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sono state le persone che più di ogni altro hanno creduto in me. La fiducia incondizionata

che hanno sempre riposto nei miei confronti è stata determinante ed indispensabile per
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Abstract

La Plataforma Solar de Almeria (PSA) è il più grande laboratorio di ricerca sull’energia

solare concentrata d’Europa. È situata ad Almer̀ıa, una provincia spagnola all’interno della

quale si trova il deserto di Tabernas. Questa Tesi di Laurea Magistrale nasce dalla volontà

di sviluppare un sistema di controllo per il campo solare termico AQUASOL-II (PSA).

Quest’installazione fornisce l’acqua in ingresso ad un impianto di desalinizzazione MED

(Multiple Effect Distillation), il cui rendimento è legato alla temperatura dell’acqua in in-

gresso allo stesso.

Tale installazione è stata realizzata nel 2006 con l’intenzione di incrementare le ricerche

sull’utilizzo dell’energia solate termica negli impianti di desalinizzazione. Nello specifico

è stato integrato un campo di pannelli solari termici da un impianto MED in modo da

sfruttare l’energia solare per la produzione dell’acqua calda necessaria al processo di de-

salinizzazione. L’obbiettivo principale era quello di creare un sistema di controllo in grado

di mantenere l’acqua, in uscita dai vari pannelli solari del sistema, ad una temperatura

desiderata. Come variabile controllata per tale scopo è stato scelto il flusso. L’energia

solare prelevata all’interno dei vari loop di pannelli solari è legata al flusso d’acqua e

di conseguenza è possibile affermare che la temperatura, in uscita da ogni signolo loop,

dipende dal flusso che passa all’interno del loop stesso.

Si andrà ora nel dettaglio ad esporre i vari passaggi che sono stati svolti.

Modellizzazione: Come primo passo si è cercato di modellizzare il sistema flusso-pompe.

La campagna sperimentale svolta ha visto una serie di scalini di diverso valore applicati alle

pompe. Questo ha portato alla luce alcune non linearità nel sistema, nonchè la presenza
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Abstract

di zeri positivi nelle funzioni di trasferimento (sistema non lineare e non a fase minima).

Per risolvere i problemi dati dalle non linearità sono stati sviluppati due modelli. Nel primo

caso, sfruttando il principio del gain scheduling, si è cercato di sviluppare un sistema che

facesse intervenire nel modello, a seconda della situazione, le funzioni di trasferimento

maggiormente adeguate. Nel secondo caso è stato diviso il modello in due parti, una

composta da funzioni di trasferimento in grado di descriverne la dinamica e l’altra composta

da funzioni polinomiali che ne definiscono il guadagno. Le non linearità del sistema in esame

infatti erano contenute nel guadagno statico, mentre la dinamica era modellizzabile, con

discreti risultati, tramite funzioni di trasferimento.

La bontà dei modelli è stata infine verificata applicandovi gli stessi ingressi applicati al

campo reale e confrontando i risultati.

Una volta sviluppati dei modelli in grado di descrivere le relazioni tra il flusso nei vari

loop e le pompe presenti nel circuito idraulico, è stato necessario fornirsi di un modello in

grado di mettere in relazione le variabili di flusso e di temperatura. In questo caso è stato

utilizzato, con alcune modifiche, un modello già presente nella letteratura. Tale modello

è basato su equazioni differenziali ed è in grado di considerare i contributi sull’uscita dati

dai disturbi sul carico. È stato infatti possibile effettuare simulazioni basate su valori reali

di radiazione, temperatura ambiente e temperatura dell’acqua in ingresso al sistema.

Controllo: Dato che l’obbiettivo finale era il controllo di temperatura e che il sistema era

divisibile in due parti (pompe-flusso flusso-temperatura), ci si è concentrati sullo sviluppo

di un controllo in cascata multivariabile composto da PID.

In una prima fase sono stati sviluppati due controllori di flusso per i due modelli preceden-

temente esposti. Entrambi i controllori sviluppati dovevano essere in grado di disaccoppiare

i vari loop (MIMO controller) tenendo in considerazione che il sistema in esame era non a

fase minima e non lineare. Una volta implementati, i controllori sono stati testati sia in

simulazione che sul campo, ed è stato scelto il controllore basato sul secondo modello per

formare l’anello interno del controllore in cascata.

L’anello esterno, dato dalla relazione temperatura-flusso, doveva essere in grado di fornire

vi



Abstract

il corretto set-point all’anello interno. In questo caso il problema maggiore è stato dato

dai forti disturbi sul carico presenti nel sistema. Occorre pensare infatti che la grandezza

di maggior interesse in questo caso è stata la radiazione solare, la quale, subisce forti e

repentine variazioni in giornate nuvolose. Si è ritenuto doveroso considerare anche altre

grandezze come la temperatura esterna e la temperatura in ingresso dell’acqua nel circuito.

Per far fronte a tutti questi eventi esterni, in grado di rendere inefficace l’azione di controllo

dei PID è stata inserita nel controllore l’azione di un feed forward.

Il controllore in cascata cos̀ı sviluppato è stato infine testato in simulazione con risultati

soddisfacenti.
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Chapter 1

Introduction

In the last few years the human activity has significantly increased, and therefore the

request of fresh water has increased as well. Particular relevance is the increase of water

used by a single person every day. The severity of this scenario is alarming, the 97% of

the world water being saline water and the most part of the rest being frozen in glaciers,

ice and snow. Moreover, the resources of fresh water are decreasing. For all these reasons,

water desalination is a very topical issue. Desalination is a process that permits to obtain

fresh water from salt water. This is possible because the process separates dissolved salts

and other minerals from water. Seawater desalination has the potential to reliably produce

enough potable water to support large populations located near the coast. Studying this

plant is consequently necessary to reduce the cost of desalinated water, which is still too

high for many people.

There are many methods to implement a desalination plant but all of them can be

categorized in two main families: thermal techniques and the membrane-based technique.

Thermal techniques use energy to boil or freeze the salt water. These two physical trans-

formations are able to separate salt from water. Unfortunately, they need a lot of energy

and research is still looking for a less wasteful of energy method. In this field, renewable

energies are particularly important. They permit to obtain thermal energy to boil water
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CHAPTER 1 INTRODUCTION

without electrical or fossil fuel consume.

The membrane-based techniques used special membrane to filter the salt water. In this

way the salt is retained by the membranes and fresh water is produced. These techniques

require less energy but they have other technical problems related to the membranes.

Thermal techniques, as listed below, can be:

• vacuum distillation: it consists in boiling salt water in an ambient where the atmo-

spheric pressure is reduced. Pressure reduction is essential to decrease the boiling

temperature of water. Lower boiling temperatures result in a lower consumption of

energy

• multi stage flash distillation: the distillation process is realized with a series of flash

evaporations

• multiple effect distillation (MED): it consists of multiple stages of effects. In each

stage the water is heated by the steam in the tube. This heating produces steam,

which flows into the tubes of the next stage (effect), heating and causing the evapo-

ration of more water.

• vapor compression distillation: the compressed vapor is used to boil the salt water

• freeze thaw : opposite to the previous method, in this technique freezing sea water is

used to obtain fresh water

• solar evaporation: it is the natural cycle. The sun evaporates the water and the

result of it is collected on a cold surface.

The membrane-based technique is also known as:

• reverse osmosis : the salt water is pushed through a semipermeable membrane (with

the membrane rejecting salts). This technique to produce fresh water typically uses

less energy than thermal desalination process, but it depends on the salt concentra-

tion in the water. Reverse osmosis and Nanofiltration are the leader techniques at

the moment.
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1.1 Multiple-Effect Distillation (MED)

• Other methods are implemented in the desalination plant but they are not mentioned

here because they are rarely used.

This thesis deals with a control problem on a MED desalination plant. In the next

paragraph it is explained more specifically the MED desalination method.

1.1 Multiple-Effect Distillation (MED)

MED desalination process was developed in 1950 and it is based on the physical principle

of distillation. This means that it needs energy to produce steam, which places MED

process among the thermal techniques. In this process the main problem is the huge

quantity of energy consumption. In order to exploit it and reduce its waste, a multi effect

distillation plant was developed. MED is more energy-efficient than other evaporation

techniques but it’s also the most sophisticated. In this type of desalination plant is possible

to used some sustainable source of energy, for example exhaust steam from the power

station turbines. This opportunity makes these plants more competitive than others on

the technical side, but requires higher costs and a wider range of instruments (a broader

equipment).

1.1.1 Functioning

As shown in Fig. 1.1, MED evaporator consists of several consecutive cells (called

effects) maintained at a progressive decreasing level of pressure and temperature from the

first hot cell to the last cold one. The working sequence is described below:

1. The high temperature steam is introduced inside the first effects tubes

2. The tubes are cooled externally thanks to a flow of salt water

3. Inside the tubes, the steam results in a distillate

4. At the same time part of the saltwater evaporates as a consequence of the condensa-

tion heat

3
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Figure 1.1: Scheme of MED plant, water cycle in the different effects

5. This ’second stage of vapor’ is at a lower temperature than the first heated steam

and it is used into the second effect cell to repeat the process.

6. This additional vapor will condense into a distillate inside the next cell

7. In the last cell, the produced steam condense on a conventional shell and on tube

heat exchangers.

The salt doesn’t evaporate and what is obtained in a condensed form is fresh water. On the

bottom of each effect tank remains a brine solution (salt water) and which can be thrown

back into the sea. In each tank the evaporation process is possible because temperature and

pressure decrease together, the boiling temperature decreasing according to the pressure.

For the reasons just mentioned, the vapor boiled off in one vessel can be used to heat

the next one and only the first one, being characterised by a higher pressure, requires an

external source of heat.

1.1.2 Configuration

FORWARD FEED MED In a plant with N effects developed according to the forward

feed configuration (see Fig. 1.2), it is present N − 1 brine preheaters. These preheaters
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1.2 Multiple-Effect Distillation (MED)

use a part of the vapor produced in each effects to increase the inlet brine temperature.

The flow of the brine and the flow of the vapor in the preheaters are opposite. Part of

the vapor condensing in the preheaters and this condensate is collected as total distillate

product after the last effect.

Figure 1.2: Forward feed MED plant

PARALLEL FEED MED In this configuration the input brine flow is split in N inlet

flows, where N is the number of effects. The drain brine collected in the N tanks flows to

the N + 1 effect’s brine tank and different pressure in the effects permits to produce vapor

in the brine pool too.

Figure 1.3: Parallel feed MED plant

In both the configuration it is necessary to produced the feed steam for the first effect

of the MED with an external source of energy. It is very important to produce an adequate

vapor in this phase of the project because its temperature and pressure heavily affect the

performance of the plant.
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1.2 Solar collectors

Solar collectors transform solar radiation into heat and transfer that heat to a medium

(water, solar fluid, or air). Then solar heat can be used for heating water, to heating or

cooling systems. Solar cooling technologies demand high temperatures and not all the type

of solar collectors are capable of producing them. Flat-plate collectors are the most widely

used kind of collectors in the world for domestic water-heating systems and solar space

heating/cooling. The first accurate model of flat plate solar collectors was developed by

Hottel and Whillier in the 1950’s. A flat-plate solar collectors consist in:

• absorber: it is usually a lamina made in high thermal conductivity metal with tubes.

This tubes, located in the absorber, converts into heat the solar radiation and transfer

this heat to a fluid flowing through the collectors. Its surface is coated to maximize

radiant energy absorption and to minimize radiant emission

• transparent cover sheets: it allow sunlight to pass through the absorber but also

insulate the space above the absorber to prevent cool air to flow into this space.

• insulated box: to reduces heat losses

There is two main categories: sun tracking and stationary. The first follow the sun

during the day so they always have the maximum incident irradiation. The second one don’t

do that. Another way of categorizing them is between: non concentrating or stationary

and concentrating. A non concentrating collector has the same area for intercepting and

for absorbing solar radiation. Concentrating solar collector usually has concave reflecting

surfaces to intercept and focus the sun’s beam radiation to a smaller receiving area. In

this thesis flat plate solar collectors are used. They are shown in Fig. 1.4. In that scheme

is possible to see the parts described above.
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TRANSPARENT 
COVER

HEAT 
TRANSFER 
MEDIUM

ASSORBER

INSULATED BOX

Figure 1.4: Flat plate solar collectors scheme, main part connections

Figure 1.5: Flat plate solar collectors photo
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1.3 Plataforma Solar de Almeria

Located in the Taberna desert, thirty kilometers north of Almeria, there is the PSA.

The Plataforma Solar de Almeria - PSA is the biggest research center on concentrated solar

energy in Europe. This research center belongs to CIEMAT (Centro de Investigaciones

Energeticas, Medioambientales y Tecnologicas) which depends on MINECO (Ministerio

de Economia y Competitividad). The fields mainly studied are those connected to the

concentration of solar thermal energy and to solar photochemistry.

Here a MED water desalination unit is located. The main objective of this unit is to widen

the knowledge in the field of desalination technologies supported by renewable energies.

The installation is divided into the following blocks:

• SOL-14 solar thermal seawater desalination plant

• stationary collector test platform

This thesis is focused on the control of the hydraulic circuit in the stationary flat plate

solar collectors. This part of the system is called AQUASOL-II.

1.3.1 AQUASOL-II

The solar field AQUASOL-II (see Fig. 1.8) located into the Plataforma Solar de Almeria

(PSA) in Spain, is composed of 60 stationary flat plate solar collectors (Wagner LBM

10HTF) with a total aperture area of 606 m2. Its distribution is as follows (see Fig. 1.7):

there are five loops connected in parallel. Four of these (loops 2-5) have 14 flat-plate

collectors each, and each loop has two rows connected in series with 7 collectors in parallel

per row, while loop 1 has 4 flat-plate collectors connected in parallel. There is a main

pumping system (Pump 0) and each loop has its own pumping system (Pump 1 - Pump

9). The main pump is necessary to help the other loops pump to reach a high level of flow.

As Fig. 1.7 shows, the water enters into the main pipe and it is pushed by the main pump

through the loops. In loops 2-5 the water is pushed across the flat plate solar collectors by
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Air Cooler

Cold Water
Tank

Hot Water
Tank

Heat
Exchanger

MED

Figure 1.6: AQUASOL-II solar field facility at PSA (Spain) - Block diagram

Figure 1.7: AQUASOL-II plant , stationary flat plate solar collectors configuration

two pumping systems (the one on the left and the one on the right) and it flows to the main

pipe to continue its cycle into the plant. Each pumping system is composed of two pumps
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Figure 1.8: AQUASOL-II solar field facility at PSA (Spain) - Photo

in parallel configuration but, from the control point of view, the pumps inside each loop

are treated as a single one (having the same control signal). Therefore, the manipulated

variable will be one for loop and each pump variable-frequency drive will receive the same

value.

It is important to mention that, during the experimental campaigns performed to obtain

the model and to test the controller, the loop number 2 was out of order. For this reason,

this loop is not considered neither in the modelling stage, nor in the control design.

In the MED systems the water inlet temperature is very important. This thesis will

deal with the solar field able to transfer this energy to the water. The ultimate goal is to

control the outlet temperature of the water from each loop of the solar field.

First, the system will be modeled, and then the MIMO control system will be developed.
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Chapter 2

Models

2.1 Introduction

In this chapter are treated the different methodologies to obtain the model of the sys-

tem. With the aim of tuning a controller to regulate the water flow rates inside the solar

loops, two hydraulic models of the system have been experimentally obtained. Since the

plant is a multiple-input multiple-output (MIMO) system with 5 inputs (pump speeds)

and 5 outputs (water flow rates), the basic transfer function model is y(s) = G(s)u(s),

where y and u are 5x1 vectors and G(s) is a 5x5 transfer function matrix. There is in-

teraction between inputs and outputs because a change in one of the inputs affects all the

outputs. To obtain the values of matrix G(s), an experimental campaign was designed and

performed; different steps were applied in the loops pumps to obtain the water flow rates

responses via the reaction curve method. This technique is appropriate because the sys-

tem has a stable behavior and it does not present a pole in zero in its transfers functions [1].

The experiments to find the data were planned as follows (see Fig. 1.7):

• The loop pumps (pump 1, pump 3a, pump 3b, pump 4a, pump 4b, pump 5a, pump

5b) were examined with steps from 40% to 90% of the input range.

• The experiments described in the previous point were repeated with different values
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of the principal pump (pump 0) input. In particular, the principal pump was set to

20% 50% 80% of its input range.

For a good data set it was necessary to take the data when the water temperature was

close to the operating point as the density of water changes according to its temperature.

To obtain it, it was necessary to make the experiments in a day characterised by good

solar radiation and the inlet temperature was controlled through an air-cooler located in

the main pipe of the solar field. In order to use as less as possible the air-cooler, the

experiment with the principal pump at 20% was done in the morning, when the solar

radiation was not too high and the other one was done in the afternoon. The reason for

doing this was the fact that lowering the speed of the pumps causes the increase of the

water temperature in the loops. Because of this, the temperature of the water at the inlet

of the solar field was maintained at 50oC and 60oC. With this value of temperature the

safety condition was guaranteed and it was possible to carry out the experiment without

any problem.

in Fig. 2.1 the data found with the experiments described above are presented. It is

possible to observe an incongruous shape of input and output in the initial and in the final

part of the experiments. This is a consequence of the procedures of launch and shutdown.

It is easily visible that this is a MIMO system because the input of each loop significantly

affects each output. On closer inspection, the figure shows the presence of positive zeros

in the non-direct transfer functions.

During the experimental campaign performed to obtain the transfer functions models, it

was observed that the static gain of the process change with the operating conditions due

to the non-linearities of the actuators (pump). In particular the gain of the models of the

loop pumps, depend on the working point of the main pump. This is reasonable because

the energy losses in the pipe, as the Bernulli equation states, depends on the square of the

water speed.

In the next sections two system models can be found, the first using the gain scheduling

12
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Figure 2.1: AQUASOL-II solar field data for the model identification, 15-03-2018

principle (piecewise linear model) and the second composed by a linear and a non-linear

part.

The Flow-Temperature model will be presented in the last section of this chapter.

Unlike the pump-flow model it was not designed from scratch but a pre-existing model was

modified in order to be useful for this thesis.
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2.2 Flow model 1 - gain scheduling

2.2.1 Introduction

This first model will be used to design a Gain Scheduling Controller. To this end, it will

be used to tune PIDs and carry out simulations. The first idea for creating a model of the

system is to use simple transfers functions for each loops, 1 direct and 4 indirect transfers

functions. Nevertheless, the solution of having a simple transfer functions on each loop

can be too inaccurate, the static gain of each loop is not constant. For this reasons the

system is not linear. In order to maintain a simple model, it was developed a procedure

that allows us to use transfer functions. Clearly, an error will be introduced, but it is

considered acceptable for this controller purposes. After an accurate study it is possible to

affirm that the static gain of each loop depends on the principal pump input. the model

was split in two different parts, one working when the input on the principal pump is under

50% and the other one working when the input is over that level. This approach can be

labeled as gain scheduling. In this case the scheduling happen in the model in order to

have always the most precise transfer function in the simulation.

MODEL
Principal pump >=50%

MODEL
Principal pump <50%

S1

MODEL

Input:
Pump frequency

Output:
flow

Figure 2.2: Gain scheduling model, basic scheme
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As it was said before, the switch statement of the model is given by the signal U0

(principal pump input) so it presents two situations (see Fig. 2.2):

• situation 1: U0 < 50%

• situation 2: U0 ≥ 50%

In the model described in this chapter, not all the transfer functions change from the

first to the second situation. Since the purpose is to avoid a too complex model, the indirect

transfer functions (out of the principal pump) are kept constant. This is acceptable because

the variations in it are negligible.

The procedure followed to find each transfer function is:

1. to define an adequate number of pole and zero,

2. to determine the delay,

3. to find the pole and zero with the Ident Matlab Toolbox,

4. to find the static gain in a define operating range,

5. to merge the information on pole, zero, delay and gain to obtain a suitable transfer

function.

To obtain the necessary data, steps were used on the loops pumps and all of these steps

were repeated for different values of the principal pump operating point. In particular, the

data used to find the part of the model with the principal pump input under the 50% are

those with the principal input fixed at 20% and 50%. For the upper part data is used with

the principal pump input at 50% and 80% (see Fig. 2.1). The gain is calculated as the

average of the two values obtained. In this way it is possible to reduced the error along the

whole range. The data was also filtered in order to delete the signal noise but it did not

change the results significantly. This is not surprising given the fact that the signal noise

doesn’t achieve high values and filtering the signal noise doesn’t therefore make sense.
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The nomenclature used to distinguish each transfer function Gij is composed by two num-

bers:

• first (i): affected loop

• second (j): pump activated

In particular the principal pipe is denoted by the number 0.

As already mentioned, the model is split in two parts and each of them is composed

as Fig. 2.3. In the same image, the main pump is treated as an independent loop. If the

model were perfect, its output would be equal to the sum of the other loop pumps outputs.

This can also be deduced from the scheme in Fig. 1.7.

In the following sections (Chap. 2.2.2, Chap. 2.2.3 and Chap. 2.2.4) are presented all the

transfer functions. Several tests were made with a different number of poles and zeros.

Finally, the best and simplest transfer functions were chosen. It makes no sense to use

transfer functions with many poles and zeros to have only a marginal benefit.

Below, the number of poles and zero for each transfer function:

• Gi0, with i=0,1,3,4,5 - 1 pole , 0 zero

• Gij, with i = j i,j=1,3,4,5 - 2 poles , 1 zeros

• G0j, with j=1,3,4,5 - 2 poles , 0 zeros

• Gij, with i 6= j i,j=1,3,4,5, 2 poles , 1 zeros

In Section 2.2.2, 2.2.3, 2.2.4 in the plot are used the following symbols:

• ’X’ zeros

• ’O’ pole
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Figure 2.3: MIMO scheme for each part of the gain scheduling model
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2.2.2 Transfer function - under 50%

The principal characteristics of the transfer functions developed for an input lower than

50% on the principal pump are presented below. The transfer function’s gain presented in

this section was found by calculating the average value between the gain obtained with the

principal pump (fixed) at 20% and the one obtained with the principal pump at 50%.

- G00 - See Fig. 2.4

Rise Time 8.9174 s

Setting Time 19.8776 s

Overshoot 0 %

Undershoot 0 %

G00(s) =
0.08664

s+ 0.2464
e−4s

- G10 - See Fig. 2.5

Rise Time 16.2668 s

Setting Time 32.9613 s

Overshoot 0 %

Undershoot 0 %

G10(s) =
0.01569

s+ 0.1351
e−4s

- G30 - See Fig. 2.6

Rise Time 5.1030 s

Setting Time 14.0855 s

Overshoot 0 %

Undershoot 0 %

G30(s) =
0.03493

s+ 0.4306
e−5s

- G40 - See Fig. 2.7

Rise Time 5.1030 s

Setting Time 14.0855 s

Overshoot 0 %

Undershoot 0 %

G40(s) =
0.027

s+ 0.4306
e−5s
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- G50 - See Fig. 2.8

Rise Time 5.8605 s

Setting Time 15.4339 s

Overshoot 0 %

Undershoot 0 %

G50(s) =
0.03289

s+ 0.375
e−5s

- G11 - See Fig. 2.9

Rise Time 5.2407 s

Setting Time 103.5082 s

Overshoot 15.5201 %

Undershoot 0 %

G11(s) =
0.0593s+ 0.001289

s2 + 0.2629s+ 0.006407
e−6s

- G33 - See Fig. 2.10

Rise Time 4.6855 s

Setting Time 212.9448 s

Overshoot 31.1090 %

Undershoot 0 %

G33(s) =
0.103s+ 0.001089

s2 + 0.2189s+ 0.00306
e−5s

- G44 - See Fig. 2.11

Rise Time 2.8683 s

Setting Time 193.5813 s

Overshoot 36.4728 %

Undershoot 0 %

G44(s) =
0.1241s+ 0.001431

s2 + 0.3321s+ 0.005299
e−4s

- G55 - See Fig. 2.12

Rise Time 4.3798 s

Setting Time 188.4421 s

Overshoot 30.4972 %

Undershoot 0 %

G55(s) =
0.1078s+ 0.001293

s2 + 0.2357s+ 0.003719
e−5s
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Figure 2.4: Transfer function with U0 < 50%: G00 - step response , pole-zero maps
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Figure 2.5: Transfer function with U0 < 50%: G10 - step response , pole-zero maps
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Figure 2.6: Transfer function with U0 < 50%: G30 - step response , pole-zero maps
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Figure 2.7: Transfer function with U0 < 50%: G40 - step response , pole-zero maps
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Figure 2.8: Transfer function with U0 < 50%: G50 - step response , pole-zero maps
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Figure 2.9: Transfer function with U0 < 50%: G11 - step response , pole-zero maps
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Figure 2.10: Transfer function with U0 < 50%: G33 - step response , pole-zero maps
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Figure 2.11: Transfer function with U0 < 50%: G44 - step response , pole-zero maps
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Figure 2.12: Transfer function with U0 < 50%: G55 - step response , pole-zero maps
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2.2 Flow model 1 - gain scheduling

2.2.3 Transfer function - upper 50%

The principal characteristics of the transfer functions developed for an input upper than

50% on the principal pump are presented below. The transfer function’s gain presented in

this section was found by calculating the average value between the gain obtained with the

principal pump (fixed) at 50% and the one obtained with the principal pump at 80%.

- G00 - See Fig. 2.13

Rise Time 8.9174 s

Setting Time 19.8776 s

Overshoot 0 %

Undershoot 0 %

G00(s) =
0.147

s+ 0.2464
e−4s

- G10 - See Fig. 2.14

Rise Time 16.2668 s

Setting Time 32.9613 s

Overshoot 0 %

Undershoot 0 %

G10(s) =
0.02374

s+ 0.1351
e−4s

- G30 - See Fig. 2.15

Rise Time 5.1030 s

Setting Time 14.0855 s

Overshoot 0 %

Undershoot 0 %

G30(s) =
0.0831

s+ 0.4306
e−5s

- G40 - See Fig. 2.16

Rise Time 5.1030 s

Setting Time 14.0855 s

Overshoot 0 %

Undershoot 0 %

G40(s) =
0.0648

s+ 0.4306
e−5s
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- G50 - See Fig. 2.17

Rise Time 5.8605 s

Setting Time 15.4339 s

Overshoot 0 %

Undershoot 0 %

G50(s) =
0.06759

s+ 0.375
e−5s

- G11 - See Fig. 2.18

Rise Time 5.2407 s

Setting Time 103.5082 s

Overshoot 15.5201 %

Undershoot 0 %

G11(s) =
0.04732s+ 0.001028

s2 + 0.2629s+ 0.006407
e−6s

- G33 - See Fig. 2.19

Rise Time 4.6855 s

Setting Time 212.9448 s

Overshoot 31.1090 %

Undershoot 0 %

G33(s) =
0.09103s+ 0.0009621

s2 + 0.2189s+ 0.00306
e−5s

- G44 - See Fig. 2.20

Rise Time 2.8683 s

Setting Time 193.5813 s

Overshoot 36.4728 %

Undershoot 0 %

G44(s) =
0.1125s+ 0.001297

s2 + 0.3321s+ 0.005299
e−4s

- G55 - See Fig. 2.21

Rise Time 4.3798 s

Setting Time 188.4421 s

Overshoot 30.4972 %

Undershoot 0 %

G55(s) =
0.09504s+ 0.00114

s2 + 0.2357s+ 0.003719
e−5s
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2.2 Flow model 1 - gain scheduling
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Figure 2.13: Transfer function with U0 ≥ 50%: G00 - step response , pole-zero maps
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Figure 2.14: Transfer function with U0 ≥ 50%: G10 - step response , pole-zero maps
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Figure 2.15: Transfer function with U0 ≥ 50%: G30 - step response , pole-zero maps
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Figure 2.16: Transfer function with U0 ≥ 50%: G40 - step response , pole-zero maps
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Figure 2.17: Transfer function with U0 ≥ 50%: G50 - step response , pole-zero maps
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Figure 2.18: Transfer function with U0 ≥ 50%: G11 - step response , pole-zero maps
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Figure 2.19: Transfer function with U0 ≥ 50%: G33 - step response , pole-zero maps
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Figure 2.20: Transfer function with U0 ≥ 50%: G44 - step response , pole-zero maps
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Figure 2.21: Transfer function with U0 ≥ 50%: G55 - step response , pole-zero maps
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CHAPTER 2 MODELS

2.2.4 Indirect transfer function

The indirect transfer functions are not split in two parts as the transfer functions in

Cap. 2.2.2 and Cap. 2.2.3. It was decided to keep it constant because the variation is not

high and a simple model is more desirable than a complicated one.

- G01 - See Fig. 2.22

Rise Time 22.7487 s

Setting Time 45.2797 s

Overshoot 0 %

Undershoot 0 %

G01(s) =
0.01174

s2 + 1.02s+ 0.08994
e−4s

- G31 - See Fig. 2.23

Rise Time 98.3117 s

Setting Time 191.1840 s

Overshoot 0 %

Undershoot 52.4732 %

G31(s) =
0.003695s− 0.0001137

s2 + 0.4204s+ 0.008897
e−8s

- G41 - See Fig. 2.24

Rise Time 132.8099 s

Setting Time 252.9202 s

Overshoot 0 %

Undershoot 32.9677 %

G41(s) =
0.001948s− 6.974× 10−5

s2 + 0.3924s+ 0.006218
e−8s

- G51 - See Fig. 2.25

Rise Time 53.0542 s

Setting Time 109.6402 s

Overshoot 0 %

Undershoot 71.3679 %

G51(s) =
0.004941s− 0.0001899

s2 + 0.4566s+ 0.01719
e−8s
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2.2 Flow model 1 - gain scheduling

- G03 - See Fig. 2.26

Rise Time 22.5292 s

Setting Time 44.1482 s

Overshoot 0 %

Undershoot 0 %

G03(s) =
0.6223

s2 + 28.07s+ 2.728
e−4s

- G13 - See Fig. 2.27

Rise Time 99.4288 s

Setting Time 191.7309 s

Overshoot 0 %

Undershoot 21.9225 %

G13(s) =
0.003068s− 0.0001756

s2 + 0.2837s+ 0.005784
e−5s

- G43 - See Fig. 2.28

Rise Time 2.9758 s

Setting Time 258.6964 s

Overshoot 91.3554 %

Undershoot 0 %

G43(s) =
−0.01211s− 8.933× 10−5

s2 + 0.1751s+ 0.002649
e−4s

- G53 - See Fig. 2.29

Rise Time 1.0921 s

Setting Time 255.7534 s

Overshoot 113.4982 %

Undershoot 0 %

G53(s) =
−0.03807s− 0.0002712

s2 + 0.4268s+ 0.006808
e−8s

- G04 - See Fig. 2.30

Rise Time 17.4954 s

Setting Time 35.1516 s

Overshoot 0 %

Undershoot 0 %

G04(s) =
363.7

s2 + 1.682× 104s+ 2112
e−4s
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- G14 - See Fig. 2.31

Rise Time 109.3793 s

Setting Time 205.5798 s

Overshoot 0 %

Undershoot 31.8276 %

G14(s) =
0.005862s− 0.0002739

s2 + 0.5889s+ 0.01143
e−5s

- G34 - See Fig. 2.32

Rise Time 1.0621 s

Setting Time 288.0732 s

Overshoot 148.2903 %

Undershoot 0 %

G34(s) =
−0.02288s− 0.000121

s2 + 0.3572s+ 0.004963
e−4s

- G54 - See Fig. 2.33

Rise Time 1.3287 s

Setting Time 243.6882 s

Overshoot 114.8105 %

Undershoot 0 %

G54(s) =
−0.0246s− 0.0001785

s2 + 0.3499s+ 0.005768
e−4s

- G05 - See Fig. 2.34

Rise Time 25.5439 s

Setting Time 48.4829 s

Overshoot 0 %

Undershoot 0 %

G05(s) =
0.009746

s2 + 0.597s+ 0.04491
e−2s

- G15 - See Fig. 2.35

Rise Time 108.5689 s

Setting Time 205.7725 s

Overshoot 0 %

Undershoot 28.4374 %

G15(s) =
0.003196s− 0.0001437

s2 + 0.3166s+ 0.005998
e−3s
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2.2 Flow model 1 - gain scheduling

- G35 - See Fig. 2.36

Rise Time 2.6297 s

Setting Time 239.6591 s

Overshoot 94.2502 %

Undershoot 0 %

G35(s) =
−0.01659s− 0.0001311

s2 + 0.1939s+ 0.003195
e−4s

- G45 - See Fig. 2.37

Rise Time 2.1006 s

Setting Time 279.6755 s

Overshoot 90.4788 %

Undershoot 0 %

G45(s) =
−0.01867s− 0.0001308

s2 + 0.2606s+ 0.003662
e−5s
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Figure 2.22: Indirect transfer function: G01 - step response , pole-zero maps
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Figure 2.23: Indirect transfer function: G31 - step response , pole-zero maps
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Figure 2.24: Indirect transfer function: G41 - step response , pole-zero maps
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Figure 2.25: Indirect transfer function: G51 - step response , pole-zero maps
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Figure 2.26: Indirect transfer function: G03 - step response , pole-zero maps
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Figure 2.27: Indirect transfer function: G13 - step response , pole-zero maps
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Figure 2.28: Indirect transfer function: G43 - step response , pole-zero maps
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Figure 2.29: Indirect transfer function: G53 - step response , pole-zero maps
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Figure 2.30: Indirect transfer function: G04 - step response , pole-zero maps
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Figure 2.31: Indirect transfer function: G14 - step response , pole-zero maps
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Figure 2.32: Indirect transfer function: G34 - step response , pole-zero maps
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Figure 2.33: Indirect transfer function: G54 - step response , pole-zero maps
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Figure 2.34: Indirect transfer function: G05 - step response , pole-zero maps
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Figure 2.35: Indirect transfer function: G15 - step response , pole-zero maps
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Figure 2.36: Indirect transfer function: G35 - step response , pole-zero maps
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Figure 2.37: Indirect transfer function: G45 - step response , pole-zero maps

As can be seen from the Chap. 2.2.2 and Chap. 2.2.3, the step response information

(rise time, setting time, overshoot, undershoot) are the same in the two different situation

(U0 < 50% and U0 ≥ 50%). This make sense because only the transfer functions gains

change a little in the two cases. Pole and zero remains the same. Since the changes in

the transfer functions are not high, the step response of them are similar in the two case.

With a high number of decimal numbers the differences would emerge but it has no sense

to report it.
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Figure 2.38: Gain scheduling model, simulink scheme

2.2.5 Model scheme

The transfer functions presented in Chap. 2.2.2, Chap. 2.2.3 and Chap. 2.2.4 are used

in this section in the Simulink model blocks. Developing a Simulink scheme is necessary,

if the purpose is to do a simulation. This will be necessary to test the controller, before

placing it in action on the field, in order to prevent dangerous situations. The model will

be used also to check the transfer function and the gain scheduling idea.

In Fig. 2.38 is presented the general plant. It is possible to evince that it is a MIMO

system. It present 4 + 1 input and 4 + 1 output (four represent the loop pipes and one

represents the principal one).

Each pump block produces five signals and the flow values are obtained as the sum of five

of these (one for each pump block). This means that all the effects are added together in

order to produce one output signal for each loop. The main blocks will be explained in the
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paragraph below.

Initial condition In the scheme presented in Fig. 2.38 it is possible to see that the initial

conditions are constant. They are fundamental because the transfer functions are found

through different steps and they don’t start from zero. In order to consider those effects,

this strategy was followed (see Fig. 2.39):

1. The input in the transfer function of the model is calculated as the difference between

the input signal and the initial input step condition (IC input)

2. The signal produced by this system is added to the initial step output condition (IC

output) after the transfer function blocks.

In this way, the model will be more accurate in the central part of the operating range

and the error will therefore be reduced also in its extremes. This happens because, as

already said, the system is not linear. If the initial conditions was not considered in an

appropriate way, an offset would appear on the output between the simulation and the

reality. With this approach we can simplify the initial conditions problems of the MIMO

system. The initial conditions must be added also in the switch system (discussed below).

The vales used are the initial step values used in the experiment to find the data for

modelling the system.

• ICinput,0 = 50%

• ICinput,j = 40% , j = 1, 3, 4, 5

• ICoutput,0 = 53.597 l/min

• ICoutput,1 = 8.539 l/min

• ICoutput,3 = 13.566 l/min

• ICoutput,4 = 17.894 l/min

• ICoutput,5 = 12.896 l/min
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MODEL
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Figure 2.39: Input and output initial condition strategy

Principal pump (Pump 0) In the Fig. 2.40, it is shown the principal pump subsystem

(Pump 0 in Fig. 2.38). It presents one transfer function blocks for each loop and what is

inside it is show in Fig. 2.41. It evince the two different transfer function and the switch

system. First the delay is placed and after the signal provides to control the switch and

acts as input signal for the model transfer functions. At the beginning the initial condition

was subtracted and in this part, for a correct switch, it is necessary to add back that values.

Then to avoid situations of continuous changes it is posed a filter and a relay block. With

this strategy it was solved the problem in cases in which the input 0 is around the 50%. The

rele’s threshold are set to 45% and 55%. The inaccuracy introduced is negligible compared

to the gain error introduced by non-linearity.

Loops pump (Pump 1,3,4,5) In Fig. 2.42 are presented the loop pumps blocks. The

loops 1, 3, 4 and 5 are made in the same way. Only the direct transfer functions are split

in two different situation. All the indirect transfer functions are considered constant over

the entire input range, so for these transfer functions the Gain Scheduling is not applied.

In Fig. 2.43 it is possible to observe the switch system. It differs from the switch system

shown before (for the loop 0) because in this case it is necessary to insert the principal
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Figure 2.41: tf00 block, inner part of the
scheme in Fig.2.40

pump signal. The rest is the same as it was discussed in the previous paragraph.
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2.2.6 RGA matrix

Since it is a MIMO system it is advisable to calculate the RGA matrix [2]. It is necessary

to consider that the system is non-linear and that it doesn’t present a constant static gain.

The RGA matrix is calculated using the approximation introduced by the model. This

model in particular presents two situations and each of them has constant gain. For this

reason two RGA matrix are presented, one in Eqn. 2.1 and one in Eqn. 2.2.

RGAU0<50% =



6.59 −1.73 −1.35 −1.12 −1.39

−1.75 3.16 −0.15 −0.13 −0.13

−1.36 −0.16 2.92 −0.15 −0.25

−1.04 −0.14 −0.19 2.59 −0.22

−1.44 −0.13 −0.22 −0.19 2.98


(2.1)

RGAU0≥50% =



−4.23 1.41 1.39 1.13 1.30

1.30 −0.78 0.18 0.16 0.14

1.47 0.14 −1.01 0.16 0.24

1.12 0.12 0.20 −0.64 0.21

1.35 0.12 0.24 0.20 −0.90


(2.2)

The matrix in Eqn. 2.1 refers to the system when the input on the principal pump is

under 50% and the matrix in Eqn. 2.2 when the input on the principal pump equal or over

that value. Form Eqn. 2.2 the system appears uncontrollable with simple PIDs. However,

it must be considered that loop 0 is controlled in open loop. So, loop 0 is excluded from

the calculation of the RGA matrix. The new RGA matrices, without loop 0 are shown in

Eqn. 2.3 and Eqn. 2.4. From these matrices it is unsderstandable that the system is well

controllable.
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2.2 Flow model 1 - gain scheduling

RGAU0<50% =


1.02 −0.01 −0.01 −0.01

−0.01 1.03 −0.01 −0.02

−0.01 −0.02 1.03 −0.02

−0.01 −0.02 −0.01 1.035

 (2.3)

RGAU0≥50% =


1.02 −0.01 −0.01 −0.01

−0.01 1.04 −0.02 −0.02

−0.01 −0.02 1.04 −0.02

−0.01 −0.02 −0.02 1.05

 (2.4)

From the RGA matrix, it is clear that the input-ouput pairs must be established as

yi-ui, with i = 0, 1, 3, 4, 5. As expected, the water flow rate in each loop must be controlled

with the pumping system of that loop. Although the interaction degree in this case is

relatively low, with the aim of reducing it as much as possible, a decoupling net [3] has

been included in the controller treated in the next chapter. [4, 5]

2.2.7 Validation

The model presented in Chap. 2.2 was tested to check its accuracy. The input signal

used in the real plant was applied to the Simulink model and the results were compared.

In Fig. 2.45 are presented the validation experiment results. It is possible to see some

similarities and some inequalities. In particular, the dynamics of the model follow the real

dynamics of the plant. The poles and the zeros are placed properly and, due to this, the

model behaviour follows the real one. As it could be expected, the main difference is in

the gain. However, when the input signals achieve values close to the range limits some

differences appear. The high error shows up as an off-set (< 2 l/min) when the direct

transfer function works with the principal pump input at 20% (the lower extreme of the

operating range). This error is acceptable since the goal is to control the system with PID

and the usual operation point is higher. It can be said that the scheduling approximation

implemented to simplify the non-linear gain is adequate.
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Figure 2.45: Gain scheduling approach - Model validation, comparison between real and
simulated data

In Fig. 2.46 is shown the error introduced in each second for each loop. It is calculated

as e = ysim− yreal where ysim is the model output and yreal is the real output of the plant.

The maximum error peaks occur at the input changes. Their value is quite high but short

time. This simulation examines almost the entire operating range, so it makes sense to

calculate the error average as Eqn. 2.5. Its value is shown below.

ē =
|ysim − yreal|

n
(2.5)

• Loop 0: ē0 = 0.7676 l/min

• Loop 1: ē1 = 0.3730 l/min
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2.2 Flow model 1 - gain scheduling

Figure 2.46: Gain scheduling approach - Model error

• Loop 3: ē3 = 0.4931 l/min

• Loop 4: ē4 = 0.3030 l/min

• Loop 5: ē5 = 0.5411 l/min
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2.3 Flow model 2 - non-linear gain

2.3.1 Introduction

The data presented in the previous chapter was used to develop another model for

the hydraulic system. The gain scheduling approach presented in the Cap. 2.2 is one

possible way to approximate the real system behavior. That approach presents two different

situations and the transition happens steeply. The model presented in this section is a non-

linear model. It was developed to have an accurate model without sharp transition. As

what it was said before, the problematic part is in the gain and it was exploit to obtain

the non-linear gain function. In order to model this kind of gain and to maintain the use

of transfer functions, the strategy described below was used:

1. plotting the experimental loop pump gains according to the pump 0 input signal,

2. interpolating the figure found with a polynomial,

3. spreading the transfer function in two parts: one is a polynomial gij, which defines

the gain and the other is a transfer function Gij, witch describe the dynamics.

In this way we can treat the dynamics in an easy way and shift the non-linearity in the

gain described by the polynomial. In the previous model the indirect transfer functions

are kept constant, but in this chapter, with this technique it was also designed the indirect

transfer function in order to obtain a higher accuracy in the model. Each transfer function

Gij has a unitary gain because the signal amplitude is imposed by the polynomial function

gij. It is very important to take into account this point in the controller tuning. As it

was done in the previous model, the flow in each pipe is the resulting sum of all the pump

effects (direct transfer function and indirects). The water flow rate in each loop, yi, where

i=0 is for the principal pump and i=1,3,4,5 are for the loops, is therefore calculated as

Eqn. 2.6

yi =
∑
j

yij, i, j = 0, 1, 3, 4, 5, (2.6)
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where yij is the contribution to yi due to the interaction between the loop i and the

loop j, and they can be obtained from Eqn. 2.7

Yij(s)

U0j(s)
= gijGij, gij = f(u0, uj), (2.7)

being gij the polynomial that defines the gain and that depends on the inputs of the

main, u0, and the loop j, uj, pumps.

The data collected to find out the model transfer function was treated with the Ident

Matlab toolbox. As it was already said, the steps don’t start from zero, then in order

to find the correct transfer function it was necessary to remove the output and the input

initial value.

2.3.2 Transfer function

In this section are presented the polynomials and the transfer functions found for this

model. With the nomenclature Gij for i,j=1,3,4,5 are denoted the transfer functions

(dynamics part), gij for i,j=1,3,4,5 it is the polynomial part (gain) and yij for i,j=1,3,4,5

defines the output signal.

Pump 0

G00(s) =
0.2464

s+ 0.2464
e−4s y00 = 0.0048u20 + 0.0073u0 + 41.5812 (2.8)

G10 =
0.1351

s+ 0.1351
e−4s y10 = 0.007u20 + 0.068u0 + 3.58 (2.9)

G30 =
0.4306

s+ 0.4306
e−5s y30 = 0.0011u20 + 0.0171u0 + 10.5324 (2.10)
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G40 =
0.4306

s+ 0.4306
e−5s y40 = 0.001u20 + 0.0031u0 + 15.73 (2.11)

G50 =
0.3748

s+ 0.3748
e−5s y50 = 0.011u20 + 0.0216u0 + 9.9693 (2.12)

Pump 1

G01 =
0.08997

s2 + 1.02s+ 0.08997
e−4s (2.13)

g01 = 8× 10−6u20 − 0.0018u0 + 0.1938 y01 = g10u1 (2.14)

G11 =
0.2946s+ 0.006409

s2 + 0.2628s+ 0.006409
e−6s (2.15)

g11 = −0.0014u0 + 0.2473 y11 = g11u1 (2.16)

G31 =
−0.2811s+ 0.008885

s2 + 0.4214s+ 0.008885
e−8s (2.17)

g31 = −5.7× 10−6u20 + 0.0007u0 − 0.0325 y31 = g31u1 (2.18)

G41 =
−0.2008s+ 0.007278

s2 + 0.4699s+ 0.007278
e−8s (2.19)

g41 = −5.3× 10−6u20 + 0.0006u0 − 0.0260 y41 = g41u1 (2.20)

G51 =
−0.4016s+ 0.01599

s2 + 0.4264s+ 0.01599
e−8s (2.21)
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g51 = −6.2× 10−6u200.0007u0 − 0.0316 y51 = g51u1 (2.22)

Pump 3

G03 =
2619

s2 + 2.675× 104s+ 2619
e−4s (2.23)

g03 = −4× 10−6u20 − 0.0003u0 + 0.2521 y03 = g03u3 (2.24)

G13 =
−0.101s+ 0.005787

s2 + 0.2839s+ 0.005787
e−5s (2.25)

g13 = −8.2× 10−6u00 + 0.0013u0 − 0.0762 y13 = g13u3 (2.26)

G33 =
0.2895s+ 0.00306

s2 + 0.2189s+ 0.00306
e−5s (2.27)

g33 = −0.0014u0 + 0.4028 y33 = g33u3 (2.28)

G43 =
0.3592s+ 0.002649

s2 + 0.175s+ 0.002649
e−4s (2.29)

g43 = 5.6× 10−6u20 − 0.0005u0 − 0.0213 y43 = g43u3 (2.30)

G53 =
0.9557s+ 0.006807

s2 + 0.4268s+ 0.006807
e−8s (2.31)

g53 = 5.6× 10−7u20 + 0.0002u0 − 0.0476 y53 = g53u3 (2.32)
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Pump 4

G04 =
3334

s2 + 2.724× 104s+ 3334
e−4s (2.33)

g04 = −6.8× 10−6u20 + 0.0003u0 + 0.1743 y04 = g04u4 (2.34)

G14 =
−0.244s+ 0.01141

s2 + 0.588s+ 0.01141
e−5s (2.35)

g14 = −2.6× 10−6u20 + 0.0005u0 − 0.0444 y14 = g14u4 (2.36)

G34 =
0.9392s+ 0.004963

s2 + 0.3571s+ 0.004963
e−4s (2.37)

g34 = 1.3× 10−6u20 − 3.3750× 10−5u0 − 0.0280 y34 = g34u3 (2.38)

G44 =
0.4598s+ 0.005299

s2 + 0.3321s+ 0.005299
e−4s (2.39)

g44 = −0.0008u0 + 0.2984 y44 = g44u4 (2.40)

G54 =
0.795s+ 0.005769

s2 + 0.35s+ 0.005769
e−4s (2.41)

g54 = −4.9× 10−7u20 + 0.0001u0 − 0.0377 y54 = g54u4 (2.42)

Pump 5

G05 =
0.04489

s2 + 0.5968s+ 0.04489
e−2s (2.43)
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g05 = −3.7× 10−6u20 − 0.0003u0 + 0.2469 y05 = g05u5 (2.44)

G15 =
−0.1333s+ 0.005995

s2 + 0.3164s+ 0.005995
e−3s (2.45)

g15 = −5.8× 10−6u20 + 0.001u0 − 0.07 y15 = g15u5 (2.46)

G35 =
0.4043s+ 0.003194

s2 + 0.1939s+ 0.003194
e−4s (2.47)

g35 = 2.8× 10−6u20 − 0.0001u0 − 0.0416 y35 = g35u5 (2.48)

G45 =
0.5236s+ 0.003655

s2 + 0.261s+ 0.003655
e−5s (2.49)

g45 = 3.2× 10−6u20 − 0.0003u0 − 0.0297 y45 = g45u5 (2.50)

G55 =
0.31s+ 0.003719

s2 + 0.2357s+ 0.003719
e−5s (2.51)

g55 = −0.0014u0 + 0.3951 y55 = g55u5 (2.52)

The general model scheme is the same as it was presented in Cap. 2.2 Fig. 2.38. The

details are shown below.

2.3.3 Model scheme

Principal Pump To model the principal pump transfer functions (pump 0) it is not

necessary to introduce an additional input signal because the gain changes according to
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the input U0. In this case it is possible to model this gain as a second degree polynomial.

The same things are applicable for the model’s gain between the principal pump and each

loop (indirect transfer function).

TF00

TF10

TF30

TF40

TF50

Input 0 OUT 00

OUT 10

OUT 30

OUT 40

OUT 50

Figure 2.47: Non-linear model, prin-
cipal pump blocks

MATLAB 
Function

Gain TF00

Delay

C00

C00

IC input 0
MATLAB 
Function

Gain TF00

+
-

TF00

Input 0

Output

Figure 2.48: Non-linear model,
transfer function 00

In Fig. 2.47 it is shown the principal pump blocks structure. Particular attention must

be paid to the figure on the right (Fig. 2.48). The input signal follows the following path:

1. The input signal arrive in the transfer function blocks

2. A delay block translate the signal back in time

3. In the Matlab Function Block the polynomial which describes the gain is imple-

mented. This step modifies the signal amplitude

4. The initial conditions are subtracted

5. The transfer function blocks ensure to give the desired dynamics to the signal.

6. The signal produced in the previous steps is placed in the output.
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2.3 Flow model 2 - non-linear gain

Significantly, the initial condition signal passes through the Matlab Function Block in

order to modify its amplitude before being subtracted.

Loop Pumps These models are quite similar to the one shown above, but in the loops

the equations (Gij, being i = j) are first order for the gain in the direct transfer functions,

while they are second order for the indirect ones (Gij, being i 6= j). Already, from the

Fig. 2.49 it is possible to note some difference compared to the principal pump scheme

shown in Fig. 2.47. As input signal, it is necessary to introduced not only the loop pumps

input but also the main pump operation point. This is necessary in the Matlab Function

Blocks to calculate the transfer function gain gij (see Fig. 2.50). The scheme represented in

Fig. 2.50 is the same for all the transfer function blocks of each loop (direct and indirect).

The only thing that changes is the value of the constants in the polynomial and the position

of the pole and the zero in the transfer function.

TF01

TF11

TF31

TF41

TF51

Principal 
pump input

Input 1
OUT 01

OUT 11

OUT 31

OUT 41

OUT 51

Figure 2.49: Non-linear model,
loops pump blocks

MATLAB 
Function

Gain TF01

Delay

C01

C01

IC input 1

MATLAB 
Function

Gain TF01

+
-

TF01

Input 1

Output

Input 0

Figure 2.50: Non-linear model,
transfer function 01
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2.3.4 RGA matrix

In this case, due to the non-linearities, the RGA matrix is not constant, it depends on

the operating point. Based on the experience at the facility, the principal pump uses to

work at more than 50% of its speed. In order to follow as much as possible the real operation

point, the RGA matrix was calculated when the pump 0 input is at 80%, obtaining the

following one:

RGA80% =



81.35 −17.2 −20.8 −21.8 −20.6

−15.0 23.6 −2.5 −2.5 −2.6

−20.9 −1.9 30.2 −3.1 −3.3

−24.0 −1.6 −2.8 32.5 −3.2

−20.5 −1.9 −3.2 −4.1 30.6


(2.53)

RGA80% =


1.03 −0.01 −0.01 −0.01

0.01 1.04 −0.01 −0.02

−0.01 −0.01 1.03 −0.02

−0.01 −0.02 −0.02 1.04

 (2.54)

In Eqn. 2.53 it is shown the RGA considering the principal pump. In Eqn. 2.54 it is

not considered (controlled in open loop). The input-ouput pairs must be established as

yi-ui in this case too. Already, it is logical because the physical system is the same.

2.3.5 Validation

The model presented in this section was tested and compared with real data. The

experimental data, used for this validation, are the same used for the validation of the

model in Cap. 2.2.7. This allows us to make a comparison between the two models.

In Fig. 2.51 it is presented the comparison between the real plant data and the simu-

lation. As it can be seen, the two signals are similar. So, with the same input signals, the

model implemented in this section provides an output akin to the real hydraulic system.
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2.3 Flow model 2 - non-linear gain

Figure 2.51: Non-linear model - validation, comparison between real and simulated data

In Fig. 2.52, the error along the whole simulation is shown. It is calculated as e =

ysim − yreal where ysim is the model output and yreal is the real output of the plant. The

highest values can be observed at the input changes. These peaks are short-term and they

cancel before the end of the transient. In stationary situation, the error remains almost

constant. The average error occurring during the simulation is shown below:

• Loop 0: ē0 = 0.6826 l/min

• Loop 1: ē1 = 0.3711 l/min

• Loop 3: ē3 = 0.6841 l/min

• Loop 4: ē4 = 0.4754 l/min

• Loop 5: ē5 = 0.8229 l/min
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Figure 2.52: Non-linear model - error
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2.4 Temperature model

In order to control the outlet temperature of each loop, it is necessary to use a model.

The model used in this thesis is presented into the paper Modeling and simulation of a

solar field based on flat-plate collectors [6]. For more details it’s possible to make reference

to it. The idea is to have a model between flow (input) and temperature (output) of each

loop. The outlet temperature of each loops is related to the flow but there are also other

influential physical quantities. The model used must include them. In particular, in the

plant are included a solar field, an air cooler to reduced the water temperature in the solar

field and an heat exchanger to heat the water in the tanks. The connection between this

equipment is shown in Fig. 1.6.

The equation used in this model concerns energy and mass balance. In particular the

equation that describes the evolution of the outlet temperature is presented in Eqn. 2.55

and Eqn. 2.56

ρcpAcs
∂Tloopj,out(t)

∂t
= βI(t− dj,tout−I)−

H

Leq

(T̂ (t)− Ta(t))

− cp
ρ

cf
Qloopj(t− dj,tout−Q)

Tloopj,out(t)− Tloopj,in(t−dj,tout−tin)

Leq

(2.55)

T̂ (t) =
Tloop,out(t) + Tloop,in(t− dj,tout−tin)

2
(2.56)

where:

• ρ water density, 975 kg/m3

• cp specific heat capacity, 4180 J · kg−1 ·◦ C−1

• Acs flat plate collector tube’s cross area, m2

• Leq length of the equivalent flat plate collector tube, 1.95 m
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• H thermal losses coefficient, 1.1 J · s−1 ·◦ C−1

• β parameter that modulates the solar radiation, 0.0189 m

• T̂ mean temperature of the equivalent flat plate collector tube, ◦C

• cf conversion factor, 12× 106

This model can be used only if the following constraints are satisfied, Eqn. 2.57 Eqn. 2.58,

Eqn. 2.59.

Tloopj,out > Tloopj,in (2.57)

Qloopj > 0 (2.58)

I > 0 (2.59)

From Eqn. 2.55 it is clear that the outlet temperature depends on irradiation, ambient

temperature, loop flow, inlet temperature. All of these signal, except for the flow, can be

treated as external disturbances in the controller. This model is a concentrated param-

eter model, so in order to reproduced the real behaviour of the plant, it is necessary to

introduced delay in the signal. This is really important since the model provide the outlet

temperature of the solar field and the delays have got a significant value. The delays are

found experimentally and their value are:

• dj,tout−Q = 33

• dj,tout−tin = 0.14Q2
loopj − 21.4Qloopj + 915.8

• dj,tout−I = 36

• d1,tout−Q = 29
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• d1,tout−tin = 1.6Q2
loop1 − 59.4Qloop1 + 719.4

• d1,tout−I = 45

with j = 3, 4, 5.

In Fig. 2.53 the scheme of the model is shown. As can be seen, the contributions of the

air cooler and the heat exchanger are included in Tin.

Input
Delay
Model

Solar
Field

Model

Air
Cooler
Model

Heat
Exchanger

Model

Ta(t)

Q loop,j (t)

Tin loop,j (t)

I loop,j (t)

Q loop,j (t-dj,tout-q)

Tin loop,j (t-dj,tout-tin)

I loop,j (t-dj,tout-I)

Tout loopj (t)

Figure 2.53: Temperature model scheme, controlled variable and load disturbance
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Chapter 3

Flow controller

3.1 Introduction

In this chapter it is treated the flow control with the aim of obtaining the internal loop

of a temperature cascade control. In this solar field, each pump of this system influences

all the system’s pipes and not only the loop where it is located. For this reason, a MIMO

control system will be developed. The main purpose of the control is decoupling the loops

in order to impose the required flow in each pipe. The flow control is faster than the

temperature control and this is optimal since the goal is to control the temperature with a

cascade control system. The time constants are equal to some seconds for the flow control

and to a range of few minutes for the temperature control. Two different control systems

are planned for the two different models presented in the Cap. 2. One exploits the gain

scheduling idea, and one tries to modify the PIDs signals to compensate the non-linearity.

These controllers are developed in order to be consistent with the two models.

3.2 Gain scheduling controller

In Cap. 2.2 it is shown the first idea for the model. The control structure presented in

this chapter is planned to make the simulation with it. That model presents two situations
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and the same scenario appears in the controller. The main idea is to change the PID’s

parameter according to the model. This controller presents two situations:

• situation 1: U0 < 50%

• situation 2: U0 ≥ 50%

where U0 is the principal pump control signal, and between these two situations, only

the PID’s parameter changes. To obtain a workable controller the following blocks are

included:

• PIDs: to obtain the control signal

• Decouples: to make the interactions less relevant

• Anti windup: to solve the problems caused by the saturations

• Bump less structure: to solve the problems caused by the switch

All of this blocks will be treated in detail in the next section of this chapter.

3.2.1 Controller scheme

In Fig. 3.1 the Simulink control structure is presented, and the blocks mentioned before

are placed as it is shown. Here, it is possible to see that we are in the presence of a MIMO

control system. As input there are five set-points and four feedback signals (the principal

pump is controlled in open loop), and as output there are five control signals. It can

therefore be defined a Multiple Input Multiple Output controller 5× 5. In this diagram it

can be seen that there are two distinct blocks called ’controller’. Only the output of one of

these will constitute the real exit signal, so it is necessary to install an appropriate switch

system. In the Anti-windup and Bumpless blocks the tracking time constant changes, so

it is necessary to provide one different block for each controller part.
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Controller
Uo>=50%

Controller
Uo<50%

+
-
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-

+
-
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-

SP1
Feedback1

SP3
Feedback3
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Feedback4

SP5
Feedback5
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Bumpless

Bumpless

Saturation

Switch
system

Anti
Windup

Anti
Windup

D
E
M
U
X

U0

U1

U5

U3

U4

Figure 3.1: Gain scheduling controller - Simulink scheme

Controller blocks

In Fig. 3.2 the contents of the Controller block are highlighted. It is within these blocks

that the control signal is produced. The various loops are controlled in closed loop while

the main pump is controlled in open loop.

Principal pump The principal pump does not directly control the flow in the loops

but it is necessary to support the other pumps. For this reason it is controlled in open

loop. The set-point is defined as the sum of the set-points of each individual loop, SP0 =

SP1 + SP3 + SP4 + SP5. This makes sense because the sum of the loop set-points will

constitute the flow that passes through the main tube. This value gives us the information

that allows us to understand how much the main pump has to work. Since an open loop

control is required to produce the control signal, a look-up table is used. The equation
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Figure 3.2: Controller Blocks, relative to Fig. 3.1
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implemented in it is shown in Eqn.3.1

U ′0 = 0.8333× (SP0) (3.1)

The control signal passes from 0% when the SP is also at 0, to 100% when the SP is set

to maximum flow in a linear way. As it can be deduced from the equation, the maximum

flow is set equal to 120 l/min. To smooth the control signal during a set-point change, a

filter was placed, Eqn. 3.2

TFfilter =
0.09

s+ 0.09
(3.2)

Loops pump All the pumps on the loop are controlled with the same control scheme

and only the parameters change according to the model. In this case, the control is

produced with a closed loop structure. The main element in this case is the PID. This

block implements a PID in the noninteractive form. Due to the presence of positive zeros,

the derivative action is switched off. The tuning was done in different ways and the result

will be shown in the next chapter.

Decoupling In this sector, the functions are used for decoupling each loop are placed.

These functions are not calculated in the ideal form because the transfer functions present

delays and positive zeros. With an ideal decoupling these positive zeros become positive

poles that destabilise the system. Simplified decoupling are calculated as Eq. 3.6, where

the first number indicates the loop pump and the second the affected loop.

R01(s) = −G01(s)

G11(s)
(3.3)

The effect of interaction can be reduced but not completely eliminated , due to these

decouples. The signal produced by the decoupling is added to the signal produced by the

PIDs and it is placed at the output of this control block.
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Bumples system

As it was said before, this control structure needs a bumpless system, in order to avoid

steps on the control signal when the switch takes place.

DEMUX DEMUX

-   +-   + -   + -   +

Tt1 Tt3 Tt4 Tt5

MUX

Out

In 1 In 2

Tt0

-   +

Figure 3.3: Bumpless blocks, relative to Fig. 3.1

In Fig. 3.3, the inside structure of the ”Bumpless block” is shown. As input, the signals

are taken before and after the switch system. In particular, the signal collected before with

the minus sign and the signal collected after with the plus sign. In this way the sum will

be zero for the part of the active output controller. The output signal is added to the

integral action of the PIDs. In Fig. 3.3 it is possible to see five gain blocks. The gain

values in these cases are called Tracking Time Constants and they are set equal to the

integral time constant of the specific loops. So it is possible to establish this relationship,

Tti = Tii, where Tti is the tracking time constant of the bumpless and Tii is the integral

time constant of the PIDs. The subscript i indicates the loop involved.
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3.2 Gain scheduling controller

Relay DelayFilter
Input Output

Figure 3.4: Switch controller system, relative to Fig. 3.1

Switch system

In order to change the controller it is necessary to develop a system that does not give

rise to ambiguous situations. This means that only one controller must be connected with

the output port. The switch system is composed by one switch blocks and one switch

controller block. This last block is composed as shown in Fig. 3.4.

The input signal is U0 (principal pump control signal). This signal is produced by

the controller itself so it’s necessary to condition the signal in order to prevent ambiguous

situation. First of all, the signal U0 must be filtered to eliminate sudden changes. It would

not make sense to change controllers every few instants. A relay block is placed after the

filter. This allows to solve problems occurring when the signal U0 is around the 50% (switch

value). The threshold values are set to 45% and 55%. In this way the continuous changes

are avoided and the error introduced in this way is negligible compared to the precision of

the model. At the end, a delay of one second was placed in order to avoid a situation of

initial indeterminacy (simulink problem).

Anti windup

In the controllers used maintain the integral action. It is consequently essential to

use an anti windup structure in order to avoid the integral problem when the actuator

saturates. The saturation limits of the control signal are set as follows:

• upper limit: 90%
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• lower limit: 20%

These values were suggested by PSA staff and they were verified through an experimental

test. The behavior of the pumps outside this range is strongly non-linear and controlling

it would therefore be very difficult. The saturation blocks are placed directly inside the

controller and the anti windup structure collects the signal before and after these. The

tracking time constants are set equal to the PIs integral time constant. This structure is

called Back Calculation. Note that, when the actuators are not saturated the anti windup

structure has no effect on the output control signal.
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Figure 3.5: Non-linear controller - Simulink scheme

3.3 Non-linear controller

As it was described in Cap. 2.2, this hydraulic system is a non-linear system, so the

MIMO controller includes some special features in order to deal with the non-linearities.

For compensating these non-linearities, the inverse of the pump characteristics can be

placed after the linear controller and before it is applied to the pump. With this idea, it is

possible to obtain a considerable improvement in the performance of the close loop system.

In Fig. 3.5 the main controller signal are presented. Furthermore this time the controller

is not divided into two parts. The controller will be analyzed in details below.

3.3.1 Controller scheme

In Fig. 3.6, the inside of the controller is shown.
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3.3 Non-linear controller

Principal pump The principal pump does not directly control the flow in the loops but

it is necessary to support the other pumps. For this reason it is controlled in open loop. In

Fig. 3.6, the control scheme for the principal pump is shown. It is composed of three main

blocks and the set-point is allocated as the sum of the set-points of each individual loop.

Control 0 In this block a linear function obtained experimentally (see Eq. 3.4)

receives the set-point and provides a control signal. The control signal passes from 0%

when the SP is also at 0, to 100% when the SP is set to maximum flow in a linear way.

The maximum flow value is set to 120 l/min.

U ′0 = 0.8333× (SP0) (3.4)

In comparison with the controller in Cap. 3.2, the control strategy for the loop 0 is the

same in these blocks.

Lookup Table In order to compensate the non-linearities of the system, a lookup

table was used. It is implemented by a piecewise linear function (see Eq. 3.5) that approx-

imates the inverse of the function which describes the gain of the model.

U0 = 2.91U ′0 − 106.34 if U ′0 < 50%

U0 = 1.68U ′0 − 44.75 if U ′0 ≥ 50%

(3.5)

Decupling In this sector are placed the functions that are used for decoupling each

loop. These functions are not calculated in the ideal form because the transfer functions

present delays and positive zeros. These positive zeros, with an ideal decoupling become

positive poles that destabilise the system. Simplified decouplings are calculated as Eq. 3.6,

where the first number indicates the loop pump and the second the affected loop.

R01(s) = −G01(s)

G11(s)
(3.6)
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Loops pumps All the pumps on the loop are controlled with the same control scheme

and only the parameters change according to the model.

PID block This block implements a PID in the non-interactive form. Due to the

presence of positive zeros, the derivative action is switched off.

MATLAB Function This is the main difference between this control scheme and

the typical MIMO control structure. The signal from PID passes through this block which

modifies the signal to compensate the non-linearity. As it was said before, the no linearity

gain of each loop is connected with the principal flow. As explained in [7], with this idea,

it is possible to obtain a considerable improvement in the performace of the close-loop

system. Inside of these blocks are contents these operations:

1. the value of the main flow is collected,

2. with that value the inverse of the model loop gain is calculated,

3. the signal coming from the PID is multiplied by the value obtained at the previous

point and supplied at the output.

Due to the use of the MATLAB Function block, the gain of the system perceived by the

PID in each moment is equal to one, then for the PID tuning, it is necessary to consider

a unitary gain.
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Temperature controller
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Figure 4.1: Cascade control scheme for temperature control

In the previous chapter the flow control was treated. As it was said in Chap. 2.4 the

water flow affects the outlet temperature so the main idea is to use it as a controlled

variable, in order to impose an outlet temperature in the solar panel [8]. It will be used

a cascade control, which can be used since the system can be decomposed. In particular
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the solar field model was decomposed in two parts, one describing the relation between

temperature and flow and one describing the relation between pump and flow. The first

was treated in Chap. 2.4 and the second in Chap. 2.3. To use this type of controller it is

necessary to measure at least two input values (temperature and flow are mandatory) and

with them, the controller provides the pump frequency signal. As it can be seen in the

following section the controller developed in this thesis needs more input signals because

it includes a feed forward control action and it is necessary to measure load disturbances.

The internal loop is composed by a flow controller (developed in the previous chapter)

whose set-point value will be provided by the external loop.

In the following section the cascade control is treated in each part.

4.1 Flow controller - inner loop

The inner loop receives the flow set point signal produced by the external loop and

it provides to set the pump frequency in order to get it. The flow controller treated in

Chap. 3.3 is used here to constitute the inner loop. It is necessary to modify some parts in

order to comply with the safety specifications and to make the flow controller compatible

with the cascade controller. The main difference is in the anti-windup structure. The main

goals in this case are:

• to connect the internal controller to the external controller without problems in the

PID’s integral part

• to avoid situation with a low level of pump’s frequency.

• to increase the anti wind-up performance since the actuators will be in saturation a

lot of time.

The control signal produced by this controller is the sum of PID actions and decouplers

action, as Eqn. 4.1 (see Fig. 4.2):
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UP =
N∑
i=1

UD +
UPID

g
(4.1)

where Up is the controller output, UD is the signal produced by decouplers, UPID is

the signal produced by PID and g is the gain produced by ’MATLAB Function’ treated

in Cap. 3.3. The limits for Up now are set higher than what it was done in the previous

flow controller. This choice was made because this controller will work all day long and

its purpose is to control the temperature. With low levels of pump frequency not all the

solar panel tubes will have the same flow and the same temperature. The limits value were

chosen, according to what it was said by the PSA staff, equal to 40% lower limits and 90%

upper limits.

• UP−MAX = 90%

• UP−MIN = 40%

In order to respect these limits, the Eqn. 4.2 and Eqn. 4.3 are implemented to determine
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the PID’s limits.

UPID−MAX = (UP−MAX −
N∑
i=1

UD) · g (4.2)

UPID−MIN = (UP−MIN −
N∑
i=1

UD) · g (4.3)

The PIDs limits are therefore not constant and it is necessary to calculate it at any

moment. Their value is important to implement a correct anti windup.
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+
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X

X

error Control
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Principal pump input

Figure 4.3: Anti-windup structure with variable limits

In Fig. 4.3 it is possible to see the main difference between the flow controller used

as inner loop in this cascade control and the controller used in Cap. 3.3. The saturation

blocks present three input. One is the PID output and the other to receive the value

of the limits. An other added block is the ’g’ block where is calculated the value of g.
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4.2 Temperature controller - external loop

Whit this technique the control signal produced by ’MatLab Function’ can be added to

the control signal produced by decoupling structure. This sum will never be outside the

limits imposed. It turned out to be necessary to implement these limits because during the

day, the pump will work in saturation for a lot of time and a typical anti-windup structure

introduces a significant error, which is caused by ’MatLab function Block’.

4.2 Temperature controller - external loop

This external loop provides the flow set-point value for the inner loop. This controller

works with PIDs. However, the PIDs alone would not be able to control load disturbances

in a proper way so it is necessary to introduce a feed forward action. In Fig. 4.4 the general

control scheme is shown. It is a MIMO controller with four inputs (loop temperature set

point) and four outputs (desired flows). In this case decoupling structure are not present

because the temperature in the loop j doesn’t affect the temperature in the loop i, with

j, i = 1, 3, 4, 5 and j 6= i. Actually, a small interaction is present because the outlet

temperature in the loop j affects the inlet temperature in the loop i. However it is negligible

and the inlet temperature effect is just considered in the feed forward action. As it was said

for the internal loop, also the external loop needs a good anti windup system because the

signal produced will be in saturation a lot of time during the day. This happens because

in the morning the irradiation is low and the controller tries to reduce the flow to increase

the outlet temperature.

Below,the various blocks are described.

Feed Forward action Since the load disturbances are present and their influence on the

outlet temperature is strong, in order to increase the system performance it is necessary to

use a feed forward action in the controller [9]. The FF controller permitted to prevent the

error because it produced the action according to the load disturbance value. It doesn’t

wait for the error, between output and set point, as PIDs had done.

The Eqn. 4.4 was used to calculate the feedback control law. It is the energy balance
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equation and it describes how the temperature changes in the solar filed.

Asfρcp
∂TT2(t)

∂t
= βI(t)− H

Leq

(T̄ (t)− Ta(t))− cpṁeq
TT2(t)− TT1(t)

Leq

(4.4)

ṁeq =
FT1ρ

Cf

(4.5)

T̄ (t) =
TT1(t) + TT2(t)

2
(4.6)

where:

• Asf , Collector absorber cross-section area

• ρ, Water density

• cp, Specific heat capacity

• TT2, Outlet temperature of the solar field

• β, Irradiance model parameter

• I, Global irradiance

• H, Global thermal losses coefficient

• Leq, Equivalent absorber tube length

• Ta, Ambient temperature

• TT1, Inlet temperature of the solar field

• cf , Conversion factor to account for connections, number of modules and L/min

conversion

The FF action is calculated at the steady state and its formula is shown in Eqn. 4.7.

This formula is obtained by placing TT2 = TT2SP in Eqn. 4.4
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FT1ff =
[ βLeq

cp(TT2sp(t)− TT1(t)
I(t)− H

cp

(T̄ (t)− Ta(t))
(TT2sp(t)− TT1(t))

]cf
ρ

(4.7)

T̄ (t) =
TT1(1) + TT2sp(t)

2
(4.8)

where FT1ff is the feed forward action. If the real system was equal to the model, the

PIDs controllers action would have zero value at the steady state.

Filter A The filter A is placed on the set-point in order to smooth the changes. This

filter reduces the dynamics with which temperature can be changed. This makes sense

because the outlet temperature in the solar field has got a slow dynamics (in the order of

minutes) and a sharp change in the set point will stress the actuators without huge time

advantages. Its equation is shown in Eqn. 4.9

Fa(s) =
1

60s+ 1
(4.9)

Filter B The filter B is placed on the FF output. As it is well known, the FF action is

usually intence, so is preferable to put a filter on it to smooth it behaviour. Without it,

the actuators will be stressed accordingly to a rapid change in the variables. The Eqn 4.10

describes it.

Fb(s) =
1

75s+ 1
(4.10)

Saturation As it was done for the inner loop, the saturation blocks and the anti windup

system are implemented with no constant saturation limits. This methodology is necessary

in this case too because the PIDs limits are conditioned by the action of FF. The PID action

must respect the limits described in Eqn. 4.11 and Eqn. 4.12

UPID−MAX = Flowmax − FT1ff (4.11)
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4.2 Temperature controller - external loop

UPID−MIN = Flowmin − FT1ff (4.12)

In this way the signal produced by this part of the controller will not get out from the

limits. The flow limits are set equal to:

• Flowmax−loop1 = 17 l/min

• Flowmax−loopj = 28 l/min j=3,4,5

• Flowmim−loop1 = 7 l/min

• Flowmin−loopj = 10 l/min j=3,4,5

These values can be reached without keeping saturated actuators. This point is impor-

tant for a closed loop control.
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Chapter 5

Control - simulations and

experiments

5.1 Introduction

In this chapter the results obtained from the simulations will be shown together with

the results obtained when it was possible to test the controllers in the real plant. Not all

the possible cases have been tested in the real field due to technical problems and overlap-

ping experiments. Also the weather conditions played a fundamental role because with too

high sun radiation it was not possible to operate in accordance with the safety conditions

required by the plant. Since the gain of the system is variable, it would be advisable to

develop an auto-tuning system, in order to have the controller well calibrated for each

condition. In this thesis we will not deal with this but we will use simple tuning rules that

can be used in the auto-tuning algorithms, to optimize start-up times. A LabView inter-

face is required to configure the controllers, implemented in Simulink, with the solar field.

Inside of this LabView interface also the feedback signal filters are implemented. These

filters have been implemented directly here because they are required in all the controllers

and because in this way the initial condition problems can be simplified. The LabView

interface is presented in the Cap. A.
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Significant are the different step amplitudes in the following experiments. It was neces-

sary to test the different controllers with different step sizes because the experiments were

done in different days with different weather conditions and in different hours of the day.

As already mentioned, due to the temperature it was not always possible to lower the flow

for a prolonged time.

5.2 Flow control - gain scheduling control

The controller illustrated in Chap.3.2 was tested in the simulation and in the real plant.

The gain scheduling model (Chap. 2.2) was used to test this controller in the simulation.

In the following tests the behavior of the controller will be shown with different types of

tunings. One of the main problems was the choice of sampling time. A too short sampling

time would not give the time to the computer to perform the necessary calculations. A

too long sampling time would make instead the control inaccurate. From the tests carried

out with this controller it has emerged that the computational times never exceed three

seconds (sometimes it takes just a little more than two seconds). To be consistent with

what it was said, a sampling time of three seconds was selected.

Ts = 3s (5.1)

5.2.1 Test 1 - tuning Kappa Tau Ms = 2.0

In this calibration method it is necessary:

1. to calculate the result of a specific function,

2. with the result obtained at point one, to enter in a table for the identification of the

parameters of the PIDs.

The interesting thing with this method is the possibility to choose the maximum sensitivity

MS of the system. In this chapter the results for a phase margin of 2 will be illustrated.

84



5.2 Flow control - gain scheduling control

Table 5.1: Tuning gain scheduling controller - Kappa Tau Methods Ms = 2.0, PIDs pa-
rameters value

Controller u0<50% Kp Ti Controlloer u0>50% Kp Ti
Loop 1 1.7555 3.1295 Loop 1 2.1999 3.1295
Loop 3 1.1600 3.4149 Loop 3 1.3128 3.4149
Loop 4 1.3704 2.2809 Loop 4 1.5118 2.2809
Loop 5 1.1409 3.2109 Loop 5 1.2943 3.2109

In Fig. 5.1 and Fig. 5.2, the results obtained from the simulation are compared with

the results obtained from the real plant. The loop 1 was tested with steps from 9 l/min to

13 l/min (31% of step), and the other loops were tested with steps from 27 l/min to 23

l/min (17% of step). The controller in the real plant was tested on the 28/06/2018 at 10:29
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Figure 5.1: Gain scheduling control - Tuning Kappa Tau Ms = 2.0% - Flow, comparison
between simulated and real signal
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Figure 5.2: Gain scheduling control - Tuning Kappa Tau Ms = 2.0% - Control signal,
comparison between simulated and real signal

The following points can be noted:

• In the simulation the principal pump flow doesn’t follow the real behavior. The value,

in this case, should be equal to the sum of the flows 1 3 4 5. In the real field this

happens due to the feature of the plant itself. In the simulation the errors introduced

by the non-linearity and the open loop control used caused the appearance of an

error.

• The oscillations introduced into the flow are greater in the real plant. In particular,

loop 4 presents the worst situation. These fluctuations are not too high in the control

signals.

• note how in the real system the control signals are always higher than those obtained
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5.2 Flow control - gain scheduling control

in simulation.

• in pump 1 (at the start) and in pump 5 (at the end) the simulation and the reality

are different due to the actuator saturation.

In detail the loops are characterized by the following performance parameters:

• Loop 1: Overshootsim = 6.2% Overshootreal = 15.4%

• Loop 3: Overshootsim = 3.0% Overshootreal = 13.1%

• Loop 4: Overshootsim = 5.2% Overshootreal = 24.2%

• Loop 5: Overshootsim = 4.0% Overshootreal = 11.3%

• Loop 1: Tasim = 26s Tareal = 83s

• Loop 3: Tasim = 10s Tareal = 39s

• Loop 4: Tasim = 9s Tareal = 120s

• Loop 5: Tasim = 10s Tareal = 36s

5.2.2 Test 2 - tuning Kappa Tau Ms = 1.4

The Kappa Tau tuning method was used also with a phase margin equal to 1.4 .

In Tab. 5.2 the tuning parameters are presented.

Table 5.2: Tuning gain scheduling controller - Kappa Tau Methods Ms = 1.4, PIDs
parameters value

Controller u0<50% Kp Ti Controlloer u0>50% Kp Ti
Loop 1 0.7461 3.1295 Loop 1 0.9350 3.1295
Loop 3 0.5252 3.4149 Loop 3 0.5944 3.4149
Loop 4 0.5972 2.2809 Loop 4 0.6588 2.2809
Loop 5 0.5107 3.2109 Loop 5 0.5794 3.2109

The results are presented in Fig. 5.3 and Fig. 5.4. The loop 1 was tested with steps

from 8 l/min to 12 l/min (33% of step), and the other loops were tested with steps from

87



CHAPTER 5 CONTROL - SIMULATIONS AND EXPERIMENTS

25 l/min to 20 l/min (25% of step). The controller in the real plant was tested on the

26/06/2018 at 14:56
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Figure 5.3: Gain scheduling control - Tuning Kappa Tau Ms = 1.4% - Flow, comparison
between simulated and real signal

The following points can be noted:

• also in this case, the flow simulation on the main pump does not reflect reality.

• in all the loops, the real and simulated flow values reach the set point.

• For the loop 1, the simulation has a faster dynamics. This influences the rejection of

load disturbances. In fact, it is possible to see in the real plant how the steps on the

loops 3 4 5 are considerably reflected on loop 1.

• the system, with this tuning, does not present high oscillations in the flow and in
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Figure 5.4: Gain scheduling control - Tuning Kappa Tau Ms = 1.4% - Control signal,
comparison between simulated and real signal

the control signal. In order to test it in its entirety, at the end of the simulation all

the set points were then changed together. The result can be considered satisfactory,

even if the loop 1 has a particularly slow dynamic.

More specifically, the loops are characterized by the following performance parameters:

• Loop 1: Overshootsim ' 0% Overshootreal ' 0%

• Loop 3: Overshootsim ' 0% Overshootreal ' 0%

• Loop 4: Overshootsim ' 0% Overshootreal = 10.5%

• Loop 5: Overshootsim ' 0% Overshootreal =' 0%

• Loop 1: Tasim = 27s Tareal = 36s
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• Loop 3: Tasim = 21s Tareal = 28s

• Loop 4: Tasim = 16s Tareal = 21s

• Loop 5: Tasim = 21s Tareal = 30s

5.2.3 Test 3 - C.H.R. tuning set-point following

The Chien Hrones Reswich tuning rules allow to choose among different tasks. In this

test, for the set point following it was chosen the table with an overshoot of 20%. In

Tab. 5.3 there are shown the PIDs parameters.

Table 5.3: Tuning gain scheduling controller - CHR tuning Set-Point following, PIDs pa-
rameters value

Controller u0<50% Kp Ti Controlloer u0>50% Kp Ti
Loop 1 2.1086 4.2416 Loop 1 2.6424 4.2416
Loop 3 1.6540 4.9042 Loop 3 1.8718 4.9042
Loop 4 1.7620 3.1721 Loop 4 1.9438 3.1721
Loop 5 1.5775 4.5723 Loop 5 1.7897 4.5723

In Fig. 5.5 and Fig. 5.6 the results are presented. The loop 1 was tested with steps from

10 l/min to 15 l/min (33% of step), and the other loops were tested with steps from 27

l/min to 24 l/min (13% of step). The controller in the real plant was test on the 26/06/2018

at 10:02

The following points can be noted:

• as in the previous test, the simulation and the real flow are different for the principal

pump

• for the pump 1, this tuning is appropriate. The oscillations are not high and lasting,

both in the simulation and in reality. In particular, also the load disturbance rejection

is correctly performed.

• for loop 3 and 5 the flows follow the set-point in a proper way but in the real plant

the load disturbance rejection are shoddy.
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Figure 5.5: Gain scheduling control - Tuning CHR Set-Point following - Flow, comparison
between simulated and real signal

• loop 4 presents the opposite situation. The load disturbance rejection performed

good but the set point following task is not applicable, in particular it presents high

and lasting oscillation.

In detail the loops are characterized by the following performance parameters:

• Loop 1: Overshootsim = 6.7% Overshootreal = 9.2%

• Loop 3: Overshootsim = 2.0% Overshootreal = 9.3%

• Loop 4: Overshootsim = 3.3% Overshootreal = 17.7%

• Loop 5: Overshootsim = 2.5% Overshootreal = 8.54%

• Loop 1: Tasim = 23s Tareal = 45s
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Figure 5.6: Gain scheduling control - Tuning CHR Set-Point following - Control signal,
comparison between simulated and real signal

• Loop 3: Tasim = 9s Tareal = 34s

• Loop 4: Tasim = 7s Tareal = 122s

• Loop 5: Tasim = 9s Tareal = 31s

5.2.4 Test 4 - C.H.R. tuning load disturbance rejection

In this test, for the load disturbance rejection it was chosen the table with an overshoot

of 20%. The PIDs parameters are shown in Tab. 5.4

In Fig. 5.7 and Fig. 5.8 the results are presented. The loop 1 was tested with steps

from 10 l/min to 15 l/min (33% of step), and the other loops were tested with steps from

23 l/min to 27 l/min (15% of step). The controller in the real plant was tested on the

26/06/2018 at 10:47
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5.2 Flow control - gain scheduling control

Table 5.4: Tuning gain scheduling controller - CHR tuning load disturbance rejection, PIDs
parameters value

Controller u0<50% Kp Ti Controlloer u0>50% Kp Ti
Loop 1 2.4600 13.800 Loop 1 3.0828 13.800
Loop 3 1.9296 11.500 Loop 3 2.1838 11.500
Loop 4 2.0556 9.2000 Loop 4 2.2677 9.2000
Loop 5 1.8404 11.500 Loop 5 2.0879 11.500
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Figure 5.7: Gain scheduling control - Tuning CHR load disturbance rejection - Flow,
comparison between simulated and real signal

The following points can be noted:

• for loop 0, the imprecision of the model is not compensated by a closed loop control

• loop 1 closed loop dynamics is too slow. The set point following and the load distur-

bance rejection need a long time to reach the set point

93



CHAPTER 5 CONTROL - SIMULATIONS AND EXPERIMENTS

3000 3200 3400 3600 3800 4000 4200 4400
t

0

50

100
%

Principal pumpReal Sim

3000 3200 3400 3600 3800 4000 4200 4400
t

0

50

100

%

Pump 1

3000 3200 3400 3600 3800 4000 4200 4400
t

0

50

100

%

Pump 3

3000 3200 3400 3600 3800 4000 4200 4400
t

0

50

100

%

Pump 4

3000 3200 3400 3600 3800 4000 4200 4400
t

0

50

100

%

Pump 5

Figure 5.8: Gain scheduling control - Tuning CHR load disturbance rejection - Control
signal, comparison between simulated and real signal

• for the loops 3, 4, and 5 this PIDs tuning provides good performance, both in the

simulation and in the real plant. The set points are reached with a little overshoot

and not a lot of oscillation. Moreover, the load disturbance rejection is carried out

in some seconds and without strong oscillation.

In detail the loops are characterized by the following performance parameters:

• Loop 1: Overshootsim ' 0% Overshootreal ' 0%

• Loop 3: Overshootsim ' 0% Overshootreal = 4.8%

• Loop 4: Overshootsim ' 0% Overshootreal = 10.3%

• Loop 5: Overshootsim ' 0% Overshootreal = 2.1%
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• Loop 1: Tasim = 53s Tareal = 102s

• Loop 3: Tasim = 10s Tareal = 8s

• Loop 4: Tasim = 8s Tareal = 31s

• Loop 5: Tasim = 10s Tareal = 9s

5.3 Flow control - non-linear control

In this section are presented the simulation results and the real plant experiments for

the ’non-linear controller’ presented in Cap. 3.3. It was tuned with different rules and the

results are shown below. In order to be consistent, this controller was simulated with the

model presented in Cap. 2.3. The sampling time must be greater than the computational

time. For this controller the computational time was always under 2s so the sampling time

was set equal to 2s. It is noticeable that with this controller, the sapling time was reduced

compared with the previous.

Ts = 2s (5.2)

5.3.1 Test 1 - tuning Kappa Tau Ms = 2.0

In this first test the controller was tested with Kappa Tau tuning rules. A phase margin

of 2.0 was chosen. In Tab. 5.6 the PID’s parameters values are shown.

Table 5.5: Tuning non-linear controller - Kappa Tau Methods Ms = 2.0, PIDs parameters
value

Controller Kp Ti
Loop 1 0.3531 3.1295
Loop 3 0.4127 3.4149
Loop 4 0.3701 2.2809
Loop 5 0.3968 3.2109
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In Fig. 5.9 and Fig. 5.10 it is possible to observe the results obtained from the simulation

and the real plant. The controller was tested with steps from 12 l/min to 16 l/min (25% of

step) for the loop 1 and with steps from 24 l/min to 28 l/min (14% of step) for the other

loops. The test on the real plant was done on the 16/07/2018 at 15:18
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Figure 5.9: Non-linear control - Tuning Kappa Tau Ms = 2.0% - Flow, comparison between
simulated and real signal

The following points can be noted:

• Loop 1 achieves the set point value but slowly and with strong oscillations. Moreover

the interaction with the other loops is not well compensated and it needs a lot of

time to eliminate the oscillation.

• Loop 3, 4, and 5 do not reach the set point in a stable way. The oscillations are

maintained over time. These oscillations are not divergent but they cancel in an
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Figure 5.10: Non-linear control - Tuning Kappa Tau Ms = 2.0% - Control signal, compar-
ison between simulated and real signal

excessively long time.

• from the observations made in the previous points we can say that this tuning rule

is not suitable for this system.

In detail the loops are characterized by the following performance parameters: over-

shoot

• Loop 1: Overshootsim = 17.1% Overshootreal = 9.4%

• Loop 3: Overshootsim = 15.1% Overshootreal = 7.4%

• Loop 4: Overshootsim = 18.5% Overshootreal = 19.3%

• Loop 5: Overshootsim = 15.5% Overshootreal = 9.1%
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• Loop 1: Tasim = 98s Tareal = 38s

• Loop 3: Tasim = 107s Tareal = 31s

• Loop 4: Tasim = 392s Tareal = 132s

• Loop 5: Tasim = 84s Tareal = 31s

5.3.2 Test 2 - tuning Kappa Tau Ms = 1.4

In this test the controller was tested with Kappa Tau tuning rules. A phase margin of

1.4 was chosen. In Tab. 5.6 the PID’s parameters values are shown.

Table 5.6: Tuning non-linear controller - Kappa Tau Methods Ms = 1.4, PIDs parameters
value

Controller Kp Ti
Loop 1 0.1501 3.1295
Loop 3 0.1869 3.4149
Loop 4 0.1613 2.2809
Loop 5 0.1776 3.2109

In Fig. 5.11 and Fig. 5.12 it is possible to observe the results obtained from the simu-

lation and the real plant. The controller was tested with steps from 12 l/min to 16 l/min

(25% of step) for the loop 1 and with steps from 24 l/min to 28 l/min (14% of step) for

the other loops. The test on the real plant was done the 16/07/2018 at 14:51

The following points can be noted:

• In all the loops the oscillation are reduced, compared with the previous tuning.

• Loop 1 in particular doesn’t present an overshoot in the real plant. Also the load

disturbance rejection is greater in the real plant than in the simulation

• Loop 3 and 5 present an insignificant overshoot in both the real plant and in the

simulation.

• Only the loop 4 presets a relevant overshoot but also in this case the step response

presents a good shape.
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Figure 5.11: Non-linear control - Tuning Kappa Tau Ms = 1.4% - Flow, comparison
between simulated and real signal

• All the loops present a good load disturbance rejection.

• About what it was said at the previous point, this tuning rules can be considered

appropriate

In detail the loops are characterized by the following performance parameters:

• Loop 1: Overshootsim = 4.6% Overshootreal = 0%

• Loop 3: Overshootsim = 4.7% Overshootreal = 1.3%

• Loop 4: Overshootsim = 5.4% Overshootreal = 4.5%

• Loop 5: Overshootsim = 3.25% Overshootreal = 1%

• Loop 1: Tasim = 16s Tareal = 31s
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Figure 5.12: Non-linear control - Tuning Kappa Tau Ms = 1.4% - Control signal, compar-
ison between simulated and real signal

• Loop 3: Tasim = 11s Tareal = 17s

• Loop 4: Tasim = 26s Tareal = 10s

• Loop 5: Tasim = 13s Tareal = 21s

5.3.3 Test 3 - C.H.R. tuning set-point following

In this test it was chose the tuning table for the set point following with an overshoot

of 20%. In Tab. 5.7 the PIDs parameters are shown.

In Fig. 5.13 and Fig. 5.14 it is possible to observe the results obtained from the simu-

lation and the real plant. The controller was tested with steps from 12 l/min to 16 l/min

(25% of step) for the loop 1 and with steps from 24 l/min to 28 i/min (14% of step) for
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5.3 Flow control - non-linear control

Table 5.7: Tuning non-linear controller - CHR tuning Set-Point following, PIDs parameters
value

Controller Kp Ti
Loop 1 0.4242 4.2416
Loop 3 0.5885 4.9042
Loop 4 0.4758 3.1721
Loop 5 0.5487 4.5723

the other loops. The test on the real plant was done on the 16/07/2018 at 13:50

Figure 5.13: Non-linear control - Tuning CHR Set-Point following - Flow, comparison
between simulated and real signal

The following points can be noted:

• All the loops reach the set point in a proper way.

• Loop 1, 3 and 5 present a negligible oscillation in the simulation and in the real plant.

Moreover, the load disturbance rejection takes place in a appropriate way.
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Figure 5.14: Non-linear control - Tuning CHR Set-Point following - Control signal, com-
parison between simulated and real signal

• Loop 4 presents some more problems. The oscillations are significant and they need

a long time to be near zero. The load disturbance continues to be relevant but we

can consider it acceptable

In detail the loops are characterized by the following performance parameters:

• Loop 1: Overshootsim = 16.6% Overshootreal = 7.6%

• Loop 3: Overshootsim = 15% Overshootreal = 11.7%

• Loop 4: Overshootsim = 15.8% Overshootreal = 17.6%

• Loop 5: Overshootsim = 12.8% Overshootreal = 9.6%
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• Loop 1: Tasim = 53s Tareal = 36s

• Loop 3: Tasim = 80s Tareal = 28s

• Loop 4: Tasim = 86s Tareal = 64s

• Loop 5: Tasim = 60s Tareal = 23s

5.3.4 Test 4 - C.H.R. tuning load disturbance rejection

In this test it was chose the tuning table for the load disturbance rejection task with

an overshoot of 20%. In Tab. 5.8 the PIDs parameters are shown.

Table 5.8: Tuning non-linear controller - CHR tuning load disturbance rejection, PIDs
parameters value

Controller Kp Ti
Loop 1 0.4948 13.8
Loop 3 0.6866 11.5
Loop 4 0.5551 9.2
Loop 5 0.6401 11.5

In Fig. 5.15 and Fig. 5.16 it is possible to observe the result obtained from the simulation

and the real plant. The controller was tested with steps from 12 l/min to 16 l/min (25% of

step) for the loop 1 and with steps from 24 l/min to 28 i/min (14% of step) for the other

loops. The test on the real plant was done on the 16/07/2018 at 14:22

The following points can be noted:

• Loop 1 reaches the set point in a long time without overshoot. The load disturbance

rejection is performed properly in the real plant even if in the simulation it doesn’t

happen.

• Loop 3, 4, and 5 are well tuned. The set point are achieved quickly and with no

strong oscillation. The load disturbance rejections are also performed in a proper

way.

In detail the loops are characterized by the following performance parameters:
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Figure 5.15: Non-linear control - Tuning CHR load disturbance rejection - Flow, compar-
ison between simulated and real signal

• Loop 1: Overshootsim = 1.75% Overshootreal = 0%

• Loop 3: Overshootsim = 7% Overshootreal = 4.46%

• Loop 4: Overshootsim = 4.4% Overshootreal = 6.9%

• Loop 5: Overshootsim = 3.9% Overshootreal = 0%

• Loop 1: Tasim = 11s Tareal = 60s

• Loop 3: Tasim = 21s Tareal = 9s

• Loop 4: Tasim = 6s Tareal = 23s

• Loop 5: Tasim = 9s Tareal = 8s
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Figure 5.16: Non-linear control - Tuning CHR load disturbance rejection - Control signal,
comparison between simulated and real signal

5.4 Temperature control

The cascade controller treated in Cap. 4 was tested only in a simulation. Due to

technical problems it was not possible to test it in the real plant. To solve this problem the

simulations are done with real data for the load disturbances. To make simulations closer

to the truth, the data were measured on two different days, a sunny day and a cloudy

one. This is useful because the solar irradiation is the most important element in this

temperature control, and the presence of the clouds makes it erratic. Having said that,

the simulation was made twice for this two different meteorological conditions. The sunny

day data were collected on 20/07/2018 and the cloudy ones on 14/02/2018. In this way it

is possible to test the controller with summer and winter data. This is very useful because
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the climate changes a lot with the seasons.

Nomenclature:

• Test 1: sunny day named ’Day 1’ - 20/07/2018

• Test 2: cloudy day named ’Day 2’ - 14/02/2018

For this simulations it was used the same PID tuning. In a first phase, various tuning

rules have been used but only the best ones are shown in this thesis. The tuning rule used

for the inner loop (flow control) is C.H.R. for the set point following task. The external

loop (temperature control) is tuned with Kappa Tau Ms = 1.4. The PIDs coefficients value

are shown in Tab. 5.10

Table 5.10: Cascade control tuning
External loop Inner loop
Kp Ti Kp Ti

Loop 1 -2.4781 94.5136 0.4242 4.2416
Loop 3 -5.6166 118.6993 0.5885 4.9042
Loop 4 -5.6094 118.6993 0.4758 3.1721
Loop 5 -5.6094 118.6993 0.5487 4.5723

To make this simulation more similar to the reality, the set point values are chosen in

accordance with the downstream system required for the MED system. It makes sense,

put the set-point on the loop 1 different to the other because this loop can feed a different

circuit. The loop 1 output water can not be therefore mixed with the other loops’ water.

5.4.1 Load disturbances

Irradiation The irradiation values are collected on a sunny and a cloudy day. The shape

of the solar radiation is shown in Fig. 5.17(a) Fig. 5.17(b).

In Fig. 5.17(a) the data collected during ’Day 1’ are shown. In this case the graph

shape does not present strong variation and this data will be used to test the controller in

more relaxed conditions.
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Figure 5.17: Irradiation data for the simulation

In Fig. 5.17(b) the presence of clouds is clear. In particular, from the trend of the graph

can be seen strong changes in the radiation during the morning. This data will be used to

test the controller in case of strong and unpredictable changes in the solar radiation.

Ambient temperature In Fig. 5.18(a) and Fig. 5.18(b) the data of the environmental

temperature are shown.
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Figure 5.18: Ambient temperature data for the simulation

It stands to reason that the higher temperature was collected during the summer. The

temperature shape is consistent with the irradiation data. It increases when comparing

the morning with the afternoon. Besides, as it can be seen in Fig. 5.18(b), the temperature

measured during the winter is not stable and presents some sharp changes in the morning
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according with the irradiation values.

Inlet temperature It is the water inlet temperature in the various loops of the solar

field. The values are a little different for each loop despite the fact that the water comes

from the same tank.
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Figure 5.19: Inlet temperature loop 1 data for the simulation
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Figure 5.20: Inlet temperature loop 3 data for the simulation

The inlet temperature depends on many operating conditions of the plant. In particular

the main influencers are the air cooler and the tank’s heat exchanger. In fact, the water in

the field can circulate without being used to heat the tanks. In this case the temperature

in the field will increase. The loop 1 can be used to heat the water in a different circuit.
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Figure 5.21: Inlet temperature loop 4 data for the simulation
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Figure 5.22: Inlet temperature loop 5 data for the simulation

This is the reason because in Fig. 5.19(b) The loop 1 inlet temperature is different from the

other loops inlet temperature. Some times the inlet temperature is lowered to a constant

value. The air cooler activation is the reason of it. we can say that we are not interested

in all of these operating condition because they are incorporated in the inlet temperature.

5.4.2 Test 1

Test 1 is done with the data collected on 20-07-2018. The variable conditions during

this day are advantageous because they present less sharp changes.

In Fig. 5.23, Fig. 5.24, Fig. 5.25 and Fig 5.26 the loops simulations are shown. During
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the early hours of the day the irradiation is not high enough to raise the temperature up to

the set point. We can see, however, that the control takes place in the correct way. All the

pumps work in order to maintain the minimum flow values. In this initial phase the loop

1 has a flow equal to 7 and the other loops have a flow equal to 10. This corresponds to

what it was expected since they are the minimum flow values imposed and the pump must

allow these values to fall below this level. In Fig. 5.23, at seconds 4397 the temperature

exceeds the set-point for a short time. The controller works in a proper way given the fact

that the pump speed increase (and the flow increase too). In the previous period the flow

set point was in saturation and, at this point, the correct operation of the anti windup also

occurs. The same situation can be seen in the loop 3 at seconds 3500, loop 4 at seconds

4125 and in the loop 5 at seconds 3452. During the second part of the day the temperature

achieved the set-point due to the high irradiation. In this case the pumps increase the flow

in order to keep the temperature constant. It should be noted the behavior of the pump 1.

Its speed decrees and the flow increases. This is caused by the interaction with the other

pumps. The control signal can be considered satisfactory since it does not present many

oscillations and where it is possible the set point value is maintained.
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T out 1 [°C] Flow 1 [l/min] SP 1 [°C] U1 [%]

Figure 5.23: Simulation 1 - temperature control loop 1
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Figure 5.24: Simulation 1 - temperature control loop 3
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T out 4 [°C] Flow 4 [l/min] SP 4 [°C] U4 [%]

Figure 5.25: Simulation 1 - temperature control loop 4
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Loop 5
T out 5 [°C] Flow 5 [l/min] SP 5 [°C] U5 [%]

Figure 5.26: Simulation 1 - temperature control loop 5
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5.4 Temperature control

5.4.3 Test 2

Test 2 is done with the data collected on 14-02-2018. This day was a cloudy day and the

irradiation suffered rapid changes so it was the perfect opportunity to test the controller

in non-ideal conditions.

In Fig. 5.27, Fig. 5.28, Fig. 5.29 and Fig. 5.30 the simulation results are shown. The

set-point values are the same used in Test 1. It is clear from the very beginning that in

this situation the loop 1 doesn’t reach the set-point. Within the flow and the pump limits,

it tries to get the set point value in a proper way. After the early stage of the simulation,

loop 3,4 and 5 reach the set point value. In the first part of the simulation, in can be

seen that the controller is not able to handle strong variations in the irradiation. At the

same time, in the second part of the simulation the controller manages the disturbances

correctly.
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Loop 1
T out 1 [°C] Flow 1 [l/min] SP 1 [°C] U1 [%]

Figure 5.27: Simulation 2 - temperature control loop 1
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Loop 3
T out 3 [°C] Flow 3 [l/min] SP 3 [°C] U3 [%]

Figure 5.28: Simulation 2 - temperature control loop 3
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T out 4 [°C] Flow 4 [l/min] SP 4 [°C] U4 [%]

Figure 5.29: Simulation 2 - temperature control loop 4
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Loop 5

T out 5 [°C] Flow 5 [l/min] SP 5 [°C] U5 [%]

Figure 5.30: Simulation 2 - temperature control loop 5
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Conclusions and future works

The controllers developed in order to control the flow and the temperature in the solar

field loop have provided satisfactory results. The purpose of this thesis was to control a

non-linear system (and no-minimum phase) with PIDs. As it is well known, PIDs are linear

controllers and for this reason they are not suitable for controlling systems such as the one

examined here.

First of all, two models (gain scheduling and non-linear approach) were designed to test in

simulation the controller. Their validity was test with a comparison with the real hydraulic

system data. In the first phase of the project, the flow control was developed. This part was

the most laborious. It was necessary to decoupling the loops and solve the non-linearity

and the non-minimum phase problems. Two channels were designed, one with the gain

scheduling approach and one with a non linear PIDs’s signal conditioning. With these two

approaches, both the model and the associated controller were planned. For both of them

the various controller tuning rules were tested and the results were shown in Cap. 5.2 and

Cap. 5.3. However, the non-linear controller has a big advantage: it have not a switch

system and the control action is therefore calculated continuously without jumps. For this

reason it was used into in the internal loop of the temperature cascade control.

With the aim of controlling the temperature, a cascade control was designed. The external

part takes the temperature as set-point, and it provides the flow set point to the internal

part. In order to control the disturbance in the temperature in a proper way the disturbance

in the temperature part, a feed forward controller was included. The FF action was

calculated starting from the differential equations that describe the dynamics of the system.
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CHAPTER 5 Conclusions and future works

Finally, the controller was tested in a simulation with the real disturbance data.

An auto tuning system should be developed in the future. In fact, the system changes

greatly its parameters according to the water temperature. The implementation of a

calibration every time the temperature changes could increase the performance of the

system.
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Appendix A

LabVIEW interface

At PSA, the installations communicate with staff through the LabVIEW interface. The

data and the control signals travel on an internal network and to test the controllers it is

therefore necessary to configure the LabVIEW interface with that networks.

All the control systems developed in this thesis were done in MatLab. In order to be able

to test the controllers in the field, it was necessary to develop a LabVIEW interface. The

controller could be developed directly in LabVIEW but in this way it is more likely to

make some error in the translation.

The interface developed for the flow controller in Cap. 5.3 will be presented below. It is

however possible to use it to configure any controller developed in MatLab.

It is divided in three blocks, where:

1. the old variables and the data are deleted from the MatLab Workspace

2. all the constants and variables required are initialized

3. the control action is performed.

A.1 Front Panel

As it can be seen in Fig. A.1, in the Front Panel there are all the user controls on the

left and the variable graphs on the right. These graphs are important for checking the
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CHAPTER A LABVIEW INTERFACE

Figure A.1: LabVIEW - Front Panel

controller run time. We can see the temporal evolution of the variables and understand if

the system is diverging. This is important for security issues.

In the right side the commands are managed. We can find:

• Manual/Automatic switch : This is one of the most important interface control

tasks. For safety reasons, the test must always start in manual mode. In a second

stage, it is possible to pass to the automatic mode. Moreover, it must always be

possible to go back to the manual mode.

• Stop : this button is obviously used to stop the system. It should be noted that

this button has no immediate effect. Its status is checked every ’while’ loop cycle.

The reaction time of the stop button therefore depends on the duration of the ’while’

cycle (sampling time).

• Control commands : under the Manual/Automatic switch there is the control

command window. It consists of three sections.

The first section, ’Manual’, it is activated in manual mode. From here, it is possible
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A.2 Block diagram

to manually set the operating point of the various pumps.

The second section, ’Automatic’, it is activate in the automatic mode. In this case it

is possible to set the flow set point, the PIDs tuning and the filter on the feed back

action.

The third section, called ’PID Tuning’, gives us the possibility to change the PID

tuning run time.

• Graph : the graph can be found in the right side of the panel. It is present the

general view of the plant and the variable evolution of the variables of all the loops.

A.2 Block diagram

All the interface program is developed in the block diagram. It is divided in three part

and each of them is a succession of tasks.

1. In the first one it is necessary to clean the MatLab work space. The old variables

and constants must be removed from there.

2. The second part corresponds to the initialization. Here the PIDs parameters are

calculated and the use of the decoupling structure is established. Another very im-

portant aspect of this part is the Simulink initialization. The controller is developed

in Simulink and, in order to speed up the future calls to the program, it is launched

a first times.

3. In the third part (Fig. A.2, Fig. A.3), the main part of the code is included. here

they are managed:

• the change from the manual mode to the automatic mode. The change must

take place without jumps in the actuators. In particular, when the change from

the manual to the automatic mode occurs, the status vector of the Simulink

controller must be initialized appropriately.
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CHAPTER A LABVIEW INTERFACE

• the control in manual mode. The values set in the front panel must be sent to

the actuators

• the control in automatic mode. The simulink controller must be put in run and

the status vector must be updated in every sampling instant.

• The front panel controllers are disabled when they are not required in the current

controller mode (manual/automatic)

• in this part are managed also all the front panel graphic signals.

Figure A.2: LabVIEW - Block diagram - pt.3.1
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A.2 Block diagram

Figure A.3: LabVIEW - Block diagram - pt.3.2
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Located in the Taberna desert, thirty kilometers north of Almerìa, there is
the PSA. The Plataforma Solar de Almerìa - PSA is the biggest research
center on concentrated solar energy in Europe. Here a MED water
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regulate the water flow rates inside the solar loops, two hydraulic models
of the system have been experimentally obtained. During the
experimental campaign performed to obtain the transfer functions
models, it was observed that the static gain of the process change with the
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the aim of obtaining the internal loop of a temperature cascade control.
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