRE kFRE Mahal LL FRE kFRE

CIFAR100 SVHN (OOD) LSUN (OOD)

Layer2 91.5 92.8 93.1 93.4 98.5 98.8 98.3 98.2

Layer1 91.2 90.0 93.2 95.8 98.7 99.1 98.4 98.3

Layer0 75.0 84.8 79.3 75.9 97.3 95.1 97.1 91.5

Softmax 74.3 84.7

CIFAR10 SVHN (OOD) LSUN (OOD)

Layer2 94.6 94.5 77.2 98.5 98.8 99.4 95.3 99.0

Layer1 86.4 88.8 48.5 92.4 72.5 86.0 65.2 87.0

Layer0 95.2 95.0 96.7 93.9 95.1 95.5 95.3 95.1

Softmax 93.4 94.0

SVHN CIFAR10 (OOD) LSUN (OOD)

Layer2 94.2 93.8 85.2 93.7 94.3 93.9 90.1 93.5

Layer1 90.4 94.9 94.2 94.7 90.6 95.2 94.5 94.9

Layer0 92.3 96.8 96.0 95.6 92.5 97.1 96.0 95.8

Softmax 93.0 92.5

with 99.5% variability retention drops from 512 to 29, indicat-
ing that 99.5% of the information in the 512-dimensional fea-
tures is actually contained within a 29-dimensional subspace!
The results for other layers are less dramatic but nonetheless
point to the need for appropriate subspace modeling. As the
mapping from the high-dimensional feature space to the lower-
dimensional reduced subspace is non-injective, there isn’t a
uniquely defined inverse image (pre-image) for a reduced fea-
ture i.e. T † is not uniquely defined. In the linear case, a
common practice is to use the Moore-Penrose pseudo-inverse
of the forward transformation [18].

Non-Linear Subspace Modeling: Linear methods like PCA
are most effective at subspace modeling if the underlying data
is Gaussian, since PCA can only remove second-order depen-
dencies [17]. However, the assumption of normality for the
intermediate features of a DNN was justified only at the penul-
timate layer [9]. For other layers, the distribution of features
could significantly depart from the normal distribution. In gen-
eral, it will depend on the dataset used to induce the feature set,
as well as the network topology. In such situations, modeling
the data as living in a lower-dimensional sub-manifold can
yield vastly improved outcomes. Here, we use kernel PCA
(kPCA) [19] to model the underlying non-linear structure of
the data. The choice of kPCA is motivated by the fact that it is
a nonlinear extension of PCA, which allows for a direct com-
parison of performance between the linear and nonlinear OOD
schemes. It is also computationally cheaper than other mani-
fold learning methods such as Isomap [16] and locally linear
embedding (LLE) [20], which can be described as kPCA on
specially constructed Gram matrices [19]. In general, though,
our approach can employ any nonlinear manifold learning
technique that provides an explicit mapping function for new

Fig. 3. AUROC (Y-axis) for OOD detection with CIFAR10
and CIFAR100 as in-distribution datasets, and SVHN (red) and
LSUN (blue) as OOD sets as we decrease the percentage of
training data used (X-axis) for our OOD method all the down
to 20%. There is virtually no degradation in performance.

Fig. 4. Good (green) and defective (red) samples from the
MVTec dataset.

data points. For computation of the inverse transformation, we
refer to [21] for a seminal paper on the topic.

3. EXPERIMENTS AND RESULTS

3.1. Out-of-Distribution Detection

Experimental setup and evaluation metrics:
For the problem of OOD detection, we use CIFAR10,

CIFAR100, and SVHN as the in-distribution datasets. To
test across networks of various depths and complexities, we
train SVHN on Resnet20 (0.27M parameters), CIFAR10 on
Resnet18 (11.2M parameters), and CIFAR100 on Wide-Resnet
(36.5M parameters). For models trained on CIFAR10 and
CIFAR100, we use SVHN and a resized version of LSUN
as OOD datasets; for those trained on SVHN, CIFAR10 and
LSUN are used as OOD datasets. In all experiments, the
subspace transformations are estimated from the training split
of the in-distribution dataset, while performance metrics are
calculated on the test splits. We apply both the linear (PCA)
and nonlinear (kPCA with RBF kernel) subspace techniques
to model the feature subspace on a per-class basis, with results
reported separately in Table 2. We tested our method on three
layers of each of the networks, with layers chosen to be located
uniformly along the network path. The layers are labelled as
0, 1, and 2, with 0 being the (semantic) outermost layer, and 1,
2 being progressively deeper within the network.

During testing, the FRE (Eq. (1)) is used to distinguish
between in distribution and out-of-distribution data. This ef-
fectively creates a binary classifier, whose performance is
characterized by the receiver operating characteristics (ROC)
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Table 3. Anomaly Detection AUROC MVTec dataset
? Methods not reporting class-itemized results. For PaDim, results were
recreated using anomalib[22]

Category GANomaly DifferNet SPADE? PaDim? PatchCore FRE (Ours)

Carpet 69.9 92.9 - 99.5 98.7 100

Grid 70.8 84.0 - 94.2 98.2 95.8

Leather 84.2 97.1 - 100 100 100

Tile 79.4 99.4 - 97.4 98.7 97.8

Wood 83.4 99.8 - 99.3 99.2 99.4

Bottle 89.2 99.0 - 99.9 100 100

Cable 75.7 95.9 - 87.8 99.5 99.3

Capsule 73.2 86.9 - 92.7 98.1 99.4

Hazelnut 78.5 99.3 - 96.4 100 99.8

Metal Nut 70.0 96.1 - 98.9 100 96.9

Pill 74.3 88.8 - 93.9 96.6 95.7

Screw 74.6 96.3 - 84.5 98.1 97.5

Toothbrush 65.3 98.6 - 94.2 100 99.4

Transistor 79.2 91.1 - 97.6 100 98.6

Zipper 74.5 95.1 - 88.2 99.4 96.4

Average 76.2 94.9 85.5 97.9 99.1 98.4

curve and we report the area under the ROC curve (AUROC)
in Table 2. For baseline comparison, we use a binary OOD
classifier based on Softmax scores (applicable only at the Soft-
max layer). At each layer tested, we also benchmark against
a binary classifier based on Mahalanobis scores (denoted as
Mahal). The Mahalanobis scores are the likelihoods of test
samples w.r.t feature probability distributions fitted with mul-
tivariate Gaussian distributions sharing the same covariance
across classes. In Table 2, FRE (resp. kFRE) refers to the
feature reconstruction error with PCA (resp. kPCA) and LL
corresponds to results obtained with [10].
OOD detection results: Table 2 shows that the proposed
method is very competitive, often outperforming benchmarks
that are much more demanding in computations and memory
storage, and typically within a half-percentage point of those.
In particular, both benchmarks require density estimation and
likelihood evaluation in high-dimensional spaces, while the
proposed method relies on a few simple dot-product operations
in the linear case. Of note, we notice a trend of the nonlinear
scheme providing better results than its linear counterpart as
we progress deeper into the network. This is consistent with
the hypothesis alluded to earlier that the outer-most layers
produce features with a distribution close to Gaussian while
deeper layers have feature spaces that may exhibit complex
nonlinearity in their structure.
Robustness to reduced training data: In practical situations,
we might not have access to the entire training dataset. We
show that our method remains very effective at OOD detection
even when its training (subspace modeling) is performed with
a fraction of the training data. The plots in Figure 3 show the

Table 4. Anomaly Detection AUROC on Magnetic Tile
GANomaly I-NN DifferNet PatchCore FRE (Ours)

76.6 80.0 97.7 97.9 99.2

variations in AUROC for the CIFAR100 dataset, using both
linear and non-linear subspace modeling, as the percentage
for training data is gradually reduced to 20%. We see that
the performance remains very stable, showing a decrease of
less than 1% in AUROC scores in the majority of cases. We
observe this trend for the other datasets as well.

3.2. Application to Anomaly Detection

Finally, we apply our method to the problem of anomaly detec-
tion in images. We learn a linear PCA transform, T , on the fea-
tures of an EfficientNet-B5 pretrained on Imagenet from only
the defect-free images. We then use the feature-reconstruction
score to distinguish between good and defective samples. We
test our approach on two datasets: the MVTec anomaly detec-
tion dataset [23] (sample images shown in Figure 4), and the
Magnetic Tile defect (MTD) dataset [24]. The results, compar-
ing against various available benchmarks, are shown in Tables
3 and 4 respectively. Our method attains the best performance
on MTD and a close second on MVTec, despite its simplicity.
Complexity: Existing state-of-the-art methods involve sig-
nificant complexity during training or inference. [11, 12] use
deep generative models (GANs or normalizing flows) to model
the distribution of normal samples, which require expensive
training. While [14, 13] mititgate training complexity by us-
ing pretrained models, they both involve modeling clusters
or probability distributions on a multi-level pyramid of deep-
features. [15] reduces the memory storage requirements of
feature-pyramid based methods but uses greedy coreset sub-
sampling on the stored feature banks to accomplish this, which
is known to be a computationally involved process (NP-hard).
By contrast, our method does not involve training a new model
of any kind (discriminative or generative), operates on fea-
tures from a single layer of the deep-network (instead of a
feature pyramid), and does not involve any complex prob-
abilistic modeling. It achieves state-of-the-art performance
with remarkably low computational overhead, making it very
attractive to deploy in real-world industrial usages.

4. CONCLUSION

This work sketched initial progress on anomaly and OOD
detection with the application of linear and nonlinear dimen-
sionality reduction on the semantic features of a DNN, prior to
leveraging the feature reconstruction error as an uncertainty
score. The method is simple, principled and very fast. Experi-
mentations show qualitative performance at par or better than
state-of-the-art methods that are significantly more complex.
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