
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Olsson, Carl & Eriksson, Anders
(2008)
Solving quadratically constrained geometrical problems using Lagrangian
duality.
In Ejiri, M, Kasturi, R, & di Baja, G S (Eds.) Proceedings of the 19th
International Conference on Pattern Recognition (ICPR 2008).
Institute of Electrical and Electronics Engineers (IEEE), United States of
America, pp. 2469-2473.

This file was downloaded from: https://eprints.qut.edu.au/108203/

© 2008 IEEE

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/ICPR.2008.4761896

https://eprints.qut.edu.au/view/person/Eriksson,_Anders.html
https://eprints.qut.edu.au/108203/
https://doi.org/10.1109/ICPR.2008.4761896


Solving Quadratically Constrained Geometrical Problems

using Lagrangian Duality

Carl Olsson

calle@maths.lth.se

Centre for Mathematical Sciences,

Lund University, Sweden.

Anders Eriksson

anders.eriksson@adelaide.edu.au

School of Computer Science

University of Adelaide, Australia.

Abstract

In this paper we consider the problem of solving dif-

ferent pose and registration problems under rotational

constraints. Traditionally, methods such as the iterative

closest point algorithm have been used to solve these

problems. They may however get stuck in local min-

ima due to the non-convexity of the problem. In recent

years methods for finding the global optimum, based on

Branch and Bound and convex under-estimators, have

been developed. These methods are provably optimal,

however since they are based on global optimization

methods they are in general more time consuming than

local methods.

In this paper we adopt a dual approach. Rather than

trying to find the globally optimal solution we inves-

tigate the quality of the solutions obtained using La-

grange duality. Our approach allows us to formulate

a single convex semidefinite program that approximates

the original problem well. 1

1 Geometric Registration

A frequently occurring and by now a classical prob-

lem in computer vision, robotic manipulation and pho-

togrammetry is the registration problem. That is, find-

ing the transformation between two coordinate systems,

see [5] and the references therein.

There are a number of solutions proposed and per-

haps the most well-known is by Horn et al. [6]. They

derive a closed-form solution for the Eucledian (or simi-

larity) transformation that minimizes the sum of squares

1This work has been supported by the European Commission’s

Sixth Framework Programme under grant no. 011838 as part of the

Integrated Project SMErobotTM and the Swedish Research Council

through grant no. 2007-6476 ’Efficient Optimization Methods for

Large-Scale Problems in Computer Vision’.

error between the transformed points and the measured

points.

The more general problem of finding the registration

between two 3-D shapes was considered in [2], where

the iterative closest point (ICP) algorithm was proposed

to solve the problem. The algorithm is able to cope

with different geometric primitives, like point sets, line

segments and different kinds of surface representations.

However, the algorithm requires a good initial transfor-

mation in order to converge to the globally optimal so-

lution, otherwise only a local optimum is obtained.

In [8], the method of Horn et al. [6] was general-

ized by incorporating point, line and plane features in

a common framework. Given point-to-point, point-to-

line, or point-to-plane correspondences, it was demon-

strated how the transformation (Euclidean or similarity)

relating the two coordinate systems can be computed

based on a geometrically meaningful cost-function. The

algorithm was based on relaxing the non-convex prob-

lem by convex under-estimators and then using branch

and bound to focus in on the global solution [1].

In this paper we adopt a dual approach. Rather than

trying to find the globally optimal solution we inves-

tigate the quality of the solutions obtained using La-

grange duality. Our approach allows us to formulate a

single convex semidefinite program that approximates

the original problem well. We show on both synthetic

and real data that the approximation is very close to the

the global optimum, in particular if the noise level is

low. Further more, we show that it is possible to obtain

lower bounds on the global optimum from our solution

using standard duality theory.

Semidefinite programming has previously been used

for solving large scale binary quadratic optimization

problems [7]. These problems are often NP-complete,

however due to a result in [4], semidefinite program-

ming have been shown to produce good approxima-

tions while still being a polynomial algorithm. On the

other hand for very large problems, polynomial execu-



tion time might still be too much. In the vision com-

munity it has mostly been used for large scale combina-

torial problems resulting in long execution times. How-

ever, since the matrices that arise in the applications that

we consider in this paper are quite small (typically less

than 100× 100), it provides an efficient way to produce

lower estimates and approximative solutions.

2 Registration Problems

In its most general form, the problems we are in-

terested in can be described as geometric registration

problems. The objective is to relate measurements in

one coordinate frame to an object model in another. In

this section we consider the case where the measure-

ments are 3D-points and the model consists of planes in

3D-space. The goal is to find a Eucledian transforma-

tion (R, t) ∈ SO(3) × R
3 that places the measurement

point xi as close to the corresponding model plane πi

as possible. It was shown in [8], that given a number

of planes πi in one coordinate system and points xi in

another, i = 1, ...,m this problem can be formulated as

the optimization problem

µ∗ = min
R∈SO(3)

t∈R
3

∑m
i=1 d(Rxi + t, πi), (1)

where d(x, π) denotes the squared distance between

point x and the plane π. If we let yi be an arbitrary point

on πi and ni be the unit normal, then we can rewrite the

problem as

min
R∈SO(3)

t∈R
3

∑m
i=1 ||n

T
i (Rxi + t − yi)||

2
2. (2)

If we disregard the constraint R ∈ SO(3) this is a linear

least squares problem in the unknowns R and t. How-

ever since R ∈ SO(3) we also have RT R = I giving

the following quadratically constrained problem

min
∑m

i=1 ||n
T
i (Rxi + t − yi)||

2
2 (3)

s.t. RT R − I = 0 (4)

Since RT R− I is symmetric, equation (4) consists of 6

quadratic constraints.

Next we rewrite the problem in vector form. We let

vT = [ r11 r12 ... r33 t1 t2 t3 ]. The objective function is

quadratic and (3) can therefore be written

vT Av + 2bT v, (5)

where A and b are determined from the model and mea-

surement data. (To simplify notation we have dropped

the constant since this does not change the optimizer.)

Note that A � 0. By introducing the 12×3-block matri-

ces E1 = [ I 0 0 0 ], E2 = [ 0 I 0 0 ] and E3 = [ 0 0 I 0 ]
we may rewrite the problem as

µ∗ = min vT Av + 2bT v (6)

s.t. vT ET
i Ejv = δij (7)

where δij = 1 if i = j and 0 otherwise.

This problem is non-convex and therefore difficult

to solve without employing complex global optimiza-

tion techniques (such as in [8, 1]). In this paper we

are interested in finding good approximate solutions us-

ing methods from convex optimization, which are in-

herently easier and faster than methods from global op-

timization. Typically this is done by somehow relaxing

the original problem into a convex problem where the

solution provides a lower bound on the optimal value

µ∗ of the original problem. The goal is to find a relax-

ation that gives a lower bound which is as close to µ∗ as

possible, or equivalently, a lower bound that is as large

as possible. If the lower bound attains µ∗ then the relax-

ation is said to be tight. In this case the exact solution

can often be obtained.

2.1 The Linear Relaxation

As stated previously equation (7) consists of 6

quadratic constraints. It is well known that quadratic

problems with no more than 2 quadratic constraints can

be solved in polynomial time. Hence we are forced to

search for approximative solutions. The first relaxation

is simply to drop the constraints (7). That is, we solve

the problem

µl = min
v

vT Av + 2bT v. (8)

Note that solving (8) corresponds to finding the best

affine transformation instead of Euclidian transforma-

tion. A typical way of generating starting points for

local methods is to find the best affine transformation

and then to upgrade it to a similarity transformation us-

ing singular value decomposition. This technique works

well if the noise level is low and the number of measure-

ments is high.

Since the set of feasible matrices is larger if the rota-

tion constraint is disregarded we can conclude that the

minimum µl fulfills

µl ≤ µ∗. (9)

(The matrix that minimizes (6) with (7) is also feasi-

ble in (8).) Hence the least squares solution provides

a lower bound on the minimum value of the original

problem.



A nice property of the linear relaxation is that for a

large number of measurements it will be roughly cor-

rect. If the measurements are corrupted by Gaussian

noise then (8) will be the statistically optimal estimation

for the problem with affine transformations. Since the

set of Euclidian transformations is a subset of the affine

transformations it is easy to see that as the number of

measurements grow the affine relaxation will approach

a correct solution despite having dropped the rotation

constraints.

2.2 The Lagrangian Relaxation

As discussed in the previous section the problem

is easily solved if the constraints are dropped. This

gives us a lower bound on the objective value. How-

ever we can easily obtain other lower bounds by adding

µij(v
T ET

i Ejv − δij) to the objective function (since

in the original problem these terms should be zero). For

each different µij we may obtain a linear relaxation. La-

grangian duality can be viewed as finding the relaxation

that gives the largest objective value. The Lagrangian

of (6) becomes

L(v, λ) = vT Av + 2bT v +
∑

i,j

λij(v
T Eijv − δij) =

vT

(

A +
∑

i

λijEij

)

v + 2bT v −
∑

i,j

λijδij , (10)

where Eij = 1
2 (ET

i Ej + ET
j Ei). Thus finding the

largest relaxation can be written as

µL = max
λ

min
v

L(v, λ) (11)

Since the linear relaxation corresponds to λ = 0 it is

easy to see that

µl ≤ µL ≤ µ∗. (12)

That is, the Lagrangian relaxation is always at least as

good as the linear relaxation. In practice it is usually

much better (see section 3).

For a fixed λ the inner minimization of (11) is only

finite if the matrix A+
∑

i,j λijEij is positive semidef-

inite. In this case the minimizer can be computed ana-

lytically by taking the gradient with respect to v, which

yields

v = −(A +
∑

i,j

λijEij)
−1b (13)

Inserting into (10) we see that (11) can be written

max
λ

−bT
(

A +
∑

i,j λijEij

)−1

b +
∑

ij δijλij

s.t A +
∑

i,j λijEij � 0 (14)

The above problem is the dual program when the primal

variables have been eliminated. It can be shown that the

objective function is concave and the constraint is con-

vex, hence this program can be solved efficiently. How-

ever to be able to use a standard solver, such as SeDuMi

[9] we need to write it as a standard linear semidefinite

program. This can be done using the Schur-complement

(see [3]). First we add the artificial variable γ and

rewrite the program as

max
γ,λ

γ (15)

s.t. A +
∑

i,j λijEij � 0 (16)

−bT (A +
∑

λijEij)
−1b +

∑

δijλij − γ ≥ 0

(17)

Let

A(λ, γ) =
[P

ij
δijλij−γ bT

b A+
P

i,j
λijEij

]

(18)

Using the Schur complement [3], the dual problem can

finally be written as a linear semidefinite program

max
γ,λ

γ (19)

s.t. A(λ, γ) � 0. (20)

This program is usually referred to the dual semidefi-

nite program. Using the same technique as above it is

possible to derive the primal semidefinite program

min
V �0

tr
([

A b
bT 0

]

V
)

(21)

s.t. tr(EijV ) = δij (22)

tr([ 0 0
0 1 ]V ) = 1. (23)

Note that if V ∗ solves the primal problem and V ∗ can

be written

V ∗ =
[

v∗(v∗)T v∗

(v∗)T 1

]

(24)

then v∗ is the global optimum of problem (6).

When using a primal-dual interior point as SeDuMi

one obtains both a solution to the primal and the dual

programs. To generate good approximate solutions we

will take the eigenvector corresponding to the largest

eigenvalue of the primal solution V as our approximate

solution. If V is close to a rank one matrix this should

be a good approximation.

2.3 Generalization to other types of Corre-
spondences.

In the previous section we derived our method in the

case of point-to-plane correspondences only, however

it is easily generalized to point-to-point and point-to-

plane correspondences.
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Figure 1. Top: The objective value of the obtained solution as a function of the noise level for
three different problem sizes, m = 7, 14 and 20. For comparison we also plot the global mini-

mum, given by the Branch & Bound method, and the Linear Least Squares solution. Bottom:
The value of ||RT R − I||22 for the obtained solution as a function of the noise level.

Let xl
i be the measured 3D points and let li, i =

1, ...,ml, be the corresponding lines. Then the sum of

squared distances between the transformed points and

the lines can be written

ml
∑

i=1

||(I − viv
T
i )(Rxl

i + t − yl
i)||

2
2, (25)

where vi is a unit direction vector for the line li and

yl
i is any point on the line li. Since this is a quadratic

function it can also be written as (5).

The case of point-to-point correspondences is the

easiest one. Let x
p
i be the measured points and y

p
i be

the corresponding points i = 1, ...,mp. The objective

function can in the same way as for the point-to-line

case be written as

3
∑

k=1

mp
∑

i=1

||ek(Rx
p
i + t − y

p
i )||2 (26)

where ek is the k’th row of the identity matrix. Again

this can be written in the form (5).

3 Experiments

In this section we present a few experiments that

shows that even though the program we have derived

is a relaxation it provides surprisingly good solutions.

In our first experiment we use synthetic data to test

the performance for various noise levels. The data was

created by randomly placing m planes such that they

intersect the sphere centered around zero with radius 10.

Then we randomly selected one point from each plane

and added noise of standard deviation σ. For each noise

level we generated 10 experiments and plotted the mean

result of the various methods.

The first row of figure 1 shows the objective value of

the obtained solution for different noise levels and dif-

ferent problem sizes. The relaxation can be seen to ap-

proximate the global optimum well, particularly for low

noise level. Also it is a considerable improvement com-

pared to the linear least squares solution. Note that for

the case of 7 point-to-plane correspondences there is not

enough data to compute a least squares solution. Also

note that as the number of measurements increases the

least squares solution will approach the correct solution.

This is to be expected since the measurements are cor-

rupted with normally distributed noise. The second row

of figure 1 shows the value of ||RT R − I||22 for the ap-

proximate solutions. The semidefinite solution appears

to be quite close to being a rotation matrix while the

linear least squares is far off, although as expected its

performance improves as the number of measurements

increases. Note that the y-scale is not the same in all

pictures.

For our next experiment we used real data. Fig-

ure 2 shows the setup for this experiment. We used



Figure 2. The experimental setup for the
spacestation experiment.

a MicroScribe-3DLX 3d scanner to measure the 3D-

coordinates of some points on the toy shown in figure

2. (By request of the designer we will refer to the toy

model as the space station.) The 3D-scanner consists of

a pointing arm with five degrees of freedom which mea-

sures 3D-coordinates. In total we measured 49 points

on the toy model visible in figure 2. We created a com-

puter model consisting of planes, lines and points (see

figure 3).

0

0.5

1

1.5

2

2.5

3

3.5

−1

0

1

2

0

0.5

1

1.5

Figure 3. The model of the spacestation
and the optimal registration.

Among the measured points 27 where known to be-

long to a certain plane in the model, 12 to a line and 10

to point. Note that we only considered point-to-plane

correspondences in the previous section, however it is

easy to extend to other correspondences as well. Figure

3 shows the model and the resulting registration. The

points marked with black crosses are points measured

on the planes, the points marked with green rings are

measured on lines and the points marked with red stars

are measured on corners. In table 1 we show the total

error for the different correspondences and the running

times. For comparison we have also included the errors

and running times obtained with the other methods. In

this case the solution of the primal semidefinite program

has rank one and is therefore the optimal solution (same

as Branch & Bound). Note that Horn’s method only

measures the point-to-point errors resulting in a higher

total error.

Residuals: B & B Horn Least Sq. Semidef

point-point 0.0083 0.0063 0.0221 0.0083

point-line 0.0018 0.0036 0.0015 0.0018

point-plane 0.0046 0.0098 0.0046 0.0046

Total 0.0147 0.0197 0.0282 0.0147

Run-time: 24 0.062 0.0056 0.46

Table 1. Resulting reconstruction errors

for the space station problem and execu-
tion time in seconds when using the dif-
ferent methods.
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