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Abstract—Infrared imaging has recently played an important
role in a wide range of applications including video surveillance,
robotics and night vision. However, infrared cameras often suffer
from some limitations, essentially about low-contrast and blurred
details. These problems contribute to the loss of observation of
target objects in infrared images, which could limit the feasibility
of different infrared imaging applications. In this paper, we
mainly focus on the problem of pedestrian detection on thermal
images. Particularly, we emphasis the need for enhancing the
visual quality of images before performing the detection step.
To address that, we propose a novel thermal enhancement
architecture called TE-GAN based on Generative Adversarial
Network, and composed of two modules contrast enhancement
and denoising with a post-processing step for edge restoration in
order to improve the overall image quality. The effectiveness of
the proposed architecture is assessed by means of visual quality
metrics and better results are obtained compared to the original
thermal images and to the obtained results by other existing
enhancement methods. These results have been conducted on a
subset of KAIST dataset that we make available to encourage
research in this direction1. Using the same dataset, the impact of
the proposed enhancement architecture has been demonstrated
on the detection results by obtaining better performance with a
significant margin using YOLOv3 detector.

I. INTRODUCTION

An infrared camera is a device that forms an image using
infrared radiations, compared to the commonly used cameras
that form an image using visible light [1]. This camera can
detect infrared radiations emitted by an object having a high
temperature. Instead of the 400-700 nm range of the visible
light camera, infrared one operates in wavelengths as long
as 700 nm - 1mm [2]. The main advantage using infrared
cameras is that the temperature can be easily measured for
dangerous objects while keeping the user out of danger since
the thermography is a non-contact method. In addition, ther-
mography allows the user to capture fast-moving targets and
fast-changing thermal patterns of objects even in bad lighting
conditions.

Because of all the aforementioned reasons, the past few
decades have witnessed a widespread growth in the use of
infrared cameras in many fields, including military and civilian
ones especially for automotive applications, medical imaging,

1https://github.com/AmineMarnissi/TE-GAN

robotics and video surveillance [3]. Despite the usefulness of
these cameras, there are some limitations that have to be con-
sidered, essentially about the compromise between the cost and
the image quality. It is important to mention that the fabrication
of high-resolution infrared cameras is extremely difficult and
the manufacturing cost is more expensive regarding simi-
lar quality in visible cameras. Consequently, low-resolution
thermal cameras are more commonly used. Low-resolution
together with bad acquisition conditions in some cases, present
multiple challenges such as low-contrast, noisy information
and blurred details. These challenges make infrared imaging
applications hard to perform well. It is essentially the case of
various video analysis applications such as object detection,
tracking and recognition.

Precisely, in this paper we focus on the problem of
pedestrians detection and localization from low resolution
infrared cameras for surveillance applications. The problem
of pedestrian detection has been extensively studied using
visible datasets and good results are usually obtained [4].
However, in some situations, for instance, in nighttime or in
bad lighting conditions, the performance of the state-of-art
detectors dramatically drop. Here comes the importance of
using thermal cameras to detect persons because they could
better distinguish humans which are warmer than surrounding
objects.

Even though pedestrian detection using infrared cameras
is more convenient during nighttime, it is still subject to
errors if we take into account the highlighted problems mainly
when the resolution is not sufficient. For these reasons, we
intend in this present work to enhance the visual quality of
thermal images in order to improve the detection performance.
Basically inspired from EnlightenGAN [5] and DnCNN [6],
we propose a new thermal enhancement architecture using
Generative Adversarial Network (GAN). The proposed archi-
tecture is composed of two modules with a post-processing
step: contrast enhancement and denoising modules and an
edge restoration step. These different cues are merged together
in one single architecture to complement each others and to
further improve the overall quality. The proposed architecture
covering multiple aspects is considered as the main contri-
bution of this current paper. It has also the advantage to be



trained on impaired images. In addition, its effectiveness is
demonstrated on the detection performance by obtaining better
results with a significant margin.

The rest of the paper is organized as follows: in Section
II the related work for thermal images enhancement and ad-
versarial learning are presented. Then, our proposed approach
for thermal image enhancement is introduced in Section III.
Details about the used person detector is given in Section IV.
The experimental results are discussed in Section V. Finally, in
Section VI we conclude and give some potential future works.

II. RELATED WORK

A. Thermal Image Enhancement

In this section, we give an overview of the existing methods
for thermal image enhancement from traditional methods
to deep learning ones. This overview includes enhancement
methods for visible images as well.

1) Traditional Methods: Generally, infrared images are
characterized by low-contrast, low-resolution and blurred de-
tails. To solve these issues, traditional methods already used
for visible imaging could be adopted to enhance thermal im-
ages. Among these methods, Histogram Equalization (HE) is
a commonly known algorithm that could readily augment the
contrast. It has been employed either in its basic form or in an
extended one. For instance, in [7], a multi-objective HE model
has been proposed to enhance the contrast while preserving the
brightness of thermal images. Also, Contrast Limited Adaptive
Equalization (CLAHE) based on local contrast modification
(LCM) is defined in [8]. It is proposed to highlight fine hidden
details and to adjust the level of contrast enhancement. It is
important to mention that the presented equalization histogram
methods usually generate close results, but their application
could accentuate the noise in the image.

2) Learning Methods: Deep Neural Networks (DNNs) have
recently shown outstanding performance in many computer vi-
sion applications such as image classification, object detection
and recognition. Some recently published methods for image
enhancement have employed DNN architectures to improve
the visual quality of thermal or visible images. One of the first
attempts to handle this problem was published in [9] and is
referred as SRCNN. It employs Convolutional Neural Network
(CNN) for Super-Resolution. Its basic idea consists of learning
a mapping relationship between low-resolution (LR) and high-
resolution (HR) visible images. VDSR [10] is also one of the
most known deep learning methods for enhancement which
aims at augmenting the spatial resolution of visible images.

While most of the existing methods for image enhancement
in visible domain focus on increasing the spatial resolution
of the original image, only few studies for thermal image
enhancement that cover other aspects such as low contrast
and blurred edges have been conducted. More in details, TEN
architecture [11] is one of the first CNN-based methods for
thermal image enhancement, where a relatively shallow CNN
was designed to learn an end-to-end mapping from the original
image to the target high-resolution image. Fan et al. [12]
also designed a CNN architecture but to improve the contrast

between the target and the background by highlighting the
target and suppressing background clutters. In [13], Lee et al.
propose to incorporate the brightness domain with a residual-
learning technique in order to improve the performance of
enhancement and the speed of convergence. Related work
includes as well CDN-MRF [14], which introduces a cascaded
architecture composed of two consecutive deep networks with
different receptive fields that are jointly trained to increase
the spatial resolution of thermal image by a large scale
factor. Finally, in [15], an edge-focused method is proposed.
It consists of a model based on residual dense blocks, that can
perform super-resolution for thermal images, while enhancing
the visual information of edges.

B. Adversarial Learning

Generative Adversarial Networks (GANs) are deep learning
architectures initially introduced by Goodfellow et al. in [16].
GANs are generally composed of two sub-networks: genera-
tive sub-network G and discriminative sub-network D. These
architectures have shown excellent performance in image
generation and restoration. Also, they have been employed
in few studies for image enhancement in visible and thermal
domains. For instance, in [17], SRGAN (which refers to
Super-Resolution GAN) that includes deep residual network
(ResNet) with skip-connection and defines a perceptual loss
is proposed. Another related work that made use of GANs for
super-resolution infrared image is presented in [18]. Precisely,
it employs deep convolutional generative adversarial networks
(DCGAN) for infrared face images. Compared to the two
previous works that employ GAN architectures for super-
resolution in both visible and infrared domains, in [19],
the authors rather focused on the problem of enhancing the
contrast in infrared images using the conditional generative
adversarial networks. Also, in [20], a refined convolutional
neural architecture that produces results with higher contrast
and sharper details is proposed. But in this approach, visible
images are used for training and the network is applied to
infrared images.

Following the same strategy, in this current paper, we make
use of GAN for thermal image enhancement. But, we propose
a more complete architecture that simultaneously deals with
different aspects (low contrast, noise, and blurred edges).
Moreover, differently from previous works in thermal domain,
where only grayscale converted images are used for training,
our proposed architecture is properly trained on impaired
images from thermal domain.

III. PROPOSED APPROACH FOR THERMAL IMAGE
ENHANCEMENT

In this paper, we propose a new generative adversarial
network for thermal image enhancement task. Our proposed
architecture is composed of two main modules, the first one
is proposed to improve the contrast of the image. Since, by
augmenting the contrast, the noise will be gradually more
visible, we mitigate this effect by a second module that
aims at removing the underlying noise. Both models operate



instantly and simultaneously in an end-to-end architecture. The
overall proposed architecture called TE-GAN, which stands
for Thermal Enhancement Generative Adversarial Network is
shown in Fig.1. The remainder of this section describes each
of these architecture components.

A. Contrast Enhancement Module:
1) U-NET Generator : The first generator in our proposed

architecture is an attention-guided U-Net generator. U-Net [21]
has been widely applied in various applications, including
semantic segmentation [22] and image restoration [23]. It aims
at extracting multi-level features from different depth layers
and at generating high quality images using multi-scale and
texture information. Moreover, the attention map has shown its
usefulness to improve the visual quality, which is an element-
wise difference 1-I, where I represents an illumination channel
of the thermal image normalized to [0,1]. It is based on re-
sizing each feature map and multiplying with all intermediate
feature maps and the output image.

In our proposed TE-GAN architecture, the U-NET generator
is composed of 8 convolutional blocks. Each block includes
two 3 x 3 convolutional layers, followed by LeakyReLu and
a batch normalization layer. At the upsampling part, to min-
imize the checkerboard effects, the standard deconvolutional
layer is changed by one bilinear upsampling layer plus one
convolutional layer.

2) Adversarial Loss: GAN architectures are mainly com-
posed of a generator which is a CNN network aiming at
producing the target image. This generator is coupled with
a discriminator network which learns to distinguish between
fake and real data in order to generate better image quality.
In our particular case, since our goal is to improve the
contrast, using only one global discriminator is not sufficient to
adaptively enhance the local regions. Therefore, we resort to a
local discriminator that randomly takes cropped patches from
ground-truth and generated images, to be able to distinguish
real from enhanced images.

Differently from classifying the complete image, the Patch-
GAN or Markovian discriminator [24] can be used to classify
single patches in a given image as real or fake. These methods
have the advantage of running faster since fewer parameters
are used. In our architecture, we employ PatchGAN for real
and fake discrimination in both local and global discriminators.
In addition, for the global discriminator structure, we modify
the relativistic discriminator [25] by replacing the sigmoid
function with the least square GAN loss (LSGAN) [26]. The
relativistic discriminator estimates the probability that real
data is more realistic than fake one. The standard function
of relativistic discriminator is defined as:

DRa(xr, xf ) = σ(C(xr)− Exf∼Pfake
[C(xf )]) (1)

DRa(xf , xr) = σ(C(xf )− Exr∼Preal
[C(xr)]) (2)

where C denotes the discriminator network, xr and xf are
sampled from the real and fake distributions respectively and
σ represents the sigmoid function. The loss functions for the
global discriminator D and the generator G are defined as:

LGlobal
D = Exr∼Preal

[DRa(xr, xf )− 1)2]

+Exf∼Pfake
[DRa(xf , xr)

2]
(3)

LGlobal
G = Exf∼Pfake

[DRa(xf , xr)− 1)2]

+Exr∼Preal
[DRa(xr, xf )

2]
(4)

For the local discriminator, 5 patches from the output and real
images are randomly cropped each time. The loss functions
are defined as:

LLocal
D = Exr∼Preal−patches

[D(xr)− 1)2]

+Exf∼Pfake−patches
[D(xf )− 0)2]

(5)

LLocal
G = Exr∼Pfake−patches

[D(xf )− 1)2] (6)

3) Perceptual Loss: In [27], Johnson et al. proposed a
perceptual loss for computing the distance between the output
image and its ground truth based on high-level representations
extracted from VGG pre-trained model. In our proposed
architecture, we use self feature preserving loss [28], which
enables the auto-adjustment of the network for preserving the
features content of the image. In addition, we add an instance
normalization layer [29] after each feature map before feeding
them into LGlobal

SFP and LLocal
SFP in order to stabilize the training.

Precisely, the loss function is applied for local and global
discriminators LLocal

SFP , LGlobal
SFP , respectively, and is defined as:

LSFP (I
L) =

1

Wi,jHi,j

Hi,j∑
y=1

(ϕi,j(I
L)− ϕi,j(G(IL)))2 (7)

where Wi,j and Hi,j are the dimensions of the extracted
feature maps. IL is the input low-light of thermal image and
G(IL) denotes the output of the generator. ϕi,j is the feature
map extracted from a pre-trained VGG-16 model. i is the i-th
max pooling, and j is the j-th convolutional layer after i-th
max pooling layer.

B. Denoising Module

1) Denoising Generator: One of the most common prob-
lems in image enhancement task in visible and thermal images
is the distribution of noise. Especially, in our case when the
contrast is augmented, much noise in the full image could
be revealed. For this reason, we propose a second generative
adversarial network to complement the first one. This network
aims at enhancing the thermal image once again by removing
the noise level. Our denoising GAN consists of a generator
and a discriminator networks. The generator is a CNN network
that utilizes residual learning and batch normalization to speed
up and to augment the performance of the training step. The
global discriminator employs the PatchGAN structure and the
relativistic function defined in Eq. 4.

In our approach, the architecture of the denoising generator
network is composed of 7 convolutional layers using 64 filters
of size 3 x 3, each one of them is followed by a ReLU
activation layer and a batch normalization layer except for
the first and last layers. To remove the noise from image
in the hidden layer, our model makes use of the residual
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Fig. 1. The proposed TE-GAN architecture composed of two modules: (a) contrast enhancement and (b) denoising.

learning strategy by employing an individual residual unit to
predict the residual image. The input of the network is a noisy
observation image from the ground-truth label of high-contrast
and a random level of Gaussian noise [0,50].

2) Content Loss: The content loss function ensures that the
content information found in the ground-truth label image is
also captured in the generated image. In the second step in
our architecture, for which the goal is to remove the noise
from thermal image, we use pixel-wise MSE that stimulates
the network to minimize the low-level content errors between
the input (noisy image) and the denoised generated image.

Lcontent =
1

WH

W∑
i=1

H∑
j=1

∥ yi,j −G(x)i,j ∥1 (8)

where W and H denote the height and width of the thermal
image respectively and ∥ . ∥1 denotes the L1 norm. yi,j
represents the pixel values of ground truth image and G(x)i,j
are the pixel values of the generated image.

C. Summary of the proposed TE-GAN architecture

To train TE-GAN architecture by comparing the generated
images to the ground truth ones, the previous loss functions
defined in Eq.7 and Eq.8 are added to the adversarial loss Ladv

(which includes global and local losses of the first generator
and the global loss of the second generator defined in Eq.4,
Eq.6) in an overall loss function L defined as:

L = LGlobal
SFP + LLocal

SFP + Ladv + Lcontent (9)

Once both of contrast enhancement and denoising modules
are performed, we propose to apply a convolutional edge
enhancement filter that improves the edges in thermal images

and decreases the visual blur effects. Using Pillow library, we
choose to apply “edge enhance more” filter of size 3x3, with
9 in the center and -1 for the remaining values.

IV. PEDESTRIAN DETECTION

Object detection is a common task in the research area of
video analysis and its results lay the foundations of a wide
range of applications. It consists of precisely identifying and
localizing pertinent objects in a single image by classification
or by regression. The current popular detectors make use of
deep learning networks such as Fast R-CNN [30], Faster R-
CNN [31], Single Shot Detector (SSD) [32] and You Only
Look Once (YOLO)[33]. Generally, object detection models
can be divided into two categories. The first category requires
two single shots: the first one consists of generating region
proposal networks (RPN) and the second one aims at detecting
objects of each proposal such as the case of Fast R-CNN and
Faster R-CNN. The second category is based on one shot to
detect several objects such as SSD and YOLO detectors.

YOLOv3 [34] is the third version of object detection al-
gorithm in YOLO family. It is one of the most popular and
recent real-time object detectors, which improves the accuracy
compared to many methods such as ResNet and Feature
Pyramid Networks (FPN) structure. The YOLOv3 network
makes the prediction at 3 scales to enable multi-scale detection
as the case of FPN.

It is important to mention that by applying available pre-
trained models of YOLOv3 detector trained on visible datasets,
using thermal images, a drop in the detection accuracy can be
clearly observed, since the two domains (visible and thermal)
exhibit different visual characteristics. This justifies the need
for training the detector on a thermal dataset. Once the model



is obtained on thermal domain, the detection performance can
be compared to the results on the same testing dataset but
after enhancing the visual quality of images by our proposed
enhancement architecture presented in Section III. Obviously,
a prior employment of the enhancement approach can be
explored for other applications such as object tracking and
recognition in order to improve the overall performance in
thermal domain.

V. EXPERIMENTAL RESULTS

A. Dataset and Experiments

The proposed approach is evaluated on KAIST (Korea
Advanced Institute of Science & Technology) dataset [35]. It is
one of the largest multi-spectral pedestrian dataset composed
of aligned visible and Long-Wave Infrared (LWIR) images un-
der adverse illumination conditions, day and night. It approx-
imately consists of 95k frames on urban traffic environment
and of dense annotations for 1182 different pedestrians. This
dataset is divided into a training set of 50.2k images from Set
00 to Set 05, and a test set of 45.1k images from Set 06 to
Set 11. In our work, only thermal images from this dataset are
used.

For thermal image enhancement, we noticed the absence of
available standard datasets that simultaneously contain original
and enhanced thermal images. This problem represents an
obstacle to evaluate enhancement techniques that improve the
visual quality of thermal images through deep learning archi-
tectures. In some previous works [11], [20], visible images are
used for training after converting them to grayscale, but this
approach is not convincing enough since thermal images are
visually different compared to grayscale ones.

To mitigate this problem, in this current study, we build an
unpaired thermal subset of KAIST dataset, composed of two
parts: low and high contrast images. Practically, we compute
the contrast of images as the standard deviation of intensity
values. Then, we split the images into low and high contrast
subsets according to an empirically chosen threshold. Since the
contrast in KAIST dataset is not usually sufficient, even for
images in which the contrast is above the predefined threshold,
we apply CLAHE to better augment it. We make the built
subset of KAIST available to boost research in this direction2.
Our obtained results using the proposed TE-GAN architecture
on this subset of KAIST are available as well to encourage
comparisons in the future.

As already mentioned, since there is no standard dataset
and common evaluation protocol for thermal image enhance-
ment, only results using some traditional methods such as
Histogram Equalization (HE) and Contrast Limited Adaptive
Histogram Equalization (CLAHE) [8] on our constructed
subset of KAIST are reported and compared to our obtained
results in terms of Peak Signal-to-Noise Ratio (PSNR) and
Structure Similarity Index (SSIM) [19]. To better prove the
effectiveness of our proposed enhancement architecture, our

2https://github.com/AmineMarnissi/TE-GAN

results are qualitatively evaluated and compared to SRCNN
[9], VDSR [10] and SRGAN [17].

For pedestrian detection, we train YOLOv3 detector follow-
ing the benchmark protocol that comes with KAIST dataset
and we adopt the evaluation method presented in [36]. Pre-
cisely, we select every 3 frames from training sets and every
20 frames from testing sets, and we only consider the non-
occluded, non-truncated and large (> 50) instances. This
results in a training set of 7601 images (4755 day, 2846 night)
and a testing set of 2252 images (1455 day, 797 night).

The performance of pedestrian detector in thermal images
is evaluated before applying the enhancement step, in terms of
mean Average Precision (mAP) of detections at Intersection
Over Union (IOU) equal to 0.5 regarding the ground truth
boxes. Also, the Log Average Miss Rate (LAMR) over the
range of [10−2,100] against the False Positives Per Image
(FPPI) is reported. These results are compared to those ob-
tained on enhanced thermal images after applying our pro-
posed TE-GAN architecture.

B. Implementation details

We choose to train TE-GAN architecture over 200 epochs:
the first 100 epochs with a learning rate of 0.0004 and the
last 100 epochs with a learning rate decayed linearly to 0. For
optimization, we use the Adam optimizer with a mini-batch
of 4 images. We learned our model on an NVIDIA Titan X
GPU with 12GB RAM. Also, YOLOv3 detector is trained on
100 epochs initialized with Darknet-53 pretrained model on
COCO dataset, with a mini-batch size of 8 images using the
Adam optimizer as well.

C. Results and Analysis

1) Results of the proposed TE-GAN architecture: To eval-
uate the proposed TE-GAN architecture, PSNR and SSIM
metrics are calculated between the original images and the
enhanced ones. The results are reported in Table I and com-
pared to HE and CLAHE [8] methods on the testing set of
KAIST (only thermal data).

TABLE I
COMPARISON OF THE PROPOSED TE-GAN ARCHITECTURE TO OTHER

EXISTING METHODS OF CONTRAST AUGMENTATION IN TERMS OF PSNR
AND SSIM

HE CLAHE TE-GAN
PSNR 7.81 11.92 13.92
SSIM 0.34 0.37 0.50

As shown in the table, our proposed architecture TE-
GAN gives better visual quality of images after enhance-
ment compared to other commonly used methods of contrast
augmentation. The corresponding qualitative results on two
sample images from KAIST dataset are also shown in Figure
2. From these results, we can clearly observe that for other
methods even though the contrast is slightly improved, the
visible noise is more accentuated.



Original Image HE CLAHE Proposed TE-GAN

Fig. 2. Qualitative results of our proposed architecture TE-GAN for enhancement compared to other commonly used methods of contrast augmentation: HE
and CLAHE on two sample images.

To better highlight the importance and the relevance of
each step in TEN-GAN architecture, in Figure 3, the in-
termediate results of each step are visualized on the same
sample images shown in Figure 2. As demonstrated in the
figure, each step (contrast enhancement, denoising and edge
enhancement) affects the visual quality from different aspect
in order to respond to all aforementioned problems from which
suffer thermal images. These results justify the complementary
aspect of different steps on which the proposed TE-GAN is
based.

Always about the visual quality of enhanced images, we
show in Figure 4, other qualitative results by employing
different super-resolution methods on the same sample images
of Figure 2. The obtained results in this figure are expected
since such SR methods aim at augmenting the resolution
of thermal images and do not address the problems of low
contrast and noisy details. Only SRCNN method is excepted
since the architecture has been trained on visible images,
which justifies that the enhanced images appear brighter.

2) Results of pedestrian detection : In Table II, we evaluate
the performance of YOLOv3 detector in terms of mAP and
LAMR for images at daytime, nighttime and both from KAIST
dataset. These results are compared to those obtained after
enhancing the visual quality of the same data by applying our
proposed TE-GAN architecture.

TABLE II
COMPARISON OF THE DETECTION PERFORMANCE OF YOLOV3 DETECTOR

WITH AND WITHOUT ENHANCEMENT

Testing conditions Metric Without enhancement With enhancement
Day mAP 0.61 0.63

LAMR 0.41 0.40
Night mAP 0.66 0.73

LAMR 0.26 0.20
All mAP 0.62 0.65

LAMR 0.45 0.43

The baseline detector (YOLOv3) trained and tested on ther-
mal images without enhancement achieves a mAP of 62% and
LAMR of 45%. These results are improved while considering
the enhancement architecture by a margin of 3% in terms of
mAP and 2% in terms of LAMR, which proves the effective-
ness of enhancing the image visual quality before detection.
By comparing day and night results, as expected, the margin
of improvement between with and without enhancement is
more significant in nighttime since the temperature decreases
during the night. These results comply with our main proposal
stated at the beginning of the paper. In Figure 5, we show
some results of detections with and without enhancement. As
depicted in this figure the detection performance is improved.
We show different sample images, where some false positives
or false negatives are corrected by TE-GAN enhancement
architecture.

VI. CONCLUSION

In this paper, we proposed a novel thermal enhancement
architecture TE-GAN, composed of contrast enhancement and
denoising modules using Generative Adversarial Network.
This architecture has the advantage of improving the overall
quality of thermal images. By means of tests on KAIST
dataset, the effectiveness of the proposed architecture is proven
by obtaining better quantitative and qualitative results com-
pared to the original thermal images and to the obtained results
by other existing enhancement methods.

Furthermore, the impact of the proposed enhancement ar-
chitecture has been demonstrated on the detection results by
obtaining better performance with a significant margin using
YOLOv3 detector. There are several possible extensions of
this paper. For instance, given the importance of enhancing the
visual quality of thermal datasets for video analysis, this work
could be extended to other applications such as person tracking
and activity recognition. Also, an extension of the proposed
TE-GAN architecture to incorporate a super-resolution module
could be investigated as well.



Contrast enhancement module Denoising module Edge enhancement step

Fig. 3. Details of intermediate results from the proposed TE-GAN architecture, showing the effects of each step on the same sample images of Figure 2.

VDSR SRCNN SRGAN

Fig. 4. Qualitative results of different super-resolution methods: VDSR, SRCNN and SRGAN on the same sample images of Figure 2.
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