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Abstract—Distinguishing between classes of time series sam-
pled from dynamic systems is a common challenge in systems
and control engineering, for example in the context of health
monitoring, fault detection, and quality control. The challenge
is increased when no underlying model of a system is known,
measurement noise is present, and long signals need to be
interpreted. In this paper we address these issues with a new
non parametric classifier based on topological signatures. Our
model learns classes as weighted kernel density estimates (KDEs)
over persistent homology diagrams and predicts new trajectory
labels using Sinkhorn divergences on the space of diagram KDEs
to quantify proximity. We show that this approach accurately
discriminates between states of chaotic systems that are close in
parameter space, and its performance is robust to noise.

I. INTRODUCTION

Automatic labelling of time series is a significant challenge
in many scientific applications: predicting cardiac pathologies
from electrocardiogram (ECG) traces, the imminent failure
of engine components from vibration measurements, or the
type of a star from its light spectrum variations for example.
Features that are invariant under transformations such as
nonlinear warping in the time domain are often important for
effective predictions in these contexts because measurement
sampling rates may differ between samples, the same physical
processes may evolve at different rates for different samples,
or the morphology of the signal during important events may
be the deciding factor between classes. So a wide range
of methods for time series classification based on different
invariances are available, offering a variety of performance
characteristics suited to different applications [1], [2]. In
the case of dynamic systems, it is also known that signal
decomposition and interpretation methods such as spectral
and cepstral analysis, and phase space reconstructions using
Takens embedding theorem, provide useful features to interpret
and compare the states of systems [3]–[5].

The approach taken in this paper compares global descrip-
tors of time series, like symbolic aggregate approximations
(SAX) or bags of patterns (BOP) do, but without the need
to decompose signals and using a metric that is invariant
to nonlinear time domain transformations, like dynamic time
warping (DTW) is. In particular we show how to summarise
the topological features of classes of time series in a concise
way, and how to quickly quantify similarity between the topol-
ogy of an unlabelled time series and these class summaries.

Our method applies techniques from topological data anal-
ysis (TDA) in the form of persistent homology (PH) to

characterize signals [6], [7]. The central object of interest in
PH is the persistence diagram (PD) or barcode which provides
a concise and stable formal representation of the topological
features present in a data set at all metric scales simultaneously
[8], [9]. This global multi-scale perspective allows TDA to ex-
pose features otherwise overlooked by conventional nonlinear
dimensionality reduction techniques. For an introduction see
[9], for algorithmic aspects [10], and for examples of metric
space representations on the space of PDs needed to use TDA
in off-the-shelf machine learning pipelines see [11], [12].

II. RELATED WORK

Time series have previously been analysed using TDA,
largely via PH of point clouds constructed using delay embed-
dings [13]–[16]. However delay embeddings require heuristic
estimation of the embedding dimension and delay size to be
computed beforehand, increase the influence of noise, and lead
to a rapid increase in the complexity of computing PH of
filtrations on the point cloud, requiring subsampling techniques
such as the witness complex [17]–[19]. One previous study
avoids embeddings but relies on a coarse grained statistic
derived from PDs to characterise time series, the persistent
entropy [20]. Our method is similar to this since we use a
filtration on the time series directly, however we use a metric
on the space of persistence diagrams directly rather than on
the space of persistent entropy histograms.

Our method uses persistence images (PIs) as its underlying
stable representation of PH, however rather than using these
as feature vectors in a support vector classifier as in [11],
we apply a distance metric to them. Following [21] we treat
PIs as kernel estimators of the density of expected PDs for a
class, and to measure distance between these density estimates
and new PIs we use the Sinkhorn divergence [22]. The latter
is an upper bound approximation to the Wasserstein distance
between distributions which can be computed very quickly
[23]–[25]. The Sinkhorn divergence has recently been applied
to scalable clustering and averaging of large PDs [26], but not
yet to classification using topological features.

Much previous work has been done on characterising and
comparing trajectories of dynamical systems, but this often
focuses on methods for distinguishing between chaotic and
non-chaotic (periodic, quasi-periodic, intermittent) behaviour,
for example by analysing spectra of Lyapunov exponents or
textures of recurrence plots [27], [28]. The method we develop
here is suited to this type of classification but to showcase



its fine-grained capabilities we focus numerical experiments
on showing that it can distinguish between different chaotic
regimes that lie very close to one another in parameter space.

III. PERSISTENT HOMOLOGY AND OPTIMAL TRANSPORT

We first outline persistent homology in terms of sub level
sets of functions, then the persistence image representation of
persistence diagrams, before introducing entropy regularized
optimal transport metrics between probability distributions.
These topics form the backbone of the classifier pipeline
defined and applied in following sections.

A. Persistent Homology and Persistence Images

Given a bounded continuous function f : X → R on a
topological space X define sublevel sets Xa := f−1(−∞, a]
for each a in R. Then given a ≤ b the inclusion Xa ⊆ Xb in-
duces a homomorphism of homology groups: fa,bl : Hl(Xa)→
Hl(Xb) for each dimension l. Under mild conditions on f , for
any δ > 0 the homomorphism f c−δ,cl is not an isomorphism
for only finitely many values of c ∈ R for all l, and Hl(Xa)
is finitely generated [29]. This guarantees that the following
procedure results in a finite data structure: step through the
values of c at which the homology of Xa changes and record
the maximal intervals [b, d] ⊂ R such that homology classes
appearing in some Xa live in precisely one interval and no
where else. The filtration values b, d ∈ R describing each
such interval are often called the birth and death values of
the corresponding topological feature in the filtration. The
translation between a one dimensional space and its sub level
set (birth, death) pairs is particularly easy to visualize (Fig.1).

Fig. 1. Mapping critical points of a function (left) to (birth, death) pairs
in a persistence diagram (right). From Edelsbrunner and Harer, “Persistent
Homology – A Survey” [30].
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Figure 1: A single variable function with three local minima and three local maxima. The critical
points are paired and each pair is displayed as a point in the persistence diagram on the right.

method we define the persistence of the pair to be f(y) − f(x). Persistence is coded in
the persistence diagram by mapping each pair to the point (f(x), f(y)) whose coordinates
are the corresponding critical values. In the diagram, all points live in the half space above
x1 = x2, and the persistence is easily visible as the vertical distance to this diagonal line.
For reasons that will appear later, we usually adjoin the diagonal to the persistence diagram.
The remainder of this paper extends these ideas beyond single variable functions.

Specifically, we extend the domain first to manifolds and then to general triangulable topo-
logical spaces. The algorithms compute homology and persistence for nested sequences
of simplicial complexes which we think of as piecewise constant or piecewise linear ap-
proximations of functions defined on their underlying spaces. At the same time we extend
features beyond connected components using homology which we introduce next. To go
from homology to persistence we are guided by the following property we observe for the
components of the sublevel sets of the single variable function f : R → R. Let s < t and
consider the sublevel sets Rs ⊆ Rt. Going from s to t, components of Rs may merge and
new components may be born and possibly merge with each other or with components of
Rs. We let βs,t

0 be the number of components that are born at a finite time at or before s
that belong to distinct components in Rt. The pairing of critical points we described has
the property that βs,t

0 is equal to the number of pairs (x, y) with f(x) ≤ s < t < f(y). No
other pairing satisfies this property for all s < t. As indicated by the shading in Figure 1,
βs,t

0 is also the number of points in the upper left quadrant defined by (s, t).

Homology. LetK be a simplicial complex. The Z/2Z vector space generated by the
p-dimensional simplices of K is denoted Cp(K). It consists of all p-chains, which are
formal sums c =

∑
j γjσj , where the γj are 0 or 1 and the σj are p-simplices in K . The

boundary,∂(σj), is the formal sum of the (p−1)-dimensional faces of σj and the boundary
of the chain is obtained by extending ∂ linearly,

∂(c) =
∑

j

γj∂(σj),

where we understand that addition is modulo 2, i.e. 1 + 1 = 0. It is not difficult to check
that ∂ ◦ ∂ = ∂2 = 0. The p-chains that have boundary 0 are called p-cycles. They form
a subspace Zp of Cp. The p-chains that are the boundary of (p + 1)-chains are called p-
boundaries and form a subspace Bp of Cp. The fact that ∂2 = 0 tells us that Bp ⊆ Zp. The

Persistent homology became an effective way to quantify
changes in topology across scales when it was recognised
that by adding points in ∆ = {(x, x)|x ∈ R} with countably
infinite multiplicity to the multiset of (birth, death) pairs aris-
ing from the process above, the resulting persistent homology
barcode or persistence diagram (PD) is a stable representation
under perturbations to f [29]. In other words there is then
a natural metric on PDs bounded above by some distance
between the underlying functions [9], [31], [32]. Frequently
this stability is stated as a bound on the p-Wasserstein distance

between sublevel set PDs of Lipschitz functions with respect
to the L∞ metric:

dpW (X,Y ) :=

(
inf
γ

∑

x∈X
‖x− γ(x)‖p∞

) 1
p

≤ C‖f − g‖d∞

where diagrams X,Y are PDs for f, g, the constants C, d are
independent of f, g, and γ ranges over all bijections between
the countably infinite multisets X,Y (see [8] for details).
Because of this the Wasserstein distance has been at the
heart of applications of TDA as it has developed. However
due to the complexity of optimizing over bijections [33] and
because it imposes a complicated geometry on the space of
diagrams [34] there has been a glut of alternative vector space
representations.

One such representation is the discrete persistence image
(PI) which in turn is defined in terms of a continuous per-
sistence surface (PS) arising from a PD [11]. The latter is
a way to estimate the distribution from which a diagram
is sampled while ensuring that the estimate itself is stable.
Given a diagram D ∈ Ry≥x as defined above, note that the
persistence value p := d−b is at least zero for all points so we
can translate D to the positive quadrant via T : (b, d) 7→ (b, p).
Next consider a weighted sum of Gaussians centered at points
x ∈ T (D):

ρD(z) :=
1

2πσ2

∑

x∈T (D)

f(x)e−
‖z−x‖2

2σ2 ,

where f : R2 → R is a continuous, piecewise differentiable
function that decays to zero on the horizontal axis. This is the
persistence surface associated to D. It is a stable estimate of
the distribution underlying D given the constrains on f (see
[11], [21] for details). To provide a vector space representation
of ρD suitable for use in machine learning applications, a finite
regular grid G is then placed over part of R2

+ and used to
quantize ρD as a collection of pixels I(ρD)g :=

∫∫
g
ρD(z) dz,

corresponding to each cell g ∈ G. This collection of pixels
is the persistence image representation of D and it is a
suitable vector representation for off-the-shelf classifiers such
as support vector machines (SVMs) to use [11].

B. Entropy Regularized Discrete Optimal Transport

The question of optimizing transport costs between distri-
butions of resources has been studied in various forms since
the 1700s, and in its modern guise is central to statistical
learning theory [35], [36]. Given two n-bin histograms r, c,
a transport plan between r and c is a matrix P ∈ Rn×n+

satisfying
∑
i pij = r and

∑
j pij = c. Equivalently, P

is a joint probability P = P (X,Y ) for two multinomial
random variables X and Y taking values in {0, 1, . . . , n− 1},
whose marginals are r and c. We write Un(r, c) for the set
of all transport plans for n-bin histograms r, c, dropping the
subscript n when it is clear from context.

Given a transport plan P , we interpret pij as a mass to
be transported from the i-th component of r to the j-th
component of c. If the cost of this operation is mij ∈ R per



unit of mass transported, then the discrete optimal transport
(OT) problem is to minimise the sum of transport costs over
all possible plans for r, c given M :

OTM (r, c) := min
P∈U(r,c)

〈P,M〉

where 〈P,M〉 is the Frobenius product
∑n
i,j=1 pijmij . The

function OTM is a metric on the space of histograms when
M is itself a metric distance matrix [35], [37] but computing
it exactly is difficult in practice, with the worst case time
complexity O(n3 log n) being reached with certain values of
r, c and M [38].

Recent work showed that regularizing the classical OTM
problem by adding a convex constraint can lead to fast approx-
imations [22]–[25], [39], [40]. Define the entropy of a transport
plan P as H(P ) := −∑n

i=1 pij log pij , then minimising the
sum of transport costs over high entropy transport plans as in

ROTλ≥0M (r, c) := 〈Pλ,M〉
where

Pλ := argminP∈U(r,c) (〈P,M〉 − λH(P ))

gives an upper bound approximation to OTM that has com-
plexity O(n2 log n) [23].1 This upper bound is called the
Sinkhorn divergence between the histograms since it has a
natural parallel implementation based on iterated matrix-vector
products known as the Sinkhorn Knopp (SK) algorithm [22].
Early evidence suggests that it gives better classification results
than OTM in a number of experiments and that it converges
very quickly in practice [23]. Moreover, when the cost matrix
M is highly structured as is the case for Lp distances on
regular grids, the matrix operations of the algorithm can
be speeded up further via FFT based convolutions [25].
This speed and accuracy advantage has increased interest in
Sinkhorn divergence and other regularized variants of OTM
for a variety of problems ranging from color transfer in
image processing to model optimization in machine learning
[24], [41]. In the following sections we show that it can be
integrated successfully within classification pipelines based on
topological features as well.

IV. SINKHORN DIVERGENCE OF TOPOLOGICAL
SIGNATURE ESTIMATES

The problem we address now is to classify time series
generated by deterministic dynamical systems. Suppose we
are given time series samples from two classes corresponding
to a choice of parameters in a single dynamical model. Can
we characterize the data in terms of their shared or distinct
topological properties without resorting to embeddings or
parametric methods, and use this to effectively predict the
class labels of new series? Represent a dataset containing m
samples each of length n using an array X = (xji )

n
m, and

represent class labels using a 0-1 vector y = (yi)m.2

1Different penalty functions lead to approximations with different conver-
gence characteristics [24], but we consider only entropy in this paper.

2The model we define is equally valid for classifying time series of different
lengths and with more than two classes, with minor adjustments.

Training:
T1 For each sequence xi directly compute its sublevel set

persistence diagram Di.
T2 Partition the set of m PDs according to their associated

class labels in y, giving two sets of PDs: D† = {Di | yi =
0} and its compliment D‡ = {Di | yi = 1}.

T3 For each of D† and D‡ overlay the points in its member
diagrams to form a combined persistence diagram repre-
senting the whole class: D

†
=
⋃
D† and D

‡
=
⋃
D‡.

T4 Choose a continuous and piecewise differentiable func-
tion f : R2

+ → R such that f(x, 0) = 0 for all x, and a
smoothing radius σ. Construct the smoothed persistence
surfaces ρ

D
† and ρ

D
‡ .

T5 Choose a d × d square grid G that extends beyond the
largest values of b and p in D

† ∪ D‡. Compute the
persistence images I(ρ

D
†) and I(ρ

D
‡) over the cells of

G.
In practice the form of f , the value σ, and the size of G can
all be set at this stage using cross validation on the training
data. After stage T5 we have for each class a stable kernel
estimate of the density of its expected persistence diagram,
which naturally leads to the following prediction pipeline.

Prediction:
P1 Given an unlabelled query sequence q compute its persis-

tence image Iq using the pipeline above but skipping the
diagram overlay steps T2 and T3, and reusing the same
values for f , σ and G chosen in T4.

P2 Choose a p value for an underlying Lp metric on the grid
G, which induces a cost matrix Mp on G. Also choose a
regularization parameter λ ≥ 0 for computing Sinkhorn
divergences ROTλMp

. Compute the Sinkhorn divergences

d† = ROTλMp
(Iq, I(ρ

D
†)), d‡ = ROTλMp

(Iq, I(ρ
D
‡)).

P3 If d† < d‡ then predict y = 0, if d‡ < d† then predict
y = 1, else predict y = 0 or y = 1 with equal probability.

In practice the values of p and λ can both be optimized using
cross validation during the training phase.

Thus our model predicts labels for new time series based on
the closest expected persistence diagram for each class in the
training set, using the entropy regularized optimal transport
distance between the distributions.

Implementation: Computing the sub level set persistence of
each time series at stages T1 and P1 requires determining its
critical points (local maxima and minima) and also noting for
each local maximum which of its two neighbouring minima
is closer in value. Thus the critical points must be sorted as
part of the process, which is an O(n log n) operation at worst
and O(mn log n) for each class.

To compute the values of the persistence image pixels
Ig(ρD†) and Ig(ρD‡) for g ∈ G various numerical integration
and approximation methods are available. In particular if we
assume that each point appearing in a cell is centered in that
cell we can approximate the persistence surfaces ρ

D
† and ρ

D
‡

by convolving their underlying d × d f -weighted histograms
with a discrete filter corresponding to our chosen Gaussian.



This allows us to compute the persistence images generated
by T4 and T5 in a single step, in O(d2 log d) for our grid.

Finally during prediction, computing the regularized optimal
transport cost between two d2-bin histograms for a cost matrix
Mp corresponding to Lp distances on the grid is O(d2 log d).
This is because Mp is a block Toeplitz of Toeplitz blocks
(BTTB) matrix in this situation, meaning the matrix-vector
products appearing in the Sinkhorn-Knopp (SK) algorithm
used to compute ROTMp can be computed using FFT en-
hanced convolutions. See [22], [23] for details of the SK
algorithm and in paricular Chapter 5 of [42] for details of
how to speed up the matrix-vector operations.

The result is that once the size d of the grid has been set
during training the complexity of the model is O(n log n) in
time series length.

V. CLASSIFICATION EXPERIMENTS3

We call the method above ‘Persistence Image Classification
using Regularized Optimal Transport’, or PICROT for short.
This section assesses its performance against one classifier
using signal frequency and rate of change analysis, and one
classifier based on persitent entropy as defined and success-
fully applied to similar problems in [43].4

C1 PICROT compares kernel estimates of PD densities us-
ing the Sinkhorn divergence. We fix a weight function
for PICROT that increases rapidly from zero to one
in an interval less than the persistence value of any
off diagonal points processed. Thus in effect we apply
uniform weights when constructing persistence images.
The smoothing parameter σ and grid size d for PIs, and
the regularization parameter λ for the Sinkhorn metric,
are all estimated using 5-fold cross validation over a grid
of candidate values during training.

C2 CEPS is the one nearest neighbor classifier using Eu-
clidean distance between coefficients of the discrete co-
sine transforms of the cepstra of the time series being
compared:

dCEPS(T1, T2) :=

(∑

i

|CEPS(T1)i − CEPS(T2)i|2
) 1

2

where

CEPS(T ) := DCT
(∣∣F−1

{
log(|F(t)|2)

}∣∣2
)
,

F is the Fourier transform, and the sum is over all
coefficients

C3 PENT is the one nearest neighbor classifier using the
absolute difference between persistent entropies [20]. If

3Sklearn-compatible Python code implementing the classifiers described
here can be found at https://github.com/colinstephen/icmla2018

4General purpose time series classifiers such as those benchmarked in
[1] do not seem to perform well for the dynamic systems considered here.
Initial results using dynamic time warping (DTW) and random forests were
not competitive in terms of accuracy, while the potentially high-performance
collective of transformation ensembles (COTE) and the elastic ensemble (EE)
methods were too slow to evaluate due to the lengths of time series used here.

D(T ) = {(bi, di) | i ∈ I} is an indexed set of the off-
diagonal points in the persistence diagram associated to
T , pi := (di − pi) is the persistence of each point and
P :=

∑
i pi is the total persistence of the diagram, then

dPENT(T1, T2) := |PENT(T1)− PENT(T2)|

where
PENT(T ) := −

∑

i

pi
P

log
(pi
P

)
.

CEPS is not commonly used as a general time series
similarity measure but it is effective when the series have
an underlying regularity or cyclicity [5], [44] as with the
problems here. The measure dCEPS captures information about
the relative rates of change of the two signals across their
frequency bands. Cross validating the number of leading terms
compared in the cepstral classifier did not improve results,
so we compare the entire cepstra. On the other hand dPENT
compares signals using a coarse grained statistic derived from
their persistence diagrams. We also use one nearest neighbour
here because it shows higher accuracy than the receiver
operating characteristic (ROC) optimized threshold approach
originally appearing in [20].

Data: Binary time series classification problems were gen-
erated using the combinations of parameter values for the
systems defined in Table I (13 parameter value combinations).
The parameter ranges were chosen to ensure that all trajecto-
ries studied here are chaotic. Initial conditions and parameter
values themselves were varied uniformly in the given intervals
to ensure a wide variety of trajectories were observed.

In the case of the Henon and Lorenz systems only the x
values were used. In all cases the raw time series were z
normalized before any training or predictions and the first
1,000 sequence values were discarded. The subsequent lengths
used for classification varied from 2,500 to 15,000 in steps of
2,500 (6 lengths total). White noise was added to each sample
varying in standard deviation from 0.0 (no noise) to 0.75 in
steps of 0.125 (7 noise levels in total). Thus there were 546
classification experiment configurations in total. Two example
time series snippets from different classes in the fourth Henon
configuration are shown in Figure 2.

For each of the 546 configurations 200 samples balanced
between the two classes were generated, giving a total of
109,200 time series to be processed on each run. The data
for each experiment were split randomly in to 170 training
and 30 test time series to be classified. This process was then
repeated for 10 runs per experiment, using different random
train-test splits each time.

Results: The classifier PICROT outperformed the bench-
marks in the vast majority of the experiments, as shown in
Figure 4. In particular it tended to maintain higher relative
accuracy of predictions against the benchmarks as noise levels
were increased. This is most easily seen in Figure 3 where we
visualize typical accuracy profiles. In the case of the Lorenz
system experiments, PICROT was much more accurate than
the PENT classifier, outperformed CEPS on shorter sequences,



TABLE I
PARAMETERS USED TO GENERATE TIME SERIES.

System Model Class 0 Class 1

Logistic xn+1 = axn(1− xn)
x0 ∈ (0, 1) uniform a = 3.9995± 0.0005

a = 3.9945± 0.0005
a = 3.9895± 0.0005
a = 3.9845± 0.0005
a = 3.9795± 0.0005

Henon
xn+1 = 1− ax2n + yn

yn+1 = bxn
x0, y0 ∈ (1, 2) uniform

a = 1.4± 0.0025

b = 0.3035± 0.0025

b = 0.3085± 0.0025
b = 0.3135± 0.0025
a = 1.395± 0.0025
a = 1.390± 0.0025
a = 1.385± 0.0025

Lorenz

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

x0, y0, z0 ∈ (0, 1) uniform

β = 8/3
σ = 10
ρ = 28

ρ = 27.75
ρ = 27.50
ρ = 27.25
ρ = 27.00

and matched its performance on longer ones. In experiments
generated by the Henon system PICROT outperformed both
benchmarks for almost all combinations of sequence length
and noise level when the parameter a was varied. This is
clearly illustrated in the almost completely white grayscale
maps representing the rank performance of PICROT against
both of its competitors in Figure 4. Another trend visible in
Figure 4 is that the sweet spot for accuracy of PICROT out-
performing the others is at mid-range levels of noise (around
a standard deviation of 0.375) and mid-range series lengths
of around 7500 to 10000 points. Nevertheless white areas
constitute over 85% of these maps on average, suggesting that
PICROT is a strong performer in a wide variety of situations.

One additional benefit of using PICROT on time series is
that it is possible to visualise the topological signatures of
the training data classes. This helps to gain an insight into
whether or not this topological feature is a ‘strong candidate’
for discriminating classes in a given situation. For example
in Figure 2 we visualise the difference in PD class densities
associated to the generated time series snippets. The structure
and clear separation of locations of the ‘plumes’ in the third
diagram suggest that the estimated PD density is likely to be
a good feature in this case, while a more diffuse pattern may
indicate that hyperparameters of the model may need to be
tuned further or that noise is too dominant.

VI. CONCLUSION

We defined a stable and scalable metric on the space of
persistence diagrams based on entropic smoothing of optimal
transport distances. Following [11] our approach makes use
of weight functions applied to kernel density estimates on
PDs to ensure our representations are 1-Wasserstein stable,
but we treat the resulting quantized kernel density estimates as
two dimensional histograms after renormalization. This allows
direct application of regularized transport methods [22], [25].

Unlike existing topological methods for time series PI-
CROT avoids the complexity explosion and noise amplification
associated with high dimensional reconstructions based on
Takens’ embedding theorem. In contrast to traditional signal
decomposition methods noise removal is not required for
the method to perform well. After cross validation during

training the prediction compexity of the model is O(n log n)
with respect to time series length, so it can be applied to
long sequences effectively. In addition the underlying metric
has a natural parallel implementation (the Sinkhorn Knopp
algorithm) suitable for GPUs meaning it is highly scalable. To
illustrate these benefits we conducted experiments classifying
trajectories of chaotic deterministic systems under a range
of signal to noise ratios and parameter values, finding that
PICROT is more accurate than two specialized benchmarks in
the majority of situations.

REFERENCES

[1] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental evaluation
of recent algorithmic advances,” Data Mining and Knowledge Discovery,
vol. 31, no. 3, pp. 606–660, 2017.

[2] P. Esling and C. Agon, “Time-series data mining,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, pp. 1–34, 2012.

[3] H. Kantz and T. Schreiber, Nonlinear time series analysis. Cambridge
university press, 2004, vol. 7.

[4] L. H. Koopmans, The spectral analysis of time series. Elsevier, 1995.
[5] R. B. Randall, “A history of cepstrum analysis and its application

to mechanical problems,” Mechanical Systems and Signal Processing,
vol. 97, pp. 3–19, 2017.

[6] G. Carlsson, “Topology and data,” Bulletin of the American Mathemat-
ical Society, vol. 46, pp. 255–308, 2009.

[7] H. Edelsbrunner and D. Morozov. (2014) Persistent Homology: Theory
and Practice. [Online]. Available: http://pub.ist.ac.at/ edels/Papers/2012-
P-11-PHTheoryPractice.pdf

[8] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko, “Lipschitz
Functions Have Lp-Stable Persistence,” Foundations of Computational
Mathematics, vol. 10, pp. 127–139, 2010.

[9] R. Ghrist, “Barcodes: the persistent topology of data,” Bulletin of the
American Mathematical Society, vol. 45, no. 1, pp. 61–75, 2008.

[10] H. Edelsbrunner and J. Harer, Computational topology: An introduction.
American Mathematical Society, 2010.

[11] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,
S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence
images: A stable vector representation of persistent homology,” Journal
of Machine Learning Research, vol. 18, no. 1, pp. 218–252, 2017.

[12] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, “A Stable Multi-
Scale Kernel for Topological Machine Learning,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
4741–4748.

[13] F. A. Khasawneh and E. Munch, “Chatter detection in turning using per-
sistent homology,” Mechanical Systems and Signal Processing, vol. 70,
pp. 527–541, 2016.

[14] J. A. Perea and J. Harer, “Sliding Windows and Persistence: An
Application of Topological Methods to Signal Analysis,” Foundations
of Computational Mathematics, vol. 15, no. 3, pp. 799–838, 2014.
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Fig. 3. Representative profiles of classifier accuracy vs noise for three system configurations. Lorenz, Henon, and Logistic systems with a fixed chosen set of
parameters appear in columns 1 to 3 respectively. Time series length increases down the page. The classifier PICROT based on Sinkhorn divergences between
persistence density estimates consistently outperforms the benchmarks.
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Fig. 4. Grayscale maps representing the rank performance of PICROT against the two benchmarks for combinations of additive noise and signal length.
White implies PICROT outperforms both benchmarks, while black implies it is outperformed by at least one of the benchmarks. All 13 system configurations
outlined in Table I are presented. The majority of each map is white, indicating strong performance of PICROT in a range of situations.
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