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Abstract—The majority of existing color naming methods
focuses on the eleven basic color terms of the English language.
However, in many applications, different sets of color names
are used for the accurate description of objects. Labeling data
to learn these domain-specific color names is an expensive
and laborious task. Therefore, in this article we aim to learn
color names from weakly labeled data. For this purpose, we
add an attention branch to the color naming network. The
attention branch is used to modulate the pixel-wise color naming
predictions of the network. In experiments, we illustrate that
the attention branch correctly identifies the relevant regions.
Furthermore, we show that our method obtains state-of-the-art
results for pixel-wise and image-wise classification on the EBAY
dataset and is able to learn color names for various domains.

I. INTRODUCTION

Color is a basic characteristic of visual objects in the world.
As one of the important features of visual data, colors are
crucial in understanding the world, and they can be used to
distinguish one object from another in our daily life. Humans
use color names to refer to a specific color and to com-
municate color information with other humans. Examples of
color names are ’blue’, ’crimson’ and ’amber’. Computational
color naming aims to identify color names in images; this
is usually done by learning a mapping between color values
and color names. Computational color naming is important for
applications in human computer interaction, including online
shopping, fashion analysis, image retrieval and person re-
identification [1]–[3].

For the purpose of this article, we divide computational
color naming models in methods which are trained in a
supervised or semi-supervised manner. Supervised methods
are based either on labeled color patches [4], [5] or on pixel
ground-truth masks, providing the color names for all the
relevant items in the image [1], [2]. The work of Van de
Weijer et al. [6] proposed a method to learn color names from
images retrieved from Google in a semi-supervised manner.
We refer with semi-supervised to the fact that the provided
label describes the color of the principal object in the image,
but no information on the exact pixels which are described by
the label is given. An advantage of semi-supervised methods
is that they reduce the label effort significantly. However, the
existing unsupervised methods [1], [2], [6]–[8] still require
pixel masks at the testing phase. The methods are therefore
semi-supervised at training, but supervised at test time.

(a) (b) (c)

Fig. 1. Example images of domain-specific color names: (a) ’champagne’
colored horse, (b) ’almond’ colored hair and (c) ’coral red’ lips.

The vast majority of the existing color naming approaches
use the eleven basic color terms [5], [6], [8] which were de-
fined in the seminal study of Berlin and Kay [9]. Even though
these color names are widely used, many applications apply
different domain-specific color names. In Fig. 1 several exam-
ples of color names within various applications are provided:
a ’champagne’ colored horse, ’almond’ colored hair and ’coral
red’ lips. Because different application domains use different
sets of color names, the laborious labeling process would
need to be performed repeatedly. Therefore, in this paper we
aim for a method which can learn from weakly labeled data,
and which does not require any supervision at testing time.
Learning from weakly labeled data has been studied before
for image classification [10], [11], image segmentation [12],
[13], saliency detection [14], object detection [15], [16], and
object recognition [17]–[20].

To address the drawback of the deep learning approaches for
color naming, we propose a weakly-supervised deep learning
framework based on attention. The main contribution of our
paper is a new two-branch network design for color nam-
ing based on attention, which is capable of automatically
discovering relevant regions related to weak image labels,
and simultaneously learn a mapping between color values
and color names. In addition, we collect a large-scale dataset
using a Web image search engine, which contains 11 basic
color naming images for 4 categories, and a dataset for
domain-specific color naming which includes color names
for horses, eyes colors, lips colors, and the tomato growing
stages. Experiments show that our attention network correctly
identifies the relevant image regions, and at the same time
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Fig. 2. Overview of our proposed framework for weakly supervised color name prediction. Our model is capable of automatically discovering correct regions
of interest for image-wise color label predicting and simultaneously providing an end-to-end mapping between color values and color names.

learns a mapping from image values to color names.

II. ATTENTION MODULATION FOR COLOR NAMING

The aim of this article is to predict the color name that best
describes the principal object in the image. The method is to be
trained from weakly-labeled data, which means a color name
label is provided for the image, but that no segmentation mask
or bounding box is provided to identify the principal object.
We assume that images contain a single principal object which
can be described by a single color name.

To train from the weakly-supervised data the method has to
perform two tasks: identify the principal object in the scene
and predict the color name which best describes its color.
In the design of the network, which is provided in Fig.2,
we have two parallel branches, one for each task. The first
branch is a shallow convolutional neural network which aims
to predict a pixelwise color name map. The second branch
computes an attention map which identifies the regions which
contain the relevant color name information. The two branches
are combined with a modulation part which combines the
automatically learned attention map with each channel of the
predicted color naming map.

A. Color Naming Network (CN-CNN)

The color naming network takes a color image I ∈
RH×W×3 as an input and produces an estimate of the color
name distribution Y ∈ RH×W×C where C is the number
of color names. The structure of the CN-CNN is illustrated
in Fig. 3 (see also top row of Table I). Specifically, first it
passes through several convolutional and pooling layers after
which we apply deconvolution to arrive back at the original
image size. Then the features after one convolutional layer
from the original input are concatenated to the part after the
deconvolution layer with a skip layer [21]. One soft-max layer
is then added to normalize the distribution of all dimensions.

Before training the CN-CNN in an end-to-end fashion, we
initialize the network by using the weak-labels of the images.

Fig. 3. The structure of the color naming network (CN-CNN)

We train the CN-CNN by minimizing a weighted cross entropy
loss:

L =
∑
i

∑
y

∑
x

mi (x, y) log Yi (x, y, li) (1)

where the summations are over the spatial coordinates x and
y and image indexes i, and li is the ground truth label of
image i and mi is a mask. Since not all the pixels in the
image are correctly described by the weak-label of the image,
we use a mask which is computed with a standard saliency
algorithm [22] that has a value of one for the salient part of the
image and zero otherwise. This mask provides a very rough
estimate of the important parts of the image, but we found
this to be sufficient to provide an initialization of the network.
Note that this loss is not used when training end-to-end with
the whole two-branch network.

B. Visual Attention Network (VA-CNN)

Direct training on images with only the weak-labels is
expected to lead to unsatisfactory performance. To further
improve the visual attention network (VA-CNN), which should
identify the relevant parts of the principal object in the image.
To obtain this, we propose to use an attention network branch
(in purple in Fig. 2). This branch has a color image as input



TABLE I
Details of our network

CN-CNN

Type Conv+BN+Relu Maxpool Deconv+BN+Relu Conv+BN+Relu Concat Conv Softmax
Filters 72 72 72 11

Stride or Upsample 1*1 3*3 / 2 3*3 / 2 1*1 1*1
Output 227*227 113*113 227*227 227*227 227*227

VA-CNN

Type FCN-8S (1-31) FC+Relu FC+Relu Deconv Modulation FCN-8S (36-43) Conv+Relu Modulation Avepool Softmax
Filters 512 512 1 1

Stride or Upsample 7*7 1*1 8*8 / 4 3*3 Global
Output 8*8 8*8 8*8 227*227 1*1

and aims to compute an attention map A ∈ RH×W×1 as
output. The architecture of the attention network is based on
the popular fully convolutional semantic segmentation network
FCN-8s [21] followed by one ReLu layer (see for details Table
I). The final output of the network provides the importance of
each pixel for the task of color naming.

One drawback of FCN is that it cannot learn the spatial
prior. However, the principal salient object in the image is
most likely in the center of the image [23]. We therefore add
a spatial prior layer into the visual attention network. This
layer exists of a single pixel input with value equal to one,
followed by a deconvolution layer which outputs the spatial
prior. This spatial prior is then used to modulate the down-
sampled features of the FCN network, in the same way as the
modulation layer which is explained in the following section.
By backpropagating, the weights of this deconvolutional layer
learns the spatial prior of the dataset.

Attention model have been applied in various network
architectures. They are used to attend to the relevant region in
the image related to text in captioning [24] or visual question
answer networks [25]. Also they have been studied in various
computer vision tasks, including image recognition [20], and
saliency detection [26].

C. Modulation Layer

In this weakly supervised learning system, neither the
ground-truth color names of each pixel nor the ground-truth of
the confidence map is provided for directly training the CN-
CNN or VA-CNN. We therefore propose an indirect method
to jointly train both branches with only weak-labels. For this
purpose the pixel wise color name predictions Y and the visual
attention map A with a modulation layer to output the final
color name prediction for the image Z ∈ RC . The modulation
layer does a channel wise multiplication of the feature maps
of Y with the attention map A according to

Ŷk (x, y, li) = A (x, y)Yk (x, y, li) (2)

where Yk denotes the k-th channel with k = {1, · · ·, C}; A is
the attention map; Score aggregation is then performed on Ŷ
using average pooling to predict image-level score ŷ for the
k-th category.

The back propagation for the modulation layer is as follows:

∂(Ŷ )

∂(Yk)
= A (3)

Fig. 4. Examples of four categories (’car’,’dress’,’pottery’ and ’shoes’) in
eleven basic color are shown.

∂(Ŷ )

∂(A)
=

C∑
k=1

Yk (4)

D. Network Training

Both CN-CNN and VA-CNN can be trained by minimizing
the cross entropy loss L (l, ŷ), where l is the ground truth label.
We found that it was difficult to train the network jointly, and
therefore propose an alternating training scheme. Specifically,
after the CN-CNN is trained, we fix this part and fine-tuning
the VA-CNN to learn attention map. After several epochs we
stop training the VA-CNN branch and freeze it, and change to
train the CN-CNN part again, and we repeat this process till
the loss converges.

III. COLOR NAMING DATA COLLECTION

For the purpose of this paper we collect two datasets: one
of domain-specific color names, and one class-specific basic
color term dataset. Both datasets are weakly-labeled.
Domain-specific color name dataset: we collect several
domain-specific datasets from Google search engine by using
the query of ’color name + object’: 5 colors of eyes, 7
colors of lips, 9 colors of horses and tomatoes in 6 growing
stages. Then, we manually removed the noisy images. Each
class has 40 images for training, 10 for validation and 20
for testing. In total, 50 images for each class of each group
for domain-specific color naming learning. The dataset is
available at https://github.com/yulu0724/AttentionColorName.
Examples are shown in Fig. 5.
Class-specific basic color term dataset: Since existing
methods report on the eleven based color terms we also collect
a class-specific dataset for these color names. We collected

https://github.com/yulu0724/AttentionColorName


Fig. 5. Examples from domain-specific datasets. One example for each domain-specific color name is shown.

2200 images from Google Image on-line by using the query
of ’color name’+’object’. We choose the 11 basic color names
as the indicated in [27], the difference is that four specific
categories ’car’,’dress’,’pottery’ and ’shoes’ are selected as our
’object’ class (the same categories as the EBAY color name
dataset in Section IV-B) to decrease the probability of false
positives, and adapt to our method. Hence for red, the query
is ’red+car’, ’red+dress’, ’red+pottery’ and ’red+shoes’. Then,
we manually removed the noisy images. We retrieve 50 images
for each color and object, so 200 images in total for each color
name. Four special categories examples for the 11 color names
are given in Fig.4.

IV. EXPERIMENTS

A. Implementation Details
We implemented our method with Matconvnet framework.

The CN-CNN part is first pre-trained using the saliency
method [22] to get a rough mask of the principal object
as explained in Section II-A. Next we perform alternating
training of the two branches using the weakly labeled data. The
newly added layers in our network are initialized with Xavier
method. All the training images are resized to 227×227 in our
experiments for both of the CN-CNN and VA-CNN. Both of
the models are optimized using Stochastic Gradient Descent
(SGD) method with a batch size of 32 and 6 respectively, and
a momentum of 0.9. The learning rate is set to 0.01 initially
and divided by 10 after 20 epochs.

B. Color Naming from Weakly Labeled Data
Most existing methods on color naming are trained with the

eleven basic color terms. We start with an ablation study to
evaluate our method, and next compare it to other methods.

(a) (b)

Fig. 6. (a) Example image from EBAY labeled with the color name ’green’
and (b) the ground truth mask of the image identifying the pixels which are
related with the color name.

We compare results on the EBAY dataset which contains a
total of 440 images, consisting of ten images for the eleven
color names for four different categories (cars, shoes, dresses,
and pottery). All images come with a mask image which
identifies the pixels which belong to the named object. This
Evaluation is only performed for the pixels in the mask, see
example in Fig. 6.

Ablation Study: We perform an ablative study to analyze the
contribution of the critical components of our proposed model.
The results are on our class-specific dataset and summarized
in Table III. They show a drop of about 2% without applying
alternating learning, 2.5% drop without further adding centric
information, and a significant drop when removing all of
these, which demonstrates the relevance of the components
we propose.

Comparison with the State-of-the-art: In Table II we
compare our results testing on the EBAY dataset with previous



TABLE II
Comparison of state-of-the-art methods, testing on the EBAY dataset, training with class-agnostic dataset and new class-specific dataset. We indicate with

test type which methods are supervised (S) or unsupervised (U).

dataset pixel wise image wise
Method test type car dress shoes pottery overall car dress shoes pottery overall

class-agnostic dataset

PLSA S 56.00 80.00 77.00 70.00 70.60 74.00 85.00 94.00 82.00 83.40
SS net S - - - - 74.00 73.18 91.82 91.18 83.36 84.89
Ours S 51.38 80.27 77.64 71.03 71.83 71.32 86.36 88.18 80.91 81.82
Ours U - - - - - 63.64 79.07 81.82 74.55 74.77

class-specific dataset

PLSA S 54.52 82.75 75.37 71.98 71.15 69.09 93.64 89.09 87.27 84.77
Classification U - - - - - 66.36 78.18 70.91 72.73 72.05

Ours S 57.88 85.35 78.32 75.54 74.27 73.64 94.55 94.55 86.36 87.27
Ours U - - - - - 72.72 94.54 84.55 87.27 86.59

Human - - - - - - - - - - 88.98

TABLE III
Comparison of our model learned using different components on the EBAY
dataset. We abbreviate attention, centric information and alternating learning

as AM, C, AL.

Accuracy
Ours 55.45

Ours+AM 84.09
Ours+AM+C 84.77

Ours+AM+C+AL 86.59

Fig. 7. Examples of Attention map from Eye, Lip, Horse and Tomato datasets.

related work: PLSA [6], SS net [7] with different training
data. All methods train from weakly labeled data, however
it is important to stress that only our method can be applied
unsupervised at test time, while the other methods need a mask
of the object (this is indicated with U and S in Table II). We
provide results for pixel-wise accuracy which is defined as
the percentage of correctly classified pixels, and image-wise
accuracy which is defined as the percentage of images which
is correctly labeled. For the pixel-wise accuracy we only use
the CN-CNN network.

When comparing the methods based on the class-agnostic
data set, we see that our method struggles to learn a good
attention model. This is to be expected since there are many
possible objects in both the train and test dataset. However,
when we use the class-specific dataset with similar objects as

in the EBAY dataset (cars, shoes, dresses, and pottery) results
improve significantly. Our pixel-wise accuracy improves with
3% over PLSA. On the image-wise evaluation we obtain
even 86.59% which is higher than any of the other methods
which require a mask at test time. Our results of 87.27% are
obtained when we use the ground-truth segmentation mask as
our attention map; note that all other methods (indicated with
S) also use this mask at test time. As a comparison we also
provide results with an image classification network; we use a
pre-trained AlexNet and finetune on the training dataset. The
results are more than 10% lower than our method.

Finally, we compare our testing results with human evalu-
ation on EBAY. Humans are asked to choose the main color
label for the object in each image; eight candidates without
color blindness are asked to give one color label for each
of 110 randomly chosen images from the EBAY dataset. We
compute testing accuracy comparing to the ground truth of
EBAY dataset and report the average accuracy (88.98%) as
the human evaluation baseline. This shows that our results
have narrowed the gap with humans from 4% to around 2%.

C. Domain-Specific Color Naming

The main objective of our paper is to provide a method
which can be applied to new sets of domain-specific color
names with only weakly labeled data. Here we evaluate our
method on the four groups from our domain-specific dataset.
We compare to the previously discussed classification network;
the other methods cannot be applied in this setting.

Table IV gives the results of color naming for the Eye,
Lip and Horse color and Tomato growing stage. Our method
outperforms the classification network on all groups. The
attention network manages to identify the relevant objects as
can be seen from the attention maps of some testing images in
Fig. 7, where highlighted yellow regions indicate high-interest
parts, and blue means low-interest parts. The smaller gains on
the Horse and Tomato groups can be explained by the fact that
the main object occupies most of the image and in that case
the classification network also manages to extract the relevant
color name.



TABLE IV
Color naming results on Eye, Lip, Horses and Tomato dataset respectively comparing to using classification network (pre-trained AlexNet)

Dataset Ours Classification
Eye blue brown gray green hazel overall overall

Accuracy 65.00 85.00 65.00 70.00 10.00 59.00 49.00
Lip classic red sheer peach coral red mandarin nude plum wine overall overall

Accuracy 65.00 40.00 55.00 70.00 60.00 35.00 65.00 55.72 45.00
Horse black dark brown bright reddish dark gray champagne chestnut dun white brown overall overall

Accuracy 80.00 45.00 15.00 85.00 80.00 70.00 30.00 90.00 45.00 60.00 58.89
Tomato green breakers tuning pink light red red overall overall

Accuracy 55.00 25.00 60.00 35.00 65.00 80.00 53.33 50.83

V. CONCLUSIONS

In this paper we have proposed a new network for the
learning of domain-specific color names from weakly labeled
data. This two-branch network learns, in an end-to-end fash-
ion, a color name probability map for each pixel and an
attention map. When joined, these maps result in a color name
prediction for the image. Our method is the first color name
method which does not require hand-labeled masks at testing
time. Results show that the attention maps correctly identify
the relevant image regions and that the network successfully
learns domain-specific color names. In addition, we show
that the pixel-wise and image-wise predictions of the network
obtain state-of-the-art results on the EBAY dataset.
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