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Abstract— This paper explores the use of a Bayesian non-
parametric topic modeling technique for the purpose of
anomaly detection in video data. We present results from two
experiments. The first experiment shows that the proposed
technique is automatically able characterize the underlying
terrain, and detect anomalous flora in image data collected by
an underwater robot. The second experiment shows that the
same technique can be used on images from a static camera
in a dynamic unstructured environment. In the second dataset,
consisting of video data from a static seafloor camera capturing
images of a busy coral reef, the proposed technique was able to
detect all three instances of an underwater vehicle passing in
front of the camera, amongst many other observations of fishes,
debris, lighting changes due to surface waves, and benthic flora.

I. INTRODUCTION

Robots or stationary cameras when used for surveying
and monitoring tasks collect large amounts of image data,
which is often analyzed manually by human experts. At
Woods Hole Oceanographic Institution (WHOI) and NOAA
Fisheries for example, every year 1000s of hours of video
is collected using AUVs and static cameras, and for every
hour of video it current takes approximately 3-4 hours of
manual processing time. Hence, there is a need for automated
techniques that can speed up the analysis of such datasets by
identify perplexing or anomalous observations. Through the
use of such techniques we can focus the attention of the
human expert on a small subset of the collected data that
is most likely to contain relevant information. In this paper
we explore the use of Bayesian non-parametric (BNP) topic
modeling to detect and characterize such anomalies.

Compared to other kinds of sensor data, image data typi-
cally exists in millions of dimensions, corresponding to the
number of pixels in the image, which makes it challenging to
build an automatic anomaly detection technique. Moreover,
detecting anomalous events in a non-stationary unstructured
environment, such as coral reefs is even more challenging
due to its higher visual complexity, compared to urban
scenes.

Our proposed approach to dealing with the anomaly de-
tection problem is to first use a Bayesian non-parametric
scene understanding technique to build a model of the scene,
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and then using this model identify observations that are per-
plexing for the model. BNP topic modeling techniques have
been successful in building semantic models of the data that
automatically grow in complexity with data complexity. We
take advantage of these results, and extended our previous
work on Realtime Online Spatiotemporal Topic Modeling
(ROST) [1] to incorporate Bayesian nonparametric priors. In
this paper we refer to our resulting proposed scene modeling
technique as BNP-ROST.

II. RELATED WORK

1) Topic Modeling: Topic modeling techniques like Prob-
abilistic Latent Semantic Analysis(PLSA) [2], and Latent
Dirichlet Allocation (LDA) [3], [4], although originally de-
veloped for semantic analysis of text documents, they have
been widely applied to other types of data such as images[5],
[6], [7]. The general idea behind topic modeling, as applied
to image data is to describe each image in a dataset as a
distribution over high level concepts, without having prior
knowledge about what these concepts are.

Probabilistic Latent Semantic Analysis (PLSA)[2] models
the probability of observing a word w in a given document
m as:

P(w|d) =
K∑
k=1

P(w|z = k)P(z = k|d), (1)

where w takes a value between 1 . . . V , where V is the
vocabulary size; z is the hidden variable or topic label for w
that takes a value between 1 . . .K, where K is the number
of topics, and is much smaller than V ; and d is the document
number, which can take a value between 1 . . .M , where
M is the total number of documents. The central idea is
the introduction of a latent variable z, which models the
underlying topic, or the context responsible for generating
the word. Each document m in the given corpora is modeled
using a distribution θm(k) = P(z = k|d = m) over topics,
and each topic is modeled using a distribution φk(v) =
P(w = v|z = k) over the set of vocabulary words. During
the training phase, these distributions are learned directly
using an EM algorithm.

The distribution of topics in a document gives us a low
dimensional semantic description of the document, which
can be used to compare it semantically with other documents.
The problem with this approach is that since the dimension-
ality of the model is very large, a lot of training data is
required. Moreover, it is easy to overtrain for a given data
set.
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Latent Dirichlet Allocation (LDA), proposed by Blei et
al. [3] improves upon PLSA by placing a Dirichlet prior on
θ and φ, encouraging the distributions to be sparse, which
has been shown to give semantically more relevant topics.
Subsequently Griffiths et al. [4] proposed a Gibbs sampler
to learn these distributions.

2) Semantic Modeling of Image Data: Topic modeling
of images requires that the general idea of a textual word
be replaced by visual words. One approach to generate
these visual words from visual features is that described
by Sivic et al. [8]. Given visual word representation of
scenes with multiple objects, topic modeling has been used to
discover objects in these images in an unsupervised manner.
Bosch et al. [5] used PLSA and a SIFT based [9] visual
vocabulary to model the content of images, and used a
nearest neighbor classifier to classify the images. Fei-Fei
et al.[6] have demonstrated the use of LDA to provide an
intermediate representation of images, which was then used
to learn an image classifier over multiple categories. Instead
of modeling the entire image as a document, Spatial LDA
(SLDA) [7] models a subset of words, close to each other
in an image as a document, resulting in a better encoding of
the spatial structure. The assignment of words to documents
is not done a priori, but is instead modeled as an additional
hidden variable in the generative process.

Summarizing benthic (sea floor) images is an especially
difficult problem due to the general lack of order, symmetry,
and orientation of the visual data. Steinberg et al. [10]
used a Gaussian mixture model to cluster benthic stereo
images, while using a Variation Dirichlet Process [11] to
automatically infer the number of clusters. Although this
work did not use location information in the clustering pro-
cess, the resulting cluster labels were shown to be spatially
contiguous, indicating correctness. The computed labels were
shown to outperform those obtained with spectral clustering
and EM Gaussian mixture models, when compared with hand
labeled ground truth data.

3) Topic Modeling of Streaming Video Data: BNP tech-
niques have been previously used to characterize anomalous
activities [12], [13]. In our own recent work [1] we have
described a realtime online topic modeling (ROST) technique
that computes topic labels for observed visual words in a
video while taking into account its spatial context in pixel
space, and temporal context (frame count). ROST does this
by generalizing the idea of a document to a spatiotemporal
cell, and computing the topic label for the words in a cell in
the context of its neighboring cells. In [14] we used ROST to
identify interesting observations in a robot’s view, and then
used it to plan an adaptive path, which were shown to have
higher information content than simple space filling paths.

III. BAYESIAN NONPARAMETRIC (BNP) SCENE
MODELING

Given a sequence of images or other observations, we
extract discrete features w from these observations, each of
which has corresponding spatial and temporal coordinates
(x, t). In case of a simple 2D video the spatial coordinates

would just correspond to the pixel coordinates, however in
presence of 3D data, the spatial coordinates can be 3D.

Similar to ROST, we model the likelihood of the observed
data in terms of the latent topic label variables z:

P(w|x, t) =
∑

k∈Kactive

P(w|z = k)P(z = k|x, t). (2)

Here the distribution P(w|z = k) models the appearance
of the topic label k, as is shared across all spatiotemporal
locations. The second part of the equation P(z = k|x, t)
models the distribution of labels in the spatiotemporal neigh-
borhood of location (x, t). We say that a label is active if
there is at least one observation which has been assigned this
label. The set of all active labels is Kactive.

Let wi = v, be the ith observation word with spatial
coordinates xi, and time ti, where i ∈ [1, N), and the
observation v is discrete and takes an integer value between
[0, V ). Each observation wi is described by latent label
variable zi = k, where k again is an integer.

P(wi = v|zi = k) =
nv,k + β

N + V β − 1
. (3)

Here nv,k is the number of times an observation of type
v has been assigned label k thus far (excluding the ith
observation), N is the total number of observations, V
is the vocabulary size of the observations, and β is the
Dirichlet parameter for controlling the sparsity of the P(w|z)
distribution. A lower value of β encourages sparser P(w|z)
with peaks on a smaller number of vocabulary words. This
encourages topics to describe more specific phenomena, and
hence requiring more topics in general to describe the data. A
larger value of β on the other hand would encourage denser
distributions, encouraging a topic to describe more general
phenomena in the scene.

In this work we assume that the set of all distinct ob-
servation words is known, and the set has size V , however,
the number of labels used to describe the data K is inferred
automatically from the data. Through the use of Bayesian
nonparametric techniques such as Chinese Restaurant Pro-
cess (CRP), it is possible to model, in a principled way, how
new categories are formed[15], [16]. Using CRP, we model
whether a word is best explained via an existing label, or by
a new, previously unseen label; allowing us to build models
that can grow automatically with the growth in the size and
complexity of the data.

P(zi = k|z1, . . . , zN ) =


nk,gi

+α

C(i,k) k ∈ Kactive
γ

C(i,k) k = knew

0 otherwise.

(4)

Here nk,gi is the total number of observations in the
spatiotemporal neighborhood of the ith observation, ex-
cluding itself; dirichlet prior α controls the sparsity of
the scene’s topic distribution; CRP parameter γ controls
the growth of the number of topic labels; and C(i, k) =∑N
i (1[nk>0]nk,gi + α) + γ − 1 is the normalizing constant.



Fig. 1. Jaguar AUV was used to collect the seafloor image data.

We use the realtime Uniform+Now Gibbs sampler pro-
posed in [17] to compute the posterior topic labels for
the datasets. We update the sampler to use the Chinese
Restaurant Process for automatic discovery of new labels.

IV. ANOMALY DETECTION

Given P(z|t), the topic label distribution of a each time
step, we can compute the marginal distribution

P(z = k) =

T∑
t=1

P(z = k|t)
T

, (5)

which defines the distribution of topic labels for the entire
dataset. We can then define the perplexity score S(t) of
observations made at a given time-step t as:

S(t) = exp(H(P(z = k|t),P(z = k)) (6)

= exp

(
−
∑
k

(P(z = k|t) logP(z = k)

)
. (7)

Here the function H(p, q) = −
∑
x p(x) log q(x) com-

putes the cross entropy of the two distributions p and q. If we
assume a normal scene has the topic distribution P(z), then
H (P(z = k|t),P(z = k)) computes the average number of
bits needed to encode time-step t, using codes optimized
for distribution is P(z). Taking the exponential of the cross
entropy then gives us the uncertainty in assigning topic labels
to the given time step.

A time-step where most of the observations were labeled
with a commonly occurring topic label will be given a low
score, whereas if a time-step with rare topic labels will be
given a high score.

V. EXPERIMENTS

To demonstrate the effectiveness of the proposed BNP-
ROST scene modeling for anomaly detection, we conducted
two experiments on completely different kinds of datasets.
The first dataset consists of images collected by a robot as
it explores the seafloor, and the second dataset consists of a
static camera set in a coral reef, observing a complex and
dynamic scene.

A. Fauna Detection in AUV Missions
In this experiment we analyzed image data collected by

the Jaguar AUV [18] as it explored the Hannibal seamount
in Panama. The mission was conducted primarily at depths
beyond 300 meters. At these depths, there is very limited
visible fauna. This specific dataset was chosen because it
contained observations of galatheid crab gatherings, which
is an obviously anomalous phenomena.

Goal of this experiment was to see if the proposed BNP-
ROST algorithm would be able to detect these observations
of galatheid crabs, either by characterizing these observations
with its own topic label, or by giving them high perplexity
scores. Every third image in the dataset was hand-labeled by
a team of expert biologists to mark the fauna in the images,
which we used as the ground truth for the galatheid crab
observations.

We ran the proposed BNP-ROST algorithm to compute
topic distributions for each time step, and the perplexity
score S(t) described in Eq. 7. The distribution P(z|x, t) was
modeled using cellular approximation described in [14], with
cell size of 128x128 pixels. We used α = 0.1, β = 10, γ =
1e−5 for all our experiments. These parameters were chosen
after a very sparse grid search in log space of the parameters.

The dataset presented here consists of 1737 images, taken
once every three seconds, at an altitude of 4 meters above
the seafloor by the Jaguar AUV. The seafloor depth varied
between 300-400 meters.

We extracted the following different kinds of visual words
from the data: Textons[19] with four different orientations,
and three different scales, quantized into 1000 different
categories using the k-means algorithm; Oriented FAST
and rotated BRIEF (ORB) [20] features at FAST detected
corners, quantized into 5000 categories; and hue and intensity
pixel values distributed on a grid. For each image we
extracted 16K texton words, 10K ORB words, and 4K pixel
words.

Results: Figure 2(a) shows the distribution of topic labels
over time for the galatheid crab dataset. We see that topic 0
and 1 are representative of the underlying terrain observed
by the robot during the mission, and stay consistently repre-
sented throughout the timeline, whereas the other topics cor-
respond to more episodic phenomena. The plot in Fig. 2(b)
shows the perplexity score of each observation, which was
computed given the topic distribution at that time step using
Eq. 7.

A time-step with low perplexity score implies that it
contains images that are characteristic of the entire dataset.
Some examples of such images are shown in Fig. 2(d).
These images show the underlying terrain that is represented
throughout the mission by topics 0 and 1. Some examples of
images with high perplexity scores are shown in Fig. 2(c).
The highest scoring image corresponds to time step t =
116, which show a feeding aggregation scene with several
different species of crabs, squids and an eel eating a fish
carcass. These kinds of feeding aggregations are rare in the
deep ocean, where due to the lack of sunlight there is a
limited supply of available nutrients to support life. The
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Fig. 2. Galatheid crab dataset. (a) A stacked plot showing distribution of topic labels at each time step in the dataset, computed using the proposed
technique. We see that Topic 0 and 1 are characteristic of the underlying terrain, whereas other topic labels are representative of other phenomena such
as galatheid crab aggregations. (b) Shows the normalized perplexity scores for each time step. (c) Shows examples of images with high perplexity scores,
corresponding to anomalous observations. Image with t = 116 shows various animal species feeding off a fish carcass, and is the most anomalous scene
in the dataset. Other anomalous observations are of galatheid crabs. (d) Shows examples of some typical images in the dataset, represented by their low
perplexity scores.
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Fig. 3. Comparison of the learned topic labels with with expert labeled ground-truth for galatheid crab observation. (a) Shows distribution of Topic 4
for each time step, computed automatically by the proposed scene modeling technique, without any supervision. (b) Shows ground normalized distribution
of galatheid crabs across the same timeline, labeled by an expert biologist. We see that there are three regions in the AUV mission where the crabs were
observed: around time steps 600, 1000, and 1600. All three regions are correctly characterized by the Topic 4 of the scene model, without any supervision.
The peaks around timestep 100 correspond to detection of other kinds of crab (not galatheid), which are labeled with the same topic label as the galatheid
crabs by the topic model, but were labeled with a different label by the biologist.

other two highest peaks corresponds to observations of the
galatheid crab’s mating aggregations.

We found out that distribution of topic 4 over the mission
timeline (shown in Fig. 3(a)) matches closely with the
distribution of galatheid crabs, annotated manually by a team

of expert biologists (shown in Fig. 3(b)).

The KolmogorovSmirnov statistic for the topic 4 distribu-
tion, given the ground truth crab distribution, found to be
D = 0.185.

The substrate in this experiment is characterized by topics



0 and 1. Our hypothesis on on why two topics represent the
underlying terrain and not one is as following. We use a
constant Dirichlet parameter β to represent the distribution
of words for a given topic. This constant parameter implies
that all topics are modeled to have word distributions with
similar sparseness. Hence, if an entity is ideally represented
by a more dense distribution of words, it is likely going to
be represented using multiple topics under the current model.
This is a limitation of the proposed approach.

B. Anomaly Detection with a Static Camera in a Complex
and Dynamic Scene

Coral reefs are busy and dynamic environments. As part of
another experiment [21], we set up several stationary cameras
in the Gulf of Mexico, to characterize the fish behavior in
presence of robots. In this experiment we analyzed the image
data collected by the stationary seafloor cameras to see if the
proposed technique is able to identify an underwater vehicle
as anomalous, amongst other observations of fishes, constant
flow of debris, lighting change due to wave action on the
water surface, and sea plants moving continuously due to
current. The dataset consists of an hour long video segment
consisting of 17966 image frames, take at the rate of 5 frames
per second.

To focus the topic modeling on the scene foreground,
we used a mixture of Gaussian based background detection
[22] technique to compute a background mask for each
time step. To characterize the constantly moving seafloor
flora and ocean debris, due to the ocean currents, we use
both the intensity values and optical flow values in the
background model. We extracted Texton, ORB and intensity
words for both the foreground and the background, however
the background words were extracted with 1/4th the density
of foreground words, to give them less focus. Now to model
the scene, we used the same BNP-ROST parameters as
described in Sec.V-A, and computed topic labels for every
time step.

Results: Result of our unsupervised AUV detection exper-
iments are shown in Fig. 4. We see that the topic distribution
computed by the proposed technique is dominated by the first
topic, which essentially characterizes the scene background.
However if we plot the distribution of the second most
weighted topic (shown in Fig.4(b)), we see a much more
relevant temporal structure of the environment. We find that
the peaks of the distribution of Topic 1 match the peak of
the perplexity plot of the data (shown in Fig. 4(c)), which
can be explained by the fact that Topic 1 is relatively rare
(compared to the background Topic 0). In this experiment
topic 1 models both the AUVs and the fishes. This is the
result of the same problem of constant Dirichlet parameter,
which resulted in the two different topic labels being used
to characterize the substrate in experiment described in Sec.
V-A.

The hand labeled AUV sighting events are shown in
Fig. 4(d). We see that these events match perfectly with peaks
1,2 and 8. The other perplexity peaks correspond to sightings
of barracudas and large schools of fishes.

VI. CONCLUSION

In this paper we described a Bayesian non-parametric
topic modeling technique for modeling semantic content
of spatiotemporal data such as video streams, and then
used it to identify anomalous observations. We applied the
proposed technique to two different kinds of datasets con-
taining observations from unstructured benthic environments.
The first dataset containing image data collected by an
AUV. We showed that the proposed technique was able
to automatically identify and characterize observations of
galatheid crabs, and the computed distribution matched the
hand-labeled distribution with KolmogorovSmirnov statistic
D = 0.185. The second data consisted of image data from
a stationary camera set in a busy coral reef, where an
underwater robot made three passes in front of the camera.
The proposed algorithm was able to identify all three vehicle
crossings as anomolous.The fact that the proposed unsu-
pervised algorithm works well in two completely different
scenarios, gives us confidence that this approach is well
suited for a variety of applications. The Bayesian non-
parametric nature of the approach insures that the anomaly
models adapts automatically to the data, without requiring
careful tuning of the hyper-parameters. Our ongoing efforts
are to adapt the proposed technique to be useful with other
kinds of data such as audio and sonar imagery. We are
also working on using the proposed technique onboard a
underwater robot, for context aware adpaptive data collection
tasks.
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