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Abstract

We provide elementary geometric arguments to show
that the principal point of cameras with small to moder-
ate field of view cannot be reliably estimated from natural,
noisy images (the problem is ill-posed). We also show that
in robot navigation and other noisy geometric vision appli-
cations the exact location of the principal point is irrele-
vant in practice. In these cases satisfactory metric structure
can be recovered from minimal information by efficient al-
gorithms using simplified camera models.

1. Introduction

Visual reconstruction is an ill-posed inverse problem.
Projective geometry is a powerful theoretical framework
which provides elegant and practical algorithms. But even
in high precision applications there is uncertainty, and ro-
bust estimation must be extensively used. In noisy situa-
tions (e.g. robot navigation, where sub-pixel feature detec-
tion is meaningless) some kind of regularization is required.
This can be achieved by constraining camera parameters. It
makes no sense to keep the aspect ratio, the skew, or the
principal point (pp) free through all the processing stages.

There is some controversy in the recent literature on the
required precision of the intrinsic parameters in order to ob-
tain acceptable reconstructions. For instance, in [5] we find:
“Zero skew and unit aspect ratio are two assumptions well
satisfied by modern cameras. And it is also well known that
reconstruction is not sensitive to the position of the principal
point [1]”. However, in [3] (p.461, in the context of auto-
calibration), we find a more cautious statement: “An as-
sumption of zero skew is quite natural and is a safe assump-
tion for most imaging conditions. However, an assumption
of known principal point is much less tenable”. In [1] a
simple formula is proposed to extract focal lengths from the
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fundamental matrix under the assumption of square pixel
and known principal point. The method is considered se-
riously in [2] (p.560, proposition 11.11) and it is recom-
mended as initialization for the case of non-constant in-
trinsic parameters (p.572). However, in [3] (p.481) they
point out some degenerate cases and conclude that “Gener-
ally speaking, our opinion is that this method is of doubtful
value as a means of computing focal lengths”.

Motivated by robot navigation applications, where met-
ric structure must be reconstructed in real time from mini-
mal information, in this paper we analyze the estimability
and relevance of the principal point.

2. Principal Point Estimability

A camera can be considered as a device for the mea-
surement of angles between optical rays. This is required
for 3D reconstruction, essentially based on triangulation. In
contrast with the ordinary protractor used at school, which
measures angles directly over a circle arc, a camera mea-
sures angles using intersections with the image plane. The
relation between angles and measurements in the “curved
image” of the protractor is linear. However, in the camera
the angle α between the ray defined by an image point x
and the perpendicular reference position o (the pp) is given
by the nonlinear expression α � arctan

� �
x � o � � f � . As x is

farther from the pp a given angular distance corresponds to
a larger pixel distance. While the protractor is “isotropic”,
the optical axis is a “special” direction for the camera: near
the pp there is greater linearity between angles and image
positions. Thus, the position of the pp is obviously required
to correctly compute angles between pixels.

Directly or indirectly, the position of the pp can only
be computed by discovering the region in the image where
a fixed angular distance corresponds to a minimum pixel
distance. Unfortunately, the derivative of arctan

�
x � f � is

nearly constant along the whole pixel domain of cameras
with moderate field of view. Fig. 1 shows that the tan-
gent function is numerically indistinguishable from a linear
function in a 60 degree range. As an example, a typical
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camera such as the Mitsubishi 300 E, used in many robotic
applications, has only a 44 degree field of view.

Figure 1. Comparison between tan � α � and α .

It is clearly not feasible to accurately discover the min-
imum value of such derivative from noisy measurements
(even if all the other camera parameters are perfectly
known, which is not usually the case). When standard cal-
ibration algorithms [4] are applied to a fixed camera with
different calibration sequences, they show acceptable sta-
bility of the focal lengths; but pp estimations have large
variability 1. The problem is ill-conditioned. In fact, the
pp is tightly coupled to camera orientation: the rotation ori-
gin corresponds to the optical axis. When the variations in
the estimated pp are translated to angles we find that they
are of the same order and consistent with (compensating)
variations in the estimated camera orientation.

In cameras with a moderate field of view, any estimated
pp is probably just an optimization artifact in the RQ fac-
torization of the projection matrix.

3. Irrelevance of exact principal point location

Fortunately, the exact position of the pp is not required
to compute an excellent approximation to the angle between
any pair of directions. The angle defined by two given pix-
els x1 and x2 can be expressed up to second order by:

α1 � α2 � arctan

�
x1 � o

f � � arctan

�
x2 � o

f � �

� x1 � x2
f � O

�
xi � o � 3

This means that the computed angle does not depend on
the exact position of the pp if the optical rays are not very
far from the optical axis (the error is of order 3). There is no
quadratic component in the approximation, so nonlinearity
between angles and pixels is not strong. For cameras with
moderate field of view, this suggests that we can fix a nom-
inal zero angle reference (e.g., in the image center) without
the need of exact coincidence with the true pp.

1 This phenomenon is recognized for instance in [2] (p.576, evaluating
self-calibration): “We also note that the principal point is not estimated
very accurately. However, as shown by the 3D reconstruction errors dis-
cussed next, this lack of accuracy is not of primary importance”.

Let us study, for different positions of the true pp, the
difference between the true angle α , defined by two pixels
o and x, and the angle αe, estimated under the assumption
that the pp is exactly at o (see Fig. 2).
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Figure 2. Angle measurement error produced by assuming that
the true pp is at o (see text for details).

If the camera center and the focal length are kept fixed,
the error in the pp is compensated by some rotation of the
image plane and some pixel translation, to get approximate
coincidence of rays. For a given pixel distance (thick line)
the estimated angle αe is greater when we believe that the
pp is at o. Note that the angle can be correctly measured
if an effective focal fe is used (see below), but it depends
on pixel position. In cameras with moderate field of view,
small rotations are in practice indistinguishable from pixel
translations, so it is expected that angular differences can
be estimated without exact knowledge of the position of the
pp. The true angle can be written as:

α � arctan

�
x � ε
f � � arctan

�
ε
f �

where ε � pp � o is the discrepancy between the true
position of the pp and its assumed position o. The estimated
angle is:

αe � arctan

�
x
f �
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Figure 3. Comparison between α and αe for (a) ε � 10 degree
(100 pixel) and (b) ε � 20 degree (200 pixel). The image width is
400 pixel and the field of view is 40 degree.
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The difference is negligible for � ε � � 5 degree. It is small
for � ε � � 10 degree (1/4 of the whole image in Fig. 3.a).
(Radial distortion probably produces greater errors.) The
difference is noticeable for � ε � � 20 degree (pp outside the
image in Fig. 3.b).

The analysis above assumes that the focal length is
known and fixed. But in most cases it must be estimated,
directly or indirectly, by optimization of correspondences
between angles and pixels. A wrong pp can be compen-
sated up to a certain extent by re-estimation of the the focal
length. Actually, calibration algorithms compute an effec-
tive focal length fe. 2 For a given error ε � pp � o, the
effective focal fe at a given pixel x can be expressed by:

fe
�
x � � x

tan � arctan � x � ε
f 	 �

arctan � ε
f 	 


�

� ε2

�
f 2 � εx
f

It is linear in x, so the average value for the whole image
is taken at o, the center of the pixel array:

fe � ε2

f �
f

This effective focal length uniformly distributes over the
whole image the error between real angles and estimated
angles, without regard of the pp true location. Fig. 4 com-
pares the true angle and the angle estimated with fe for dif-
ferent ε � pp � o. Now the maximum difference is not large
even if the true pp is outside the image. This kind of “min-
imum error” result is expected from standard calibration al-
gorithms.

-200 -100 0 100 200
-20

-10

0

10

20

e
r
r
o
r
:
-
1
0
0

pixel

real angle vs estimated angle

-200 -100 0 100 200
-20
-15
-10
-5
0
5
10
15

e
r
r
o
r
:
-
2
0
0

pixel

real angle vs estimated angle

a) b)

Figure 4. Comparison between α and αe using fe, for (a) ε � 10
degree (1/4 image). (b) ε � 20 degree (1/2 image)

In consequence, in cameras with small field of view (e.g.,
20 degree) the pp is irrelevant in practice.

In cameras with moderate field of view (e.g., 40 degree),
a nominal pp can be established at the image center, giving
rise to negligible errors in applications with other uncer-
tainty sources (e.g. robot navigation).

2If the pp is very far from the origin in one axis and close to it in the
other, different effective focal lengths fe � x and fe � y could be required.

In wider fields of view, the principal point can be safely
fixed at the estimation given by any standard calibration
method. Errors in the pp of order of 20 degree are not rel-
evant in robot navigation and other real world applications
(see footnote 1).

4. Simplified Camera Model

For applications where high accuracy is not needed and
cameras with moderate field of view (40-50 degree) we pro-
pose a simplified camera model K with just a single relevant
intrinsic parameter: the effective focal length (common for
both axes): K � diag

�
f 
 f 
 1 � [5, 1].

The assumptions of zero skew and unit aspect ratio can
be easily verified by checking if the image of a sphere is
a circle. If it is (with high approximation), you can safely
assume square pixel and nominal pp at the image center 3.
Reconstruction errors will be negligible in applications with
other uncertainty sources.

The following subsections present experimental support
for the proposed simplified camera model. In all cases the
image size is 384 � 288 pixels and the horizontal field of
view is approximately 40 degree.

4.1. Ordinary camera calibration

We can find 3D to 2D projective transformations, com-
puted with different assumptions about the pp, which are
indistinguishable in practice. The reprojection of points in
the calibration object shown in Fig. 5, using a camera ma-
trix estimated with a linear algorithm, produces a maximum
error of 1.68 pixels. The principal point appears to be at
pixel (202,147).

Fixing the pp at (150,100) and constraining to square
pixel, the camera matrix estimated by Newton’s method
produces a maximum reprojection error of 3.34 pixel. In the
same conditions, with the pp at (250,200), the maximum er-
ror is 3.6 pixels (see Fig. 5.a). The arbitrary assumption of
the pp in a 100 pixel range (1/4 of the image) around the
estimated position produces some degradation but the re-
sults are still acceptable for many applications. Finally, if
we fix the pp at a (100,50) we obtain the less satisfactory
maximum reprojection error of 4.98 pixel.

4.2. Homography “Extrapolation”

Under the assumption of known pp and common focal
length the full camera matrix can be obtained from calibra-
tion points in a single plane. This is particularly convenient
for robot navigation, as explained in subsection 4.4. It is im-
portant to ascertain if this approach is robust against wrong

3Otherwise a linear transformation can be applied in the acquisition
stage, in the same fashion as radial distortion correction.
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assumptions about the pp. We have estimated a full pro-
jection matrix just from the “right” plane in the calibration
device shown in Fig. 5, assuming the simplified camera K.
If we fix the pp at the moderately wrong location (150,100),
the reprojection on the “left” plane is still satisfactory (Fig.
5.b). Only when we fix the pp at an extremely wrong loca-
tion (300,250) the degradation of extrapolated homography
becomes unacceptable (Fig. 5.c).

a) b) c)

Figure 5. Reprojection results for illustrative arbitrary locations
of the pp (see text for details).

4.3. Image Mosaicing

If the field of view is not large, small pan or tilt cam-
era rotations can be satisfactorily modeled as affine trans-
formations (essentially translations), without any projective
component. This is illustrated in Fig. 6, where panoramic
compositions using the projective warping:

H � �� 1 � 02528 0 � 0624325 74 � 2953� 0 � 0517635 1 � 02853 8 � 24218
0 � 0000586617 0 � 0000186711 1 �

��
and affine warping:

A � �� 0 � 99749 0 � 0595305 75 � 6672� 0 � 0598746 1 � 01175 10 � 2106
0 � 0 � 1 �

��
are virtually indistinguishable. The camera behaves almost
as a protractor; there is no influence of the principal point.

Figure 6. Similar panoramic compositions from pure rotations
using projective (left) and affine (right) warping.

4.4. Robot self-calibration

In robotic applications we find camera vibrations, irreg-
ularities in the ground and other noise sources. Recon-
struction with millimetric precision is not usually necessary.

Simplified camera models are appropriate for robust naviga-
tion and self-location. Under reasonable assumptions, the
full projection matrix allows analytical estimation of the ef-
fective focal and the extrinsic parameters from minimal in-
formation. Fig. 7.a shows relevant visual features detected
in an indoor robot navigation scene. Just from one segment
and point correspondence in three images (and odometric
information) we can compute acceptable metric reconstruc-
tions of 3D space (Fig. 7.b) and self-localize the robot (Fig.
7.c).
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Figure 7. a) Relevant visual features in a structured robot nav-
igation scene. b) conceptual reconstruction of a new scene and
different view point. c) robot self-location. Common sense heuris-
tics are used to infer the supporting plane of the visual features of
interest.

5. Conclusion

The principal point of cameras with moderate field of
view cannot be accurately estimated from noisy images. In
robot navigation and related applications the principal point
should not be considered as a free parameter. It can be
safely fixed nominally at the image center. In such appli-
cations simplified camera models are extremely convenient,
and do not increase the reconstruction errors originated by
other, more serious sources of uncertainty.
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