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Abstract— The most useful data mining primitives are distance 
measures. With an effective distance measure, it is possible to 
perform classification, clustering, anomaly detection, 
segmentation, etc. For single-event time series Euclidean Distance 
and Dynamic Time Warping distance are known to be extremely 
effective. However, for time series containing cyclical behaviors, 
the semantic meaningfulness of such comparisons is less clear. For 
example, on two separate days the telemetry from an athlete’s 
workout routine might be very similar. However, on the second 
day she might have changed the order in which she did push-ups 
and squats, added a few repetitions of pull-ups, or completely 
omitted dumbbell curls. Any one of these minor changes would 
defeat existing time series distance measures. Some “bag-of-
features” methods have been proposed to address this problem; 
however, we argue that in many cases, similarity is intimately tied 
to the shapes of subsequences within these longer time series. In 
such cases, summative features will lack discrimination ability.  In 
this work we introduce PRCIS, which stands for Pattern 
Representation Comparison in Series. PRCIS is a distance 
measure for long time series, which exploits recent progress in our 
ability to summarize time series with “dictionaries”. We will 
demonstrate the utility of our ideas on diverse tasks and datasets.   

Keywords— Time Series, Distance Measure, Similarity, Matrix 
Profile  

I. INTRODUCTION 
Distance measures are perhaps the most fundamental data 

mining primitives. Armed only with an appropriate distance 
measure, we can perform clustering, classification, anomaly 
detection, summarization, repeated pattern discovery, etc. Given 
the ubiquity and variety of time series, there are dozens of 
distance measures defined for this data type. However, almost 
all such measures are designed for short time series, say 
individual gestures, individual heartbeats, etc. Suppose instead 
we wish to address long time series. Surprisingly, there is very 
little work that considers such data. One solution advocated in 
[10] is to convert the long time series into a fixed feature vector, 
for example A = [Mean(T), Skewness(T), Hurst(T)]. 
Such an approach may be appropriate in some domains, 
however, in many cases the shapes of local subsequences may 
be the most discriminating features, and these are typically not 
well captured by global features. 

    Note that we cannot simply use classic time series distance 
measures. For example, DTW is rightly lauded for its invariance 
to out-of-phase local segments [27] . However, suppose we wish 
to compare two one-minute ECG segments from the same 
person. Because the heart rate is constantly drifting, it is likely 
that the two one-minute ECG segments will have a different 
number of beats, say 67 and 72. DTW is simply unable to 

                                                           
1University of California, Riverside; 2Visa Research 

“explain” the five extra beats, and will be forced to return a large 
distance suggesting the two traces are very dissimilar.  

    In addition, DTW (a special case of Euclidean distance) 
would not be suitable for long time series even if there was some 
mechanism that keep the periodicity fixed. Consider the 
example shown in Fig. 1.left. While each colored pair has the 
same periodicity, minor corruptions of the global trends are 
enough to thwart DTW’s attempt to group similar pairs. 

 
Fig. 1: Six time series, comprising of three obvious pairs, clustered using single 
linkage clustering. left) The clustering produced by DTW. right) the clustering 
produced by PRCIS, the method proposed in this paper. 

The rest of this paper is organized as follows: in Section II 
we present our motivating observations. Section III describes the 
formal definitions and background and allows us to outline our 
approach. Section IV contains an extensive experimental 
evaluation. Finally, we offer conclusions and thoughts on future 
directions in Section V. 

II. MOTIVATION AND RELATED WORK 
Because we have used the term “long time series” without 

defining it, we repair that omission now. For our purposes, 
“long” does not necessarily correlate with the number of 
datapoints. For example, a single heartbeat may be a second 
long, and represented with 128 datapoints. However, some ECG 
apparatus can record at up to 32,768 Hz. In a sense, a single 
heartbeat with either 128 or 32,768 datapoints covers the same 
wall clock time and has the same intrinsic dimensionality. By 
long time series we mean a time series that has at least hundreds 
of features, such as peaks and valleys. 

While there are excellent distance measures for time series, 
such as Euclidean distance and DTW, these measures are suited 
to atomic subsequences, for example, comparing two heartbeats, 
or two gestures, or two days of road traffic density. Note that the 
UCR/UEA Archive [6] exclusively contains datasets of this type. 
The top performing methods on that archive include deep 
learning and non-deep learning based methods, including: 
HIVE-COTE [15], ROCKET [7], TS-CHIEF [23], 
InceptionTime [8], BOSS [22] (a dictionary learning algorithm), 
and a good baseline in ResNet [24]. 



In contrast, we desire a distance measure that can compare 
items at a higher semantic level, for example comparing two 
hour-long ECG traces, before and after a medical intervention, 
or comparing two 90-minute soccer games, or comparing road 
traffic density of two freeways over a year, etc. 

It should be clear that neither Euclidean distance nor DTW 
will work well if directly applied in such circumstances. For 
example, two one-hour traces of walking gait may have a 
differing number of steps. DTW can compare two steps that are 
locally out of phase, but it cannot map say ten steps to eleven 
steps, and that single unexplained step will completely swamp 
any similarity that may or may not exist.  

    Likewise, imagine comparing the road traffic density of 
two freeways over a year. We imagine two freeways could have 
near identical traffic patterns, but one of them comes from a 
suburb that has a slowly increasing population. This slight linear 
trend difference might be imperceptible over a day or a week, 
the typical scale considered by Euclidean distance, but over a 
year the small linear trend difference will again completely 
swamp any similarity that may or may not exist.  

    These issues are understood in the community, but to date 
we are unaware of any automatic solution. Attempts to mine 
such data typically involve a lot of human intensive 
preprocessing steps, cleaning the data (detrending, normalizing, 
imputation of missing values, etc.), and the manual extraction of 
clean and representative examples to feed into downstream 
algorithms. 

    Our basic plan is to create a compact dictionary for each 
time series and calculate the distances between each pair of 
dictionaries. The term dictionary creation/learning is somewhat 
overloaded in computer science. It is often a synonym for sparse 
coding, a class of representation learning methods which aims at 
finding a sparse representation of the input data in the form of a 
linear combination of basic elements as well as those basic 
elements themselves. The elements of the representation learned 
do not typically come from the data. In contrast, we propose to 
use dictionaries that comprise of elements from the data itself. 

III. DEFINITIONS AND BACKGROUND 
We begin by defining the key terms used in this work. The 

data of interest here is time series. 

DEFINITION 3.1. A time series T is a sequence of l real-
valued numbers 𝑡𝑡𝑖𝑖: 𝑇𝑇 =  [𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑙𝑙]. 

Most data mining algorithms do not operate on the entire 
time series, but instead consider only local subsequences of the 
time series. 

DEFINITION 3.2. A subsequence 𝑇𝑇𝑖𝑖,𝑗𝑗 of a time series T is a 
continuous subset of data points from T of length 𝑗𝑗 − 𝑖𝑖 starting at 
position i. 𝑇𝑇𝑖𝑖,𝑗𝑗  =  [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1, . . . , 𝑡𝑡𝑖𝑖+𝑗𝑗−1], 1 ≤  𝑖𝑖 ≤  𝑙𝑙 –  𝑗𝑗 +  1. 

The length of the subsequence is typically set by the user 
based on domain knowledge. For example, for most human 
actions, ½ second may be appropriate, but for considering traffic 
congestion patterns, subsequences of one or two days may be 
more fitting. 

As noted above, the intuition for our solution is to create a 
compact dictionary for each time series and calculate the 
distances between each pair of unique dictionaries. Thus, we 
will next examine some of the ways in which the dictionary 
could be created. 

A. Dictionary Creation 
There are at least four ways a dictionary of short time series 

patterns could be constructed from a long time series. 

• Yeh’s Dictionary [26]: Consider a time series T with 
conserved patterns, supply a window length w and the 
number of patterns n desired for the resulting dictionary. 
Computing the matrix profile MP of T will reveal the 
locations of these motifs. Building the distance profile of 
the motif Q against T will indicate the locations of Q and 
subtracting this distance profile from MP will remove all 
locations of Q from MP. Repeating this process n times will 
produce up to n patterns. Unless otherwise stated, this is the 
dictionary creation algorithm we use in this work.  

• Random Dictionary: This is building a dictionary by 
randomly extracting elements of a long time series. While 
meant to be a naïve baseline, random sampling is known to 
be competitive for some tasks. 

• Time Series Snippets: A snippet is an unsupervised time 
series primitive that rewards both fidelity and coverage 
[13]. Given a time series T, the Snippet Selection 
Algorithm captures “typical” behavior in an ordered list of 
substrings. Other research efforts produce similar compact 
summarizations of time series, for example BeatLex (Beat 
Lexicons for Summarization) [11]. 

• Calendar Dictionaries: This is an option only for datasets 
constrained by human circadian patterns (e.g., traffic 
density, network usage, etc.). Someone familiar with the 
domain can hand curate a dictionary by selecting a handful 
of informative days. 

While our proposed distance measure is agnostic to the 
dictionary creation method used, unless otherwise stated we will 
use Yeh’s Dictionary in this work. Regardless of how the 
dictionary is created, we represent a dictionary of a single time 
series as a dictionary exemplar. 

DEFINITION 3.3. A dictionary exemplar (henceforth 
simply referred to as a dictionary where there is no confusion) 
refers to any dictionary produced by a dictionary learning 
method where the input is a time series T and has an output of 
a dictionary 𝑇𝑇𝑑𝑑 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} where there are 𝑛𝑛 patterns. 

We refer to the values for the notation in Fig. 2 to be the size 
of the dictionary S with patterns of length L. S and L are simply 
the parameters passed to the dictionary creation algorithm. 
Suppose a random dictionary algorithm created a 𝑇𝑇𝑑𝑑[𝑆𝑆,𝐿𝐿] such 
that it extracted S patterns of L length as random non-
overlapping subsequences from T. In this case, the notation is 
true to value. In contrast, Yeh’s Dictionaries extract and then 
merge patterns with overlapping subsequence indices, making S 
an upper bound and L a lower bound. 



 
Fig. 2: top) A time series T with two different semantic patterns, a sawtooth and 
a noisy signal. bottom) A dictionary that summarizes T, with a cardinality of 
two with patterns of length 15, denoted as  𝑇𝑇𝑑𝑑[2,15].  

B. Desirable Properties of a Distance Measure 
Before defining a distance measure for dictionaries, it will 

be instructive to consider desirable properties for such a 
measure. To allow us to be concrete, we will use discrete strings 
as proxies for time series. The reader will appreciate that 
continuing this analogy, the Hamming distance is an excellent 
proxy for Euclidean distance. For example, the Hamming 
distance d(cat,bat)=1, represents two quite similar time series 
with a low Euclidean distance. 

With the exception of calendar-based dictionaries, it is 
obvious that we cannot expect dictionaries to be phase aligned. 
For example, suppose we have two similar long series: 

A = …catcatcatcatdogdogdogcatcat… 
B = …dogdogdogcatcatcatdogdogdog… 

If we use Yeh’s algorithm to create two dictionaries from 
these datasets, we may obtain: 
 Ad={cat,dog}, Bd={atc,dog} 

We do not wish to penalize the apparently great distance 
between “cat” and “atc”, as we realize that is just the result of 
the vagaries of the dictionary building algorithm. We can be 
invariant to this by holding one word fixed, and comparing to 
every circular shift of the other word, equivalent to: 

RI_dist(cat,atc)=min([d(cat,atc),d(cat,tca),d(cat,cat)]) 

Here, RI_dist is a phase invariant distance or “k-shape”, 
computed in 𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚)) [20]. 

There is another issue that the dictionary creation algorithm 
may throw at us. Revisiting examples A and B above, we may 
be presented with: 

Ad={cat,dog}, Bd={dog,cat} 

Dictionary building algorithms may not be consistent in 
ordering patterns with respect to frequency or 
representativeness, and two time series could be very similar, 
but produce dictionaries with words in different orders. For 
example, because Bangkok and Lima are near perfect antipodes, 
they have similar climates, but exactly six months out of phase. 
Once again, this is easy to handle. For each word in dictionary 
A, find its nearest neighbor in dictionary B, and vice versa. 

d_dict(Ad,Bd) = {min(RI_dist(cat,dog), 
RI_dist(cat,cat)) + min(RI_dist(dog,dog), 
RI_dist(dog,cat))} + {min(RI_dist(dog,cat), 
RI_dist(dog,dog)) + min(RI_dist(cat,cat), 

RI_dist(cat,dog))} 

The first pair of curly braces is the computed distance from 
Ad to Bd, and the second pair is the computed distance from Bd to 
Ad. It is important to note that d_dict is not the functionality 
of PRCIS, but the expression is useful to communicate the 
intuition behind PRCIS. 

For flexibility, we desire the capability to compare patterns 
of varying lengths and dictionaries of varying cardinalities. 
Given two more time series: 

C = …catcatcatcatdogdogdogcowcowcow… 
D = …bobcatbobcatodogdogdobobcatbob… 

This now gives us four time series dictionaries to consider: 
Ad={cat,dog},Bd={dog,cat}, 

Cd={cat,dog,cow},Dd={bobcat,cat} 

The issue of varying cardinalities is trivial; we simply have 
more RI_dist computations inside the curly brace pairs. 
Likewise, handling varying pattern lengths is done by  
generalizing the rotation invariant distance to allow strings of 
different lengths. We can do this by taking the longer of the two 
strings and concatenating it to itself, then using the shorter string 
as a query, finding the best substring within the longer string. 

RI_dist (bobcatbobcat,cat) = dsubstr(bobcatbobcat,cat) 

Using these ideas, the distance between {cat,dog} and 
{bobcat,cat} will be zero. This may initially be unintuitive 
until you review the strings that originally produced them, and 
recognize that they could be very similar: 

A = …catcatcatcatdogdogdogcatcat… 
D = …bobcatbobcogdogdogdbobcatbo… 

We are almost done, but there is one last desirable 
invariance. It may happen that while two dictionaries are 
generally very similar, one of them has one or more words that 
are unique. For example, imagine we have Xd={cat,dog,cow}, 
Yd={cow,cat,dog,%$@^*}. The unusual word in Yd may have 
many causes. Perhaps the corresponding sensor had a long 
disconnection artifact that the dictionary algorithm thought 
worthy of representation. Although these two dictionaries are 
near identical, the single strange pattern will dominate the 
overall distance, and mask the similarity. Our solution is to forgo 
the brittle mean distance (between each word and its rotational 
invariant nearest neighbor in the other dictionary), but instead 
use the median distance. The median distance is much more 
forgiving of a handful of words that have no obvious match. 

This section has been somewhat long and detailed, however 
with these ideas in mind, the exposition of the real-valued 
PRCIS distance measure in the next section is straightforward. 

C. PRCIS Dictionary Distance Measure 
PRCIS stands for Pattern Representation Comparison in 

Series and is the distance measure by which we propose to 
measure the similarity between two arbitrary real-valued 
dictionaries. We outline PRCIS in TABLE 1 and TABLE 2.  

TABLE 1: THE ALGORITHM FOR PRCIS. 

Algorithm: PRCIS 
Input: dictionary A, dictionary B 
Output: dictionary-distance-measure 
1 AtoB ← PRCIS_AtoB(A,B) 
2 BtoA ← PRCIS_AtoB(B,A) 
3 all_dists ← concat(AtoB,BtoA) 
4 return (median(all_dists))2 

We discuss TABLE 2 first, as it contains the bulk of the logic 
in PRCIS. TABLE 2 finds the nearest neighbors for every pattern 

𝑇𝑇𝑑[2,15]

𝑇𝑇



in  dictionary A from the patterns in dictionary B. For every 
element in A, its distance to every element in B is calculated in 
part by running MASS [18]. Between the pairs of patterns, the 
shorter pattern is treated as the query, q, and the longer pattern 
is concatenated to itself and treated as the time series, ts (lines 
5-7). In lines 8-12, the minimum of the minimums of these 
distance profiles is recorded as the distance from that pattern in 
A to its nearest neighbor in B. This occurs twice. 

The second time PRCIS_AtoB is called: for every pattern in 
B, calculate the distance to every element in A. When this is 
done, lines 3-4 of TABLE 1 of PRCIS return the square of the 
median of this list of distances, and this represents the distance 
between the dictionaries A and B. 

TABLE 2: A SUBROUTINE CALLED IN PRCIS (TABLE 1). 
Algorithm: PRCIS_AtoB 
Input: dictionary A, dictionary B 
Output: nn-distances-from-A-to-B 
1 dists ← [] 
2 for pA ∈ A do 
3   nn_dist ← ∞ 
4   for pB ∈ B do 
5       l,q ← pA,pB # switch if len(pB)>len(pA) 
6       ts ← concat(l,l) 
7       min_dp ← min(abs(MASS(ts,q))) 
8       if min_dp < nn_dist do 
9           nn_dist ← min_dp 
10       end if 
11   end for 
12   dists.append(nn_dist) 
13 end for 
14 return dists 

The resulting distance is a measure, but not a metric. 
However, [4] and others have forcefully argued that in some 
cases the metric property of triangular inequality must be 
violated to produce sensible results. Moreover, the ubiquitous 
DTW is also not a metric, but regarded as SOTA for comparing 
short time series [10][27]. 

D. PRCIS Distance Measure Complexity 
We say 𝑛𝑛 is the largest number of words in any dictionary, 

and the number of dictionaries being compared is 𝑚𝑚. Generally, 
𝑚𝑚  is nontrivially large and 𝑛𝑛 ≪ 𝑚𝑚 . MASS is proven to be 
extremely fast [18] (progressively so with newer versions), so 
we abstract its runtime to 𝑂𝑂(1). The time complexity of PRCIS 
is 𝑂𝑂(𝑚𝑚2𝑛𝑛2). Additionally, the runtime of MASS only depends 
on the length of patterns. The number of dictionaries to compare 
or the cardinality of each dictionary have a greater effect on 
runtime. Memory is not a bottleneck for this distance measure.  

IV. EMPIRICAL EVALUATION 
To ensure our experiments are reproducible, we have created 

a supporting website [21] containing all data, code, and results. 
Additionally, it houses other experiments and comparisons 
omitted here for brevity. 

A. Clustering 
We begin by showing the utility of our algorithm for 

clustering, as this allows the most direct and visually intuitive 
demonstration of the invariances that our measure achieves. The 
full set of combinations of hierarchal clustering parameters 
(average, single, or complete linkage under L1, L2, or cosine 
similarity) produce similar clusterings are available at [21]). 

1) Electrical Power Demand 
We consider a three-year long dataset of electrical power 

demand from European countries [19]. As Figure 3 shows, the 
data are surprisingly diverse. 

 
Fig. 3: Two-month subsequences of the electrical power demand data from four 
countries in Europe. 

There are at least three sources of variability. The first is 
cultural; many Mediterranean countries regard weekends as 
sacrosanct, and they have a visible decrease in power required 
for weekends, as many businesses close (see Italy in Fig. 3). 

There are also obvious weather effects, the Mediterranean 
climate has low variability, but countries in northern Europe 
have a power demand that clearly reflects the vagaries of the 
climate (see Norway in Fig. 3). Finally, there may also be policy 
effects.  For example, some countries incentivize off peak 
consumption, however this is implemented differently in 
different countries. For example, Denmark, Norway, and 
Sweden use spot-market-based pricing, whereas Estonia, Spain 
and the UK use dynamic real-time pricing [14]. 

    Fig. 3 further hints at why this dataset is challenging from 
most clustering algorithms. There are regions of missing data 
and dropout and spikes that seem to be meaningless (at least to 
the task at hand) but are likely to confuse most algorithms. 
Nevertheless, Fig. 4 shows a successful clustering. 

 
Fig. 4: The electrical power demand data from 25 of the countries under 
complete linkage hierarchical clustering using 𝑇𝑇𝑑𝑑[4,48] , where 48 datapoints 
represent two days. We opted L=48 to cover the transition from weekends to 
weekdays (and vice versa) and S=4 to cover types of days we experience, such 
as a weekday (Monday–Thursday), weekend, holiday, and Fridays. 

This dataset spans from December 31, 2014 23:00:00 GMT 
to September 30, 2020 23:00:00 GMT. The results in Figure 4 
are very intuitive, reflecting the major regions of Europe. A 
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handful of placements are debatable. Denmark is a Scandinavian 
country; however, it does share a 68-kilometer border with 
Germany but is only connected to Sweden by a bridge. 

While the overall clustering is very intuitive, Austria is a 
surprising outlier that we might otherwise have expected to 
group with Germany. We can only speculate as to the reason. 
Austria is famous for having “golden Sunday”, a tradition 
(formally enshrined in federal law in 2003 [25]) for all shops to 
be closed on Sunday. This deference to the sabbath has all but 
disappeared in the rest of Europe. In any case, this is exactly why 
we do such clusterings, to discover interesting and unexpected 
findings that can be further investigated. 

We attempted to achieve similarly intuitive results with other 
methods, including k-shape [20], Catch22 [16], and obvious 
strawmen, such as clustering random days that are not an 
obvious anomaly. None of these attempts yielded a clustering 
that was significantly better than random. For brevity, we report 
these experiments in [21]. 

2) Business Merchants 
Identifying a merchant’s true business type is vital to ensure 

the integrity of payment processing systems, as a merchant may 
intentionally or unintentionally report a false business type to the 
payment process network [28].  When representing merchants 
with hourly aggregated time series, time series analysis is 
effective for identifying a merchant’s business type [28]. For 
example, toll collections peak during rush hours and meal 
delivery services are busy around lunch and dinner hours. 

Thirty-eight merchants from five different categories 
(vending machines, online videogame retailers, toll collection, 
parking meters, and meal delivery services) are sampled for this 
study. The names of the merchants are not released to maintain 
confidentiality. For each merchant, we generate the number of 
transactions per hour from January 1, 2018 to June 30, 2021. In 
Fig. 5, we show an example of two vending machines. 

 
Fig. 5: Vending machine 1 may be newly added, and vending machine 2 may 
be recently removed. Computing the distance between them from a global 
perspective is doomed to fail. 

In Fig. 6 we compare Yeh’s Dictionaries + PRCIS with three 
baselines, visualizing each merchant as a coordinate computed 
using t-SNE. Our method and baselines’ problem constructions 
are as follows: 

• Yeh’s Dictionaries + PRCIS: We construct a 𝑇𝑇𝑑𝑑[18,168] for 
each series (patterns of L=168 span one week). If Yeh’s 
dictionary algorithm returns a Td with the maximum 18 
patterns allowed, the total length of the patterns in Td will 
be no longer than 10% of the length of the full series. 

• Entire Series + DTW: The series are z-normalized and the 
DTW distance is computed pairwise between subsequences 
of the full series, each 182 weeks long. 

• Random 10% + DTW: A random subsequence 10% of 
each time series length are extracted, then z-normalized and 
the DTW distance is computed pairwise between 

subsequences. This baseline is to determine if PRCIS’ 
success is due to using only a subset of the original series.  

• Systematic Random 10% + DTW: Similar to Random 
10%, each merchant is also represented with a subsequence 
in lieu of the full series. However, all merchants use 
subsequences covering the same period of time. 

 
Fig. 6: Four different combinations of inputs and distance measures. The 
scatterplot associated with PRCIS shows a clear separation of merchants from 
the five business types. 

PRCIS successfully captures the business type of the 
merchants, attending to local subsequences at a meaningful scale 
(one week). The other baselines look at each series from a much 
longer time horizon. Series like those in Fig. 5 have long “no 
signal” subsequences, and a distance measure will fail if unable 
to ignore these. 

3) Milling Machine Table Acoustic Emissions 
The previous datasets were relatively low frequency 

datasets. Here we consider data sampled at 250Hz. The 
NASA/Berkeley Milling Dataset [2] contains acoustic emission 
from a milling machine under different depths of cuts, feeds, and 
materials used.  In Fig. 7.top we see that these cases are difficult 
to visually distinguish. 

   It might not be obvious why we need a dictionary-based 
method here. However, the documentation that accompanies the 
data makes it clear that the data is polymorphic. There is data 
corresponding to three phases: entry cut, steady cut, and exit cuts 
(although the boundaries between these behaviors are not 
explicitly given). In addition, there may be differences due to the 
direction of motion relative to the cutting head rotation, i.e., 
climb cut vs. conventional cut, although this is not documented. 

TABLE 3: THE CLASSES AND CONDITIONS OF THE SERIES IN Fig. 7. 

Case Depth of Cut Feed Material 
1 1.5 0.5 Cast Iron 
3 0.75 0.25 Cast Iron 
7 0.75 0.25 Steel 
16 1.5 0.5 Steel 

Using PRCIS, we can achieve the clustering in Fig. 
7.bottom, where each of the series is 9,000 datapoints, 

time

vending machine 1

vending machine 2

Yeh’s Dictionaries + PRCIS Entire Series + DTW

Random 10% + DTW Systematic Random 10% + DTW

parking meter video game
vending machinemeal delivery toll



equivalent to 36 seconds of wall clock time. In Fig. 8 we cluster 
the same series using the Catch22 framework [10].  

 
Fig. 7: top) Two-second-long samples from four semantic classes in a 
machining dataset. bottom) The average linkage clustering of twenty such time 
series under 𝑇𝑇𝑑𝑑[4,512]. 

 
Fig. 8: Catch22 under complete linkage clustering on the same time series as 
those in Fig. 7. 

Because this dataset is of both uniform length and has an 
available ground truth, we can make a third comparison in k-
Shape [20], which produced the following four clusters: 

['3' '3' '3' '3' '3' '7'] 
['1' '1' '1' '1' '1' '7'] 

['16' '16' '16'] 
['7' '7' '7' '16' '16'] 

These clusters are more homogenous than those produced by 
Catch22, but do not distinguish cases 7 and 16 nearly as well. 
Additional comparisons of clusterings based on spectral features 
are reported at [21]. 

B. Classification 
Here we turn our attention from clustering to classification. 

There are literally thousands of papers on classification of short 
time series, say individual heartbeats or gestures. (In essence, 
every paper that cites the UCR classification archive). However, 
these works assume that individual heartbeats/gestures/events 
have been extracted from the data streams. In many cases, this 
extraction may be a more difficult task than the classification 
problem itself. As the clustering examples we have considered 
hint at, we are interested in much longer, unstructured datasets 
in domain agnostic settings. There is very little literature on time 
series classification under these assumptions. 

Here we consider two very different long time series 
classification challenges. While this is a subjective claim, we 
believe that in general neither of these tasks could be solved by 
human inspection. For example, for USC-HAD [29] Walking-
Forward and Walking-Upstairs are visually very similar. To 
avoid over tuning the algorithm, we spent a few minutes 
“playing” with a tiny subset of dataset to select S and L. For each 
algorithm considered, we used 1NN Leave-One-Out (LOO) 
classification to evaluate its performance.  

Despite that the classification works we reference in Section 
II are trained on single-event time series, we compare to 
ROCKET for completeness. ROCKET is the fastest of the 

SOTA mentioned in Section II and executes in approximately 
the same time scale as Catch22 and PRCIS (“minutes to hours” 
as opposed to “hours to days”). The out-of-the-box 
implementation from the authors [7] does require a uniform 
length time series dataset. We offer results using zero-padding 
and padding any shorter series to itself, clipping to the length of 
the longest series. As aforementioned, WeAllWalk series 
lengths varied from lengths 1,525-7,725 datapoints, and USC-
HAD series lengths varied from 600-13,500 datapoints. 

The feature-based approach we compare to is Catch22. 
Catch22’s best subset of features was selected through simple 
greedy forward selection. If an input time series results in a 
Catch22 feature vector containing any NaN values, the series is 
simply discarded, and not counted against Catch22. This 
situation was not applicable to WeAllWalk, but in USC-HAD, 
28 such series were discarded. 

In the case of Random Dictionaries + PRCIS, reported 
results are the average of 10 runs. Six nonoverlapping 
subsequences of length 150 were selected randomly. In the cases 
where time series may be shorter than S*L (in this case, S*L = 
900), we opt to include as many patterns of length L as possible. 
For example, no more than four patterns can be extracted from 
a series of length 600 when L=150. By sight, the smallest unit of 
cycles seemed to appear in lengths of 50 datapoints, so we opted 
to select a pattern length following a factor of 50. 

We compared two variants of PRCIS. The random 
dictionary version offers evidence for our claim that using a 
subset of the data can be better than using all the data, and the 
Yeh’s Dictionary variant offers evidence that well-chosen subset 
of the data is better again. TABLE 4 summarizes the results. 
TABLE 4: THE LOO ACCURACY OF SEVEN APPROACHES ON THREE DATASETS. 

Dataset: USC-HAD  WeAllWalk 
Dataset Size: 630 42 
Default Rate: 11.11 28.75 
Dictionary Parameters: 𝑇𝑇𝑑𝑑[6,150] 𝑇𝑇𝑑𝑑[8,25] 
ROCKET, zero-padding 0.0 28.57 
ROCKET, self-padding 0.0 28.57 
Catch22/ Best one feature 36.67 76.19 
Catch22/ All features 44.13 66.67 
Catch22/ Best feature subset 64.92 97.62 
PRCIS, Rand. Dict. 71.08 92.14 
PRCIS, Yeh’s Dict. 73.33 100.00 

Not listed in TABLE 4, we reference the reported results on 
USC-HAD by [1] using handcrafted features and a tuned 
multilayer perceptron to obtain an accuracy of 74.71%. In 
contrast, we have opted to not preprocess the dataset to remove 
spurious subsequences or extract individual gait cycles. 
Additionally, many papers edit the classes considered in 
nonstandard ways. We have set nothing except the pattern length 
to 150 based on a quick visual inspection of a few traces.  

C. Effect of Dictionary Size 
Classification experiments are the most direct way to 

evaluate the effect of dictionary size on PRCIS’s ability to 
effectively represent long time series. While there is a single 
semantic label for each class, i.e., “Walking-Forward”, our 
claim is that for a long time series, it is unlikely that any single 
subsequence can represent the concept. For example, even the 
apparently monolithic “Walking-Forward” may actually consist 
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of multiple regions, getting-up-to-speed, cruising-at-constant-
speed, etc. If our assumption is true, we would expect to see poor 
results for the smallest dictionary size and increasing (but with 
diminishing returns) accuracy as we make the dictionaries 
larger. In Fig. 9 we repeat the experiment on the USC-HAD 
dataset shown in TABLE 4. 

 
Fig. 9: The dictionary size vs. accuracy on the USC-HAD over different pairs 
of dictionary algorithms and distance measures. 

    Largely, the results in Fig. 9 support our hypothesis: while 
a dictionary of size one is significantly better than default rate 
random guessing, additional words do improve accuracy. 
However, the improvements yield diminishing returns as the 
larger dictionaries begin to fully represent the diversity of the 
behavior. In the case of Yeh+PRCIS, passing in a greater value 
for S seems to have little effect after six patterns. This is because 
most of the behaviors are relatively homogamous. Datasets with 
more diverse behaviors (i.e., the electrical power demand data 
of Section IV.A.1 with its different cultural and weather 
seasons) may require larger dictionaries. 

D. Towards PRCIS Anomaly Detection 
There has been a recent explosion of interest in time series 

anomaly detection. A wealth of techniques have been applied to 
this task (including deep learning methods [3]). However, there 
is increasing evidence that simple distance-based methods are 
competitive in this area. For example, a recent paper compared 
over a dozen variants of SOTA deep learning approaches to a 
simple distance-based method (discords as represented by the 
Matrix Profile [13]) on 250 datasets, and discovered that the 
distance-based method was significantly better [3]. 

    However, this result only addresses short anomalies, a 
single arrythmia or a single stumble in a long normal walk. Our 
warnings about the appropriateness of techniques for short time 
series being blindly applied to long time series apply here, 
perhaps even more so than for clustering or classification. In 
particular, we claim that there are some problems for which 
essentially all techniques in the literature are inappropriate. To 
demonstrate this, consider the following example. The example 
is slightly contrived but uses real data [5], and reflects a real 
industrial problem. 

    The performance of electrical motors is often monitored 
with accelerometers. Some types of motor anomalies are easy to 
detect from such data, for example a faulty bearing or worn 
brushes. However, there are much subtler patterns that may be 
anomalous.  For example, an S3-class industrial motor is 
designed for intermittent periodic duty, a sequence of cycles 
containing periods of constant loads and (typically) a period at 

rest. There may be periods of different levels of constant loads; 
a machine may cycle between rest, high load (to raise a 
conveyor), low load (to lower the conveyor), back to rest, in an 
cycle. The normal behavior of this device is polymorphic, no 
single time series shape can represent all the version cycles.  

    It may be possible to build an anomaly detector in this 
domain with detailed domain knowledge. However, we propose 
to address this problem with a simpler approach. We propose to 
build a dictionary from a sample of normal data. We will not 
“tell” the algorithm where the different cycles begin (in any 
case, we generally may not know this), instead we assume that 
the dictionary creation algorithm will automatically choose 
representative patterns, so long as the dictionary size is greater 
than or equal to the true number of atomic behaviors. In Fig. 10 
we have done exactly this on an example of normal behavior of 
an industrial paper shear for a large volume book printer. 

 

Fig. 10: A dictionary 𝑇𝑇𝑑𝑑[3,1000] learned from a trace of normal behavior from an 
industrial shear. 

In this case, the data is so complex that it is impossible to 
visually confirm that it represents the diversity of duty cycles in 
the industrial process. However, we can test this. In we create a 
PRCIS distance profile, “sliding” each pattern across an eleven-
minute trace from the same motor. Because PRCIS (TABLE 1) is 
defined as a distance measure between a dictionary and a 
dictionary, we briefly cover the PRCIS distance profile in 
TABLE 5, which is defined as the distance from a dictionary and 
a time series.  

The data in Fig. 11.top has a 32-second anomaly starting five 
minutes in. Gratifyingly, the PRCIS distance profile Fig. 
11.bottom peaks at the location of the anomaly, caused by one 
of the cycles drawing a higher load due to a paper jam. 

TABLE 5: THE ALGORITHM TO COMPUTE THE PRCIS DISTANCE PROFILE. 

Algorithm: PRCISDistProf 
Input: dictionary D, time series T 
Output: dictionary-to-series-distance-measure 
1 dps = [] 
2 for pd in D: 
3   dps.append(MASS(T,pd)) 
4 meta_dp = elementwise_mean(dps)  
5 PRCISdistprof = movemean(meta_dp,L) 
6 return PRCISdistprof 

 
Fig. 11: top) An eleven-minute trace of motor powering an industrial paper 
shear. bottom) The distance between the dictionary shown in Fig. 12 to local 
subsequences of length 1,000 measures with the PRCIS distance measure. 
This curve was smoothed for clarity, not affecting the result. The parameters 
for smoothing were a factor of L. 

Before continuing discussion, we want to ward off a possible 
misunderstanding. PRCIS is designed for long time series. Here 
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long does not refer to the data being monitored, in any case that 
is data normally assumed to be effectively unbounded. Instead, 
long here refers to the length of the subsequences being 
considered. For example, the words in Fig. 10 are much longer 
than the length of subsequences considered in all anomaly 
detection studies we are aware of  [3][13]. 

    We have shown that PRCIS can detect (or at least peak at) 
at the anomaly; can other approaches? In Fig. 12 we consider the 
Matrix Profile [13], and Telemanom [12], a widely cited deep 
learning approach. The Matrix Profile was computed using a 
subsequence window of 256. The Telemanom Profile is an error 
curve under exponential weighted moving average smoothing 
(EWMA smoothing).  

 
Fig. 12: top) An eleven-minute trace of motor powering an industrial paper 
shear. bottom) The distance profiles for two anomaly detection algorithms peak 
in the wrong places. 

In fairness to the inventors of Matrix Profile and 
Telemanom, while they do not explicitly state this, it is clear that 
they intended their algorithms to work with short time series 
subsequences, not the longer semantically diverse subsequences 
and regions we are consider here. 

This example is somewhat tentative and speculative; unlike 
the more common “short anomaly” problem, there are currently 
no standard benchmarks to evaluate this task. However, we 
believe that this example shows the promise of considering 
anomaly detection problems at the higher level of combinations 
of behavior, rather than a single irregular shape. 

V. CONCLUSIONS AND FUTURE WORK 
We have introduced PRCIS, a novel distance measure for 

comparing long time series. We have shown that using PRCIS 
can produce intuitive and semantically correct clusterings and 
embeddings of data. Moreover, it can do this in the presence of 
noise, spikes, dropouts, and even missing data. In future work 
we plan to consider further downstream uses of PRCIS, and 
investigate ways to set its two parameters automatically, 
probably by exploiting recent advances in using Minimum 
Description Length (MDL) for time series [11]. We have made 
our code and datasets freely available in perpetuity, to allow 
others to confirm and extend our findings. 
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