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Abstract—Multi-label classification (MLC) faces challenges
from label noise in training data due to annotating diverse
semantic labels for each image. Current methods mainly target
identifying and correcting label mistakes using trained MLC
models, but still struggle with persistent noisy labels during
training, resulting in imprecise recognition and reduced per-
formance. Our paper addresses label noise in MLC by intro-
ducing a positive and unlabeled multi-label classification (PU-
MLC) method. To counteract noisy labels, we directly discard
negative labels, focusing on the abundance of negative labels
and the origin of most noisy labels. PU-MLC employs positive-
unlabeled learning, training the model with only positive labels
and unlabeled data. The method incorporates adaptive re-balance
factors and temperature coefficients in the loss function to
address label distribution imbalance and prevent over-smoothing
of probabilities during training. Additionally, we introduce a
local-global convolution module to capture both local and global
dependencies in the image without requiring backbone retraining.
PU-MLC proves effective on MLC and MLC with partial labels
(MLC-PL) tasks, demonstrating significant improvements on MS-
COCO and PASCAL VOC datasets with fewer annotations. Code
is available at: https://github.com/TAKELAMAG/PU-MLC.

Index Terms—Multi-label classification, image recognition,
positive-unlabeled learning, noisy label

I. INTRODUCTION

Recently, multi-label classification (MLC) [1]–[3] has

gained significant attention as an natural image often contains

multiple objects or concepts. Traditional approaches to MLC

treat it as a series of binary classification tasks, each deter-

mining the presence or absence of individual classes.

Noisy labels, a prevalent issue in MLC datasets due to anno-

tation difficulties [3], disrupt training and impair performance

(see Figure 1 (a)-(b)). To address this, certain methods [3]

suggest initially training models with these noisy labels, then

using the trained model to correct or eliminate mislabeled

data. However, the involvement of mislabeled labels in training

phase can still negatively influence the process and potentially

lead to inaccuracies in identifying noisy labels.

The mislabeling issue becomes more pronounced in the

context of multi-label classification with partial labels (MLC-

PL) [4]–[6]. In MLC-PL, where models are trained with

partially labeled datasets to minimize annotation costs (re-

fer to Figure 1 (c)), the limited label information increases

the model’s vulnerability to label noise. Addressing this,

∗Equal contributions. †Corresponding author.

(a) (b) MLC setting, with missing labels

(c) MLC-PL setting (d) MLC-PL under PU setting

Positive labels: [person, bicycle, boat]

Missing labels: [dog, handbag]

Fig. 1. Comparisons of different learning methods in MLC. (a) an image
which has two missing labels. To train the sample image, (b) missing labels
in traditional MLC methods are mistakenly classified as negative labels; (c)
MLC-PL samples a proportion of labels, but still encounters false negative
labels; (d) Our method treats all negative labels as unlabeled ones. Blue, red,
and yellow icons denote positive, negative, and unknown labels, respectively.

some approaches [4] aim to mitigate noisy labels’ impact

by adjusting the loss weight for each sample. Others explore

semantic-aware representations for pseudo label generation [5]

or blend category-specific semantic representations across

different images [6]. However, these MLC-PL methods, like

their MLC counterparts, still incorporate mislabeled samples

in training. This practice can lead to inaccurate loss weight

assessments and pseudo label creation, ultimately impacting

model performance.

To address the issue of noisy labels in multi-label classifi-

cation (MLC) and MLC with partial labels (MLC-PL), which

impair training performance, we propose a novel approach

in the absence of a reliable method to identify these noisy

labels: removing all labels. Drawing inspiration from positive-

unlabeled (PU) learning [7], [8], which trains classifiers using

only positive labels and compares favorably with traditional

positive-negative (PN) learning (refer to Figure 1(d)), our

http://arxiv.org/abs/2306.16016v3
https://github.com/TAKELAMAG/PU-MLC


method discards all negative labels and relies on positive and

unlabeled data for training MLC models. This strategy, lever-

aging the imbalance of negative labels in MLC datasets (see

Figure 2(b)), reduces annotation errors. PU learning, known

for its robustness and accuracy, especially with noisy negative

labels, uses an unbiased risk estimator for better performance.

It provides more accurate and informative labeling using soft

labels, contrasting with hard labels in conventional methods.

As a result, we introduce a novel method, positive and

unlabeled multi-label classification (PU-MLC), adapting PU

learning for MLC tasks by integrating multiple binary classifi-

cations. To address the significant imbalance between positive

and negative labels in MLC, we introduce an adaptive re-

balance factor in the PU loss to adjust loss weights effectively.

Recognizing the complexity of training multiple binary tasks

in MLC compared to standard PU learning, we propose an

adaptive temperature coefficient module. This module fine-

tunes the sharpness of predicted probabilities in the loss

function, preventing over-smoothing in early training stages

and enhancing optimization. Additionally, we present a novel

local-global convolution module that incorporates both local

and global image dependencies. This module enriches existing

convolution layers with global information without requiring

backbone retraining.

Our PU-MLC method is both simple and effective for MLC

and PU-MLC tasks. It demonstrates strong performance even

with limited positive labels, reducing annotation costs. Our

extensive experiments on benchmark datasets MS-COCO [9]

and PASCAL VOC 2007 [10] show that PU-MLC significantly

improves performance in both MLC and MLC-PL settings,

while utilizing fewer annotated labels.

II. RELATED WORK

A. Multi-Label Classification

Multi-label classification (MLC) task aims to recognize

semantic categories in a given image, which usually contains

multiple objects or concepts. Previous works [1], [11], [12]

propose to construct pairwise statistical correlations using the

first-order adjacency matrix obtained by graph convolutional

networks (GCN) [13]. Although the above methods achieve

noteworthy success, they cannot extract higher-order correla-

tions and can attract overfitting on small training sets. Some

works [14], [15] introduce transformer to extract complicated

dependencies among visual features and labels.

MLC with partial labels (MLC-PL). Traditional multi-

label classification (MLC) tasks rely on fully annotated

datasets, and making such datasets is expensive, time-

consuming, and error-prone. To reduce the cost of annota-

tion, multi-label classification with partial labels (MLC-PL)

attempts to train models with partially-annotated labels per

image, which both contain positive and negative labels. Recent

works [4], [5], [16] propose to generate pseudo labels to

those unknown samples based on the learned knowledge in

the training model, and then train the model with ground-truth

partial labels and generated pseudo labels.

B. Positive-Unlabeled (PU) learning

Different from the traditional positive-negative (PN) learn-

ing in the binary classification task, PU learning aims to train

the model with only positive and unknown labels [17]. Recent

advances [7], [8], [18], [19] have achieved remarkable progress

in deep learning. However, these methods rely heavily on the

class prior estimation. While the class prior in the training

dataset may not always correctly represent the label distribu-

tion in the validation set, and thus performing PU learning

without class prior becomes an emergent topic [8], [20]–

[22]. For example, vPU [8] proposes a variational principle

to achieve superior performance without class prior. In this

paper, we extend PU learning to MLC task based on vPU [8].

III. PROPOSED APPROACH: PU-MLC

A. MLC as PU learning

MLC as PN learning. MLC task is usually formulated as

multiple binary classification sub-tasks, and each sub-task aims

to recognize whether a specific category is in the input image.

Formally, for a MLC task with C categories, let s ∈ R
N×C

and y ∈ {−1,+1}N×C be the predicted logits and the ground-

truth positive and negative (PN) labels, respectively, where N
denotes batch size, the overall classification loss is formulated

as

Lmlc =
1

C ×N

C∑

c=1

N∑

n=1

[1(yn,c = +1)L+(σ(sn,c))

+ 1(yn,c = −1)L−(σ(sn,c))],

(1)

where σ(·) is the Sigmoid function, 1(·) is an indicator

function that takes the value 1 only if the condition is true

and 0 otherwise, L+ and L− denote losses on positive and

negative labels, respectively.

Before presenting our PU-learning based MLC method,

we first rewrite the learning objective of the above positive-

negative (PN) classification loss ((1)) as the expected risk on

the training set. The total risk Rmlc is accumulated with all

PN sub-tasks, and for each task (category) with the class prior

(proportion of positive labels) πp and S ∈ R
M being its

corresponding logits on the training set with M images, its

risk is formulated as

Rpn = πpEP [L+(σ(S))] + (1− πp)EN [L−(σ(S))], (2)

where the images regarding to their label types are split

into positive set P and negative set N , and we have the

expectations of positive and negative losses

EP [L+(σ(S))] =
1

|P|

∑

sm∈P

L+(σ(sm)),

EN [L−(σ(S))] =
1

|N |

∑

sm∈N

L−(σ(sm)).
(3)

PN to PU. In this paper, we aim to train a MLC model

with only positive labels; i.e., our training set is composed of

a positive set P and an unlabeled set U (mixture of unlabeled

positive and negative images). Nevertheless, the negative labels
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Fig. 2. (a) Overview of our proposed PU-MLC. Instead of using positive and negative labels in the traditional MLC method (red box), our PU-MLC conducts
a positive-unlabeled (PU) learning strategy with only partial positive labels leveraged. Besides, we introduce mixup regularization loss and the adaptive
temperature coefficient module to further boost the performance. Additionally, we enhance the global representations in backbone by integrating a local-global
convolution module to every 3× 3 local convolutions. Std: standard deviation. (b) Histograms of the number of positive and negative labels in each category.
We randomly select 20 categories from MS-COCO train set.

are unavailable in our PU setting, and therefore we cannot

directly optimize (2) to obtain our model. In order to train a

classifier with positive and unknown labels, a classical method

uPU [7] introduces an unbiased formulation to the PN learning

by rewriting the expectation of negative classification loss

EN [L−(σ(S))] to

(1− πp)EN [L−(σ(S))] = EU [L−(σ(S))]

− πpEP [L−(σ(S))],
(4)

and thus (2) could be converted to PU format:

Rpu = πpEP [L+(σ(S))]

− πpEP [L−(σ(S))] + EU [L−(σ(S))],
(5)

However, the above method easily causes overfitting in deep

neural networks and rely heavily on the class prior, and we

empirically find that it performs poorly on the multi-label

classification task, as the task is more challenging and many

categories have very small class priors. Hence, this paper

utilizes a recent PU leaning method vPU [8], which proposes

a novel loss function based on the variational principle to

approximate the ideal classifier without the class prior:

Rvar = logEU [σ(S)]− EP [log σ(S)]. (6)

Hence, for each category c, the classification loss becomes

L(c)
var = log(

1

|U
(c)
N |

∑

su∈U
(c)
N

σ(su))−
1

|P
(c)
N |

∑

sp∈P
(c)
N

log σ(sp),

(7)

here P
(c)
N and U

(c)
N denote positive samples and unlabeled

samples of category c in each mini-batch, respectively. Note

that vPU also introduces a consistency regularization term L
(c)
reg

based on Mixup [23], which alleviates the overfitting problem

and increases the robustness in PU learning.

As a result, in our PU-MLC, the traditional MLC loss in

(1) is replaced with our PU loss, and the overall loss function

is formulated as

Lpu−mlc =

C∑

c=1

(L(c)
var + λL(c)

reg), (8)

where λ is a scalar to balance the losses and we set λ = 1 in

all experiments.

Importantly, our approach diverges from traditional PU

learning by including all positive samples P into U . This

ensures that U maintains a label distribution similar to a

conventional training set, a critical factor for the effectiveness

of PU learning (refer to our ablation studies for further details).

B. Catastrophic Imbalance of Label Distribution

MLC datasets typically have a far greater number of neg-

ative than positive labels, as shown in Figure 2(b). In PU-

MLC, where all negative labels are moved to the unlabeled

set, there is a significant imbalance in the number of samples

affecting the two terms of Lvar in equation (7) within each

mini-batch. This differs from conventional PU learning where

positive and negative samples are equal in batch size. Applying

(7) as is in our method would cause the unlabeled term to

overly influence the optimization, leading to suboptimal results

in MLC-PL, especially at low known label ratios (e.g., only

achieving 51.8% mAP with 10% positive labels).

To alleviate the catastrophic imbalance of label distribution,

we aim to narrow down the loss weight of unlabeled term

to decrease its importance in optimization. Inspired by focal

loss [24] and ASL [3], we propose a re-balance factor to dy-

namically re-weight the unlabeled loss based on the predicted

probabilities on unlabeled samples, and (7) is reformulated as

L(c)
var =pγc log(

1

|U
(c)
N |

∑

su∈U
(c)
N

σ(su))−
1

|P
(c)
N |

∑

sp∈P
(c)
N

log σ(sp),

(9)



where pγc denotes our re-balance factor, with pc =
1
|U|

∑
su∈U σ(su) being the mean probability of unlabeled

samples, and γ is used to control the value of the factor. In our

experiments, we set larger γ for smaller known label ratios,

as the imbalance is severer on smaller ratios and we need a

smaller weight on unlabeled loss to balance the loss.

C. Adaptive Temperature Coefficient

In PU learning, the model serves as an estimator for proba-

bilistic evaluations of unlabeled samples, optimizing them via

the unlabeled loss term [17]. However, the task in MLC, which

involves learning multiple binary classifiers, is considerably

more complex than the single binary classification task in

standard PU methods. This complexity results in a slower con-

vergence rate during the early stages of training. Consequently,

the predicted probability distribution tends to be over-smooth,

reducing the effectiveness of the unlabeled loss.

To adjust the smoothness of probabilistic distribution, we

follow [25] and propose a temperature coefficient τ to scale

the logit values, i.e., st = s/τ , then the st is fed into the PU

loss in place of the original s.

By setting τ < 1, the probabilistic distribution becomes

sharper, providing more meaningful and impactful feedback

to the loss function. However, our empirical findings indicate

that a fixed temperature coefficient τ enhances performance

only under certain known label ratios and specific datasets

(refer to Table 3 in the appendix). For instance, the MS-

COCO dataset benefits from τ < 1, whereas the PASCAL

VOC dataset shows better results with τ > 1. This suggests

that the optimal τ varies not only across different datasets

but also among different categories within the same dataset,

necessitating individual adjustments.

As a result, we propose an adaptive temperature coefficient

module to first measure the sharpness of each category in each

batch, then apply independent temperatures on each category.

Formally, given the predicted logits s, the sharpness of each

category c is measured using the standard deviation of the

logits, and then the temperature is obtained by multiplying a

scalar α onto the sharpness value, i.e.,

τ (c) = min(α · Std(sc), 1). (10)

We use a minimum function to ensure that the τ (c) is less

than or equal to 1, since we do not want the τ (c) to exceed 1,

which could even exacerbate the over-smooth.

The final PU loss L
(c)
val becomes

L(c)
var =pγc log(

1

|U
(c)
N |

∑

su∈U
(c)
N

σ(su/τ
(c)))

−
1

|P
(c)
N |

∑

sp∈P
(c)
N

log σ(sp/τ
(c)).

(11)

Our adaptive temperature coefficient is suitable for different

known label ratios and datasets, which could gain consistent

improvements. The overall framework of our model is illus-

trated in Figure 2(a).

Fig. 3. Illustration of Local-global convolution.

D. Local-Global Convolution

Vision transformers [28], [29] have shown notable advance-

ments over classical CNNs by capturing global dependencies,

yet they face challenges like high memory usage, deployment

difficulties, and limitations in lightweight models. Address-

ing these, we introduce a convolution-based global module,

LgConv, designed as a plug-and-play enhancement for CNNs

without necessitating retraining of the backbone.

As illustrated in Figure 3, LgConv augments traditional

local convolution with a global branch. This branch first

transforms input features to incorporate both local and global

information (via average pooling), followed by two 1×1 con-

volutions creating spatial multi-head attentions and a broadcast

attention. Softmax and Sigmoid functions are then applied.

The process concludes with a 1 × 1 convolution and batch

normalization to project the feature.

To preserve the pretrained backbone’s semantic integrity,

we initialize the global branch’s scale parameters γ in the

final batch normalization layer at a minimal value (0.0001).

This ensures the global branch’s initial influence on original

features is minimal, allowing for a smooth evolution of the

backbone during training.

IV. EXPERIMENTS

To verify the efficacy of PU-MLC, we conduct extensive

experiments on two popular benchmarks MS-COCO [9] and

PASCAL VOC [10]. We adopt similar training strategies

following previous works [5], [6], which will be detailedly

discussed in appendix.

A. Results on MS-COCO

MLC-PL setting. To demonstrate the effectiveness of the

PU-MLC, we compare our PU-MLC with current published



TABLE I
THE COMPARISONS ON MS-COCO AND VOC 2007 UNDER DIFFERENT KNOWN LABEL RATIOS. NOTE THAT OUR PU-MLC ONLY USES PARTIAL

POSITIVE LABELS, WHILE OTHER METHODS TRAIN MODELS WITH THE SAME NUMBER OF POSITIVE LABELS AND ADDITIONAL NEGATIVE LABELS. ∗

INDICATES THE BACKBONE IS PRETRAINED BY CLIP [26]. RESULTS EXCEPT DUALCOOP AND OUR METHOD ARE REPORTED BY SARB [6].

Datasets Methods 10% 20% 30% 40% 50% 60% 70% 80% 90%
Avg.
mAP

Avg.
OF1

Avg.
CF1

MS-COCO

ASL [3] 69.7 74.0 75.1 76.8 77.5 78.1 78.7 79.1 79.7 76.5 46.7 47.9
CL [4] 26.7 31.8 51.5 65.4 70.0 71.9 74.0 77.4 78.0 60.7 61.9 48.3

Partial BCE [4] 61.6 70.5 74.1 76.3 77.2 77.7 78.2 78.4 78.5 74.7 74.0 68.8
SST [5] 68.1 73.5 75.9 77.3 78.1 78.9 79.2 79.6 79.9 76.7 - -

SARB [6] 72.5 76.0 77.6 78.7 79.6 79.8 80.0 80.5 80.8 78.4 76.8 72.7
PU-MLC 75.7 78.6 80.2 81.3 82.0 82.6 83.0 83.5 83.8 81.2 77.4 75.7

DualCoOp∗ [27] 78.7 80.9 81.7 82.0 82.5 82.7 82.8 83.0 83.1 81.9 78.1 75.3
PU-MLC∗ 80.2 83.2 84.4 85.6 85.9 86.6 87.0 87.1 87.5 85.3 81.7 79.1

VOC 2007

ASL [3] 82.9 88.6 90.0 91.2 91.7 92.2 92.4 92.5 92.6 90.5 41.0 40.9
CL [4] 44.7 76.8 88.6 90.2 90.7 91.1 91.6 91.7 91.9 84.1 83.8 75.4

Partial BCE [4] 80.7 88.4 89.9 90.7 91.2 91.8 92.3 92.4 92.5 90.0 87.9 84.8
SST [5] 81.5 89.0 90.3 91.0 91.6 92.0 92.5 92.6 92.7 90.4 - -

SARB [6] 85.7 89.8 91.8 92.0 92.3 92.7 92.9 93.1 93.2 91.5 88.3 86.0
PU-MLC 88.0 90.7 91.9 92.0 92.4 92.7 93.0 93.4 93.5 92.0 88.2 86.5

DualCoOp∗ [27] 90.3 92.2 92.8 93.3 93.6 93.9 94.0 94.1 94.2 93.2 86.3 84.2
PU-MLC∗ 91.3 92.9 93.3 93.7 93.8 94.3 94.5 94.6 94.8 93.7 89.8 88.2

TABLE II
COMPARISONS OF THE NUMBER OF ANNOTATED LABELS USED IN

TRAINING ON MS-COCO. Reduction: THE REDUCTION RATIO ON USED

TRAINING ANNOTATIONS OF OUR METHOD COMPARED TO OTHERS.

Methods
PU-MLC Others

10% 50% 100% 10% 50% 100%

Positive 24,103 120,517 241,035 24,103 120,517 241,035
Negative 0 0 0 638,160 3,190,802 6,381,605

Total 24,103 120,517 241,035 662,263 3,311,319 6,622,640

Reduction -96.4% -96.6% -96.4% - - -

state-of-the-art methods. As the experimental results shown

in Table I, our PU-MLC significantly outperforms previous

methods under different known label ratios. For example, on a

high known label ratio of 90%, we obviously surpass SARB by

3.0% in mAP. Compared with previous methods, our method

achieves state-of-the-art results in average mAP, OF1 and CF1,

which are 81.2%, 77.4% and 75.7%, respectively. DualCoOp

uses CLIP [26], a large-scale vision-language pre-trained

model, as its backbone to achieve exceptional performance.

For a fair comparison, by only using the same visual model,

our method achieves superior performance than DualCoOp

with both visual and language models.

Note that these significant improvements are obtained with

even fewer annotated labels used in training compared to other

methods (e.g., with 10% known label ratio, we only use 10%

positive labels, while other methods use 10% positive labels

and 10% negative labels), this indicates that our method is

more effective and efficient on limited training annotations.

As shown in Table II, the number of annotated labels used

by PU-MLC in model training is much smaller than other

methods based on PN. Concretely, our method achieves the

best results while decreasing the amount of annotated labels

by 96.4% at each known label ratio.

MLC setting. Since our method is designed for both

TABLE III
MAP ON MS-COCO IN MLC SETTING.

Methods mAP OF1 CF1

ResNet-101 [32] 77.3 76.8 72.8
Cop [33] 81.1 75.1 72.7

CADM [2] 82.3 79.6 77.0
ML-GCN [1] 83.0 80.3 78.0

PU-MLC 84.2 79.1 78.2

MLC and MLC-PL tasks, we also conduct experiments to

validate our performance on traditional MLC. As shown in

Table III, we achieve promising performance compared to

previous methods. Similar to MLC-PL, our method in MLC is

trained with only positive labels, and discards a large number

of negative labels (negative labels are ∼ 26.5× more than

positive labels), our results can still outperform those methods

trained with full annotations. Besides, compared with our

PN learning baseline ResNet-101, our MLC-PL significantly

outperforms it by 6.9% in mAP, which demonstrates that our

method is beneficial to MLC setting by ignoring those noisy

negative labels.

B. Results on Pascal VOC 2007

Table I shows the comparisons between PU-MLC and state-

of-the-art methods on Pascal VOC. Although Pascal VOC has

a small size of the sample and simple categories, and many

previous methods achieve splendid results, we still outperform

them on average mAP and CF1. Especially on the most chal-

lenging 10% known labels, we obviously surpass SARB by

2.3% in mAP. On high known label ratios, our improvements

are not as significant as that in MS-COCO dataset, a possible

reason is that VOC dataset is much easier and smaller than

MS-COCO, and using the previous methods can also obtain

impressive performance. Additionally, we compare our method

with DualCoOp. By using only the same visual model, our



approach achieves improvements across all the known label

ratios.

V. CONCLUSION

In this paper, we propose positive and unlabeled multi-

label classification (PU-MLC). By removing all the nega-

tive labels in training, our method benefits from the cleaner

annotations. Besides, we introduce an adaptive re-balance

factor and adaptive temperature coefficient to better adapt PU

learning in MLC task, which achieves significant improve-

ments, especially on small known label proportions. Finally,

we design a local-global convolution module to effectively

capture both local and global dependencies within the image.

Extensive experiments on MS-COCO and PASCAL VOC

datasets demonstrate our efficacy. Adopting more advanced

PU learning methods and combining recent approaches on

model architectures in MLC would be a potential direction

of improving PU-MLC.
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