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ABSTRACT
Recent progress in generative compression technology has
significantly improved the perceptual quality of compressed
data. However, these advancements primarily focus on pro-
ducing high-frequency details, often overlooking the ability
of generative models to capture the prior distribution of im-
age content, thus impeding further bitrate reduction in ex-
treme compression scenarios (< 0.05 bpp). Motivated by
the capabilities of predictive language models for lossless
compression, this paper introduces a novel Unified Image
Generation-Compression (UIGC) paradigm, merging the pro-
cesses of generation and compression. A key feature of the
UIGC framework is the adoption of vector-quantized (VQ)
image models for tokenization, alongside a multi-stage trans-
former designed to exploit spatial contextual information for
modeling the prior distribution. As such, the dual-purpose
framework effectively utilizes the learned prior for entropy es-
timation and assists in the regeneration of lost tokens. Exten-
sive experiments demonstrate the superiority of the proposed
UIGC framework over existing codecs in perceptual quality
and human perception, particularly in ultra-low bitrate sce-
narios (≤ 0.03 bpp), pioneering a new direction in generative
compression.

Index Terms— Generative Compression, Extreme Com-
pression, Image Generation, VQGANs, Transformer

1. INTRODUCTION

Ultra-low bitrate compression presents a significant challenge
in the field of image/video compression, particularly due to
substantial information loss when faced with extremely lim-
ited network bandwidth, such as in satellite communications.
Traditional block-based compression codecs, e.g., VVC [1],
are constrained to use large quantization steps in such sce-
narios, inevitably leading to noticeable blurring and blocking
artifacts. Despite the superior rate-distortion (R-D) perfor-
mance of learning-based compression techniques [2–5], these
methods produce blurry images at low bitrates, due to the re-
liance on optimization of pixel-oriented distortion metrics.

To address challenges in ultra-low bitrate scenarios, gen-
erative compression methods [6–14] have employed gener-
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Bpp / LPIPS↓ / DISTS↓
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0.0251 / 0.412 / 0.330

0.0273 / 0.148 / 0.164

HiFiC [7] Ours UIGC

0.0202 / 0.142 / 0.107

VQ-Kmeans [14]

0.0235 / 0.149 / 0.130

0.0285 / 0.489 / 0.348

Cheng et al. [3]

Fig. 1: Qualitative comparisons between state-of-the-
art image compression methods, including traditional [1],
learning-based [3], generative-based [7, 14], and Ours.

ative models [15–17] to enhance the visual quality of de-
coded images, with a focus primarily on the generator’s abil-
ity to produce high-frequency details. This paradigm follows
two primary technical pathways: one involves training exist-
ing end-to-end image codecs using perceptual and adversar-
ial losses [6–9], and the other [10–14] leverages specially
designed encoders to compress images into more compact
representations. However, despite their effectiveness, these
methods tend to overlook modeling the prior distribution of
image content, a critical aspect that differentiates image gen-
eration from image reconstruction task. In situations where
significant information loss occurs due to extremely limited
bandwidth, it is plausible to reconstruct some of the lost con-
tent by sampling from the prior distribution.

Meanwhile, the fundamental aspect of entropy estimation
requires accurately determining the prior probability distribu-
tion of symbols, thereby boosting the efficiency of entropy
coding. Consequently, the mathematical equivalence in esti-
mating this prior probability distribution—between entropy
minimization in lossless compression and log2-likelihood
maximization in generation—poses a critical inquiry: Is it
possible to develop a method that models the prior distribu-
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Fig. 2: Overview of the proposed UIGC framework. (a) the overall compression workflow: we adopt a multi-stage trans-
former, and AE/AD denote arithmetic encoder/decoder; (b) the mask mechanism using mask module M , and ∨ denotes the
logical “OR” operator; (c) entropy decoding and token generation on the decoder side.

tion for both entropy estimation in compression and sampling
in generation, all within a cohesive and unified framework?

Recently, in the field of natural language process (NLP),
Delétang et al. [18] have demonstrated that sequence gener-
ation models, such as large language models (LLMs), can be
effectively used for lossless compression. Nevertheless, the
extensive representation space of images presents a signifi-
cant challenge in efficiently modeling the prior distribution.
On the brighter side, advancements in Vector-Quantized Im-
age Modeling (VIM) [19, 20] have made strides in compress-
ing images into compact and discrete token representations
using the vector-quantized (VQ) encoder. This development
paves the way for transforming images into compact and dis-
crete token representations via VIM, which enables the uti-
lization of discrete generative models, similar to LLMs, for
both entropy estimation and token generation.

In this work, we present a novel image compres-
sion paradigm, the Unified Image Generation-Compression
(UIGC) framework, innovatively designed to facilitate both
entropy encoding of tokens and the prediction of lost to-
kens. By converting images into discrete token represen-
tations using VIM [19], our UIGC codec focuses on accu-
rate prior modeling of these tokens and the strategic discard-
ing of nonessential tokens, leading to enhanced bitrate re-
duction while still producing perceptually pleasing images.
Departing from the traditional autoregressive [19] and non-
autoregressive [20] models typically used in NLP, we propose
a Multi-Stage Transformer (MST) specifically tailored to
image characteristics. The MST restructures the autoregres-
sive order by dividing the token map into four groups, en-
abling most tokens to effectively utilize the surrounding con-
text for prediction. Recognizing the crucial role of structural
information in visual perception, we incorporate an edge-
preserved checkerboard mask pattern, which selectively dis-

cards tokens while maintaining essential structural details.
With MST’s multi-stage order, the prediction of lost tokens
is significantly enhanced, utilizing the surrounding content to
ensure the generation of high-quality images.

To evaluate the efficiency of the proposed UIGC frame-
work, we conduct experiments on the Kodak [21] and CLIC
[22] datasets. The experimental results, both quantitative and
qualitative, demonstrate that our method surpasses existing
techniques in maintaining perceptual quality under ultra-low
bitrate conditions (≤ 0.03 bpp). As shown in Fig. 1, our
framework effectively reduces the bitrate while maintaining
uncompromising image quality.

2. UNIFYING GENERATION AND COMPRESSION

In this work, we aim to compress the image I at ultra-
low bitrates while reconstructing the image Î with a pleas-
ing perceptual quality. In contrast to previous generative
compression approaches that predominantly concentrate on
the reconstruction of high-frequency details, our proposed
UIGC framework shifts its emphasis toward modeling the
prior distribution of image content for both entropy estima-
tion and content generation. Fig. 2 presents the overview
of the proposed method. In the following sections, we pro-
vide a detailed explanation of the image coding methodolo-
gies in Section 2.1. Subsequently, we introduce the proposed
Multi-Stage Transformer (MST) in Section 2.2 and the edge-
preserved checkerboard mask in Section 2.3 to leverage spa-
tial contextual dependencies in image token maps and effec-
tively eliminate redundant tokens. This approach facilitates
efficient prior modeling and bitrate savings while preserving
image quality.
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Fig. 3: Our MST. We implement a GPT-style transformer for
the prior modeling at each stage.

2.1. Image Coding via UIGC

The primary goal of our UIGC framework is to leverage the
prior distribution for both entropy estimation and content gen-
eration. To achieve this, we selectively compress essential
tokens, discarding redundant ones to achieve bitrate savings.
The discarded tokens are then generated directly on the de-
coder side. As illustrated in Fig. 2(a), on the encoder side,
the VQ encoder E [19] transforms the given image I into a
token representation z ∈ Nh×w. Then, we discard redundant
tokens using the mask mechanism in Section 2.3, where the
mask m ∈ {0, 1}h×w replaces discarded tokens as [Mask]:

zmi,j = mi,j zi,j + (1−mi,j)[Mask]. i ∈ h, j ∈ w (1)

Subsequently, the masked token map zm is compressed
by the arithmetic compression codec using the prior distribu-
tion of the MST, while the [Mask] tokens are skipped. Since
the mask m is generated by our Mask Module M according
to the preserved region R, we further losslessly compress this
region and transmit it to the decoder side.

On the decoder side, we restore the layout of the to-
ken map zm using the decoded mask m. As illustrated in
Fig. 2(c), the unmasked tokens undergo decompression us-
ing the prior distribution from the MST. Simultaneously, the

masked tokens are predicted with the highest probability from
this prior distribution. Thus, the zp is derived as:

zpi,j = mi,j z
m
i,j + (1−mi,j) (argmax pi,j). (2)

Finally, the VQ decoder D [19] utilizes zp to reconstruct the
decoded image Î .

2.2. Multi-Stage Transformer

As illustrated in Fig. 3(a), the transformer in VQGAN [19]
employs a sliding window for raster order autoregressive en-
coding to manage memory usage. However, this design limits
the current encoding position to consider only its upper-left
context for prediction, potentially compromising the accu-
racy of prior modeling. Recognizing the spatial correlation
dependencies in images, we introduce the MST inspired by
the multi-stage grouping algorithm in [5] to enhance this ac-
curacy by rearranging the autoregressive order. In particular,
the token map is partitioned into four groups, and each group
undergoes processing in raster order using a sliding window,
as presented in Fig. 3(a).

Consequently, the MST is structured into four distinct
stages. In Stage 0, tokens in Group 0 are sequentially en-
coded, with each token referencing only its upper-left content
within the group. Following this, Stage 1 encodes tokens in
Group 1, allowing each token to reference surrounding tokens
in Group 0 and upper-left tokens in Group 1. This sequential
encoding pattern persists in Stages 2 and 3, enabling each to-
ken to reference surrounding tokens in preceding groups and
upper-left tokens in the current group. Each group of tokens
in the sliding window is flattened in raster order and inputted
into each stage of the transformer, as depicted in Fig. 3(b).
We utilize a GPT-style transformer for autoregressive encod-
ing, aiming to maximize the log2-likelihood of tokens defined
as:

Ltransformer = EI∼p(I)[
∑h×w

k=0
− log2 p(zk|zm≤k)]. (3)

During training, a random mask is applied to groups 2-3 to
simulate lost tokens, and the transformer estimates the cate-
gorical distribution as the prior.

2.3. Edge-Preserved Checkerboard Mask

Another essential concern is the strategic discarding of redun-
dant tokens to achieve bitrate savings without compromis-
ing image quality. In our proposed MST, tokens in Group
0 and Group 1 serve as anchors, providing surrounding ref-
erences for all tokens in the subsequent groups. Hence, a
checkerboard pattern is used as the mask template, retain-
ing all tokens in both groups to ensure accurate prior model-
ing. Furthermore, tokens associated with the object structure
are preserved, recognizing their crucial role in visual percep-
tion. As such, in this section, we propose an edge-preserving



VVC [1] Cheng et al. [3] HiFiC [7] Ours w/o lost Ours UIGCOriginal

Bpp / LPIPS↓ / DISTS↓ 0.0292 / 0.452 / 0.313 0.0271 / 0.190 / 0.142 0.0243 / 0.151 / 0.110 0.0222 / 0.167 / 0.1170.0305 / 0.565 / 0.343

Bpp / LPIPS↓ / DISTS↓ 0.0264 / 0.250 / 0.270 0.0261 / 0.314 / 0.297 0.0298 / 0.085 / 0.115 0.0205 / 0.126 / 0.0900.0238 / 0.085 / 0.074

VQ-Kmeans [14]

0.0235 / 0.174 / 0.139

0.0235 / 0.102 / 0.091

Bpp / LPIPS↓ / DISTS↓ 0.0337 / 0.363 / 0.319 0.0239 / 0.535 / 0.444 0.0248 / 0.120 / 0.156 0.0236 / 0.105 / 0.1050.0235 / 0.120 / 0.148 0.0194 / 0.124 / 0.127

Fig. 4: Qualitative comparisons on the Kodak dataset [21]. In particular, ↓ indicates that lower is better.
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Fig. 5: R-D curves on the Kodak [21] and the CLIC [22] datasets. Ours w/o lost: ours without token lost and generation.

checkerboard mask mechanism as demonstrated in Fig. 2(b).
First, we extract the object structure using the edge extrac-
tor [23], regarding it as the preserved region R ∈ {0, 1}h×w.
Then, our proposed mask module M generates the final mask
m = mt ∨ R, where the mt ∈ {0, 1}h×w represents the
checkerboard template. The positions of Group 0 and Group
1 are set to 1 in the template mt to retain the corresponding
tokens. Our supplementary material provides further details.

3. EXPERIMENTS

3.1. Implementation Details

We employ the architecture of encoder and decoder from VQ-
GAN [19], and utilize the K-means clustering method de-
tailed in [14] to fine-tune the officially provided pre-trained
model with a codebook size of 16384, yielding models with
codebook sizes of {16, 64, 256} (denoted as VQ16, VQ64,
and VQ256) suitable for ultra-low bitrates. During the VQ-
codec training, we utilize the default settings and training
losses as in [19]. For the MST, we set the size of the sliding

Table 1: Average BD-LPIPS↓/DISTS↓ gains on the Kodak
[21] and the CLIC [22] datasets. Anchor: VVC [1].

Method
Kodak CLIC

LPIPS DISTS LPIPS DISTS
Cheng et al. [3] 0.041 0.044 0.043 0.054
HiFiC [7] -0.260 -0.134 -0.176 -0.113
VQ-kmeans [14] -0.288 -0.182 -0.170 -0.127
Ours w/o lost -0.321 -0.199 -0.207 -0.151
Ours UIGC -0.310 -0.195 -0.198 -0.150

window at 18 × 18. We train the proposed model on the Im-
ageNet dataset [24]. To evaluate the performance of the pro-
posed model, we use two widely recognized datasets in image
compression: the Kodak [21] and the CLIC datasets [22].

3.2. Compression Performance Evaluation

Compared Methods. To assess the effectiveness of our pro-
posed framework, we conduct a benchmark against both tra-
ditional standard and neural-based compression frameworks,
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Fig. 6: Visual comparisons between checkerboard mask
with and without edge preservation.

Table 2: R-D performance of RT and MST on the Kodak
dataset [21]. The codec is VQ16 and VQ256.

Method Bpp LPIPS↓ DISTS↓
VQ16 RT 0.0113 0.2540 0.1712
VQ16 MST 0.0115 0.2429 0.1707
VQ256 RT 0.0216 0.1895 0.1226
VQ256 MST 0.0217 0.1720 0.1189

including the latest VVC [1] codec, the typical end-to-end
learning-based approach by Cheng et al. [3] (MS-SSIM op-
timized, for better perceptual quality), and generative im-
age compression codecs, such as HiFiC [7], as well as the
VQGAN-based codec VQ-Kmeans [14]. Furthermore, we
develop an additional baseline denoted as “Ours w/o lost”,
which directly applies the MST for entropy estimation with-
out lost tokens and prediction.
Quantitative Evaluation. Rather than relying on traditional
objective quality assessments like PSNR and SSIM, we in-
corporate recent perceptual quality-based metrics, such as
Learned Perceptual Image Patch Similarity (LPIPS) and Deep
Image Structure and Texture Similarity (DISTS), as they offer
closer alignment with human perception of images. Addition-
ally, we employ bits per pixel (bpp) as a metric to evaluate
the rate performance. We present the R-D performance in
Fig. 5. We also evaluate the R-D performance improvement
using VVC as an anchor with Bjontegaard-Delta metric [25].
In particular, we adopt BD-LPIPS and BD-DISTS metrics in
Table 1, which represent the average perceptual quality im-
provement under the equivalent bitrate. It can be clearly ob-
served that our proposed UIGC exhibits superior R-D perfor-
mance, delivering enhanced visual quality in ultra-low bitrate
scenarios (bpp ≤ 0.03 ). Note that VQ-kmeans [14] utilizes
the same VQ codec as ours. However, its R-D performance
is inferior due to the absence of entropy estimation. This
finding underscores the effectiveness of the UIGC method,
which integrates both entropy estimation and content genera-
tion through the use of the prior distribution. While there is a
slight performance drop compared to “Ours w/o lost” due to
the generated content being slightly different from the real im-
age, the UIGC framework further reduces bitrate and achieves

RT MSTMaskOriginal

0.0189 / 0.178 / 0.140 0.0192 / 0.158 / 0.139Bpp / LPIPS↓ / DISTS↓

Bpp / LPIPS↓ / DISTS↓ 0.0162 / 0.321 / 0.157 0.0162 / 0.199 / 0.150

Fig. 7: Visual Comparisons between MST and RT.
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Fig. 8: Examples of ROI coding. “Ours UIGC ROI” ensures
ROI quality while significantly lowering bitrate.

comparable perceptual quality as shown in Fig. 4.
Qualitative Evaluation. Fig. 4 shows the reconstruction re-
sults of various methods on the Kodak dataset [21], with the
corresponding bpp, LPIPS, and DISTS. At ultra-low bitrates,
VVC [1] and Cheng et al. [3] exhibit severe blurring. Al-
though HiFiC [7] and VQ-Kmeans [14] have improved im-
age quality, the detail is not satisfactory: HiFiC shows the
grid artifact on the sea and the abnormal reconstruction of
the parrot’s eye; VQ-Kmeans produces distorted structure on
the boat. In contrast, our methods exhibit more natural sea
surface and object structures (e.g., the boat, parrots, trees).
Moreover, the UIGC further saves bitrate while maintaining
almost the same visual quality as “Ours w/o lost”, with only
a negligible loss in water texture details.

3.3. Ablation Studies and Discussion

Efficiency of the MST. We conduct experiments to ascertain
the advancements of the proposed MST over the Raster Trans-
former (RT) detailed in [19]. Table 2 indicates that while RT
and MST exhibit similar levels of entropy coding efficiency,
the MST surpasses RT in the perceptual quality of the gener-



ated images. Fig. 7 presents examples of images generated by
both MST and RT. The RT tends to create unnatural textures
in areas like the sea and walls due to its predominant reliance
on upper-left positional references, resulting in a lower visual
quality compared to MST.
Mask Pattern. To evaluate the importance of tokens asso-
ciated with the object structure, we test two mask patterns:
checkerboard with and without edge preservation. Fig. 6
demonstrates that although excluding edge tokens contributes
to further bitrate reduction, it simultaneously causes issues
like distorted edges and abnormal content (for instance, the
red region on the tower). This observation effectively con-
firms the essentiality of implementing an edge preservation
mechanism in our approach.
Region of Interest Compression. Region of interest (ROI)
coding, essential in multimedia applications, requires high-
quality compression of selected regions while allowing for
more aggressive compression in non-essential areas to reduce
bitrate. Our proposed UIGC framework is adept at accommo-
dating this need by selectively preserving tokens in the ROI.
As shown in Fig. 8, UIGC’s approach to ROI coding not only
significantly reduces the bitrate but also maintains an aesthet-
ically pleasing visual quality in the regions of interest.

4. CONCLUSIONS

In this work, we propose a novel UIGC paradigm, specifically
tailored for ultra-low bitrate image compression. This versa-
tile framework adeptly utilizes the learned prior distribution
for both entropy estimation and the regeneration of lost to-
kens. We further design the MST to boost prior modeling ac-
curacy, and introduce an edge-preserving checkerboard mask
pattern to discard unnecessary tokens for bitrate saving. Our
experimental results validate the UIGC’s superiority over ex-
isting codecs in visual quality, particularly in ultra-low bitrate
(≤ 0.03 bpp) scenarios. We believe that the UIGC scheme
represents a significant advancement in generative compres-
sion, charting a new course for future developments.
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Fig. 9: Details of the downsampling and upsampling de-
sign in our mask mechanism. (a) the downsampling and
compression of the preserved region R in the encoder side,
as well as the mask generation; (b) the decompression of the
RL and mask generation in the decoder side; (c) upsampling
design inside the Mask Module M .

A Implementation Details
A.1 Multi-Stage Transformer
The GPT model used in our Multi-Stage Transformer (MST) con-
sists of 32 layers of transformers. Each layer of transformer has 16
heads of self-attention and the embedding dimension is 1152.

During training, image patches of size 288 are randomly
cropped. These patches are encoded into an 18x18 token map by
VQGAN’s Encoder [19], matching MST’s sliding window size. Ad-
ditionally, masks are randomly applied to the tokens of Group 2 and
Group 3 with a variable probability ranging from 0% to 100%.

A.2 Edge-Preserved Checkerboard Mask
In our design, we downsample the preserved region R ∈ {0, 1}h×w

into RL ∈ {0, 1}0.5h×0.5w to reduce bit cost. The encoder-side
downsampling and compression of R is depicted in Fig. 9(a), while
Fig. 9(b) demonstrates the decoder-side decompression of RL.
Given that RL only contains 0 and 1, we consider it as a bitstream
and apply lossless compression using the Zlib codec [26]. Our Mask
Module M then upsamples the RL into RH ∈ {0, 1}h×w and gen-
erates the final mask m, as illustrated in Fig. 9 (c).

B Experimental Details
B.1 Traditional Codec
We use the VTM version 22.2 as the implementation of the latest tra-
ditional compression standard VVC [1]. The following commands
are used for the VVC codec:

EncoderApp

-i {input file name}
-c encoder_intra_vtm.cfg
-q {QP}
-o /dev/null
-b {bitstream file name}
-wdt {image width}
-hgt {image height}
-fr 1
-f 1
--InputChromaFormat=444
--InputBitDepth=8
--ConformanceWindowMode=1

DecoderApp
-b {bitstream file name}
-o {reconstruction file name}
-d 8

B.2 Neural-based Codec
All neural-based codecs are trained on the ImageNet dataset [24].
The implementation details are as follows:

• Cheng et al. [3]: We employ the CompressAI library [27]
implementation, adhering to its default losses and training
strategies. The hyperparameter λ is adjusted for ultra-low bi-
trate compression training.

• HiFiC [7]: We utilize the pytorch implementation of the
HiFiC [7], available at Justin-Tan/high-fidelity-generative-
compression. The default losses and training strategies are
maintained for model training, with the hyperparameter λ ad-
justed for ultra-low bitrate compression.

• VQ-kmeans [14]: This method is implemented based on
the pre-trained VQGAN [19] model with a codebook size of
16384, generating models with codebook sizes of {8, 16, 32,
64, 128, 256}. The training settings and losses follow the
method described in [14].

C. Visual Results
We provide CLIC reconstructions for qualitative comparison, as
Fig. 10 shows.

https://github.com/Justin-Tan/high-fidelity-generative-compression
https://github.com/Justin-Tan/high-fidelity-generative-compression
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Fig. 10: Qualitative comparisons on the CLIC dataset [22]. In particular, ↓ indicates that lower is better.
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