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ABSTRACT OF THE THESIS

CoLo: A Performance Evaluation System

for Multi-robot Cooperative Localization Algorithms

by

Shengkang Chen

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Ankur M. Mehta, Chair

This thesis presents CoLo - a performance evaluation system for two-dimensional co-

operative localization algorithms. Multi-robot system have been used in a wide range of

applications and cooperative localization is one of the fundamental tasks for mobile multi-

robot systems. However, developing cooperative localization algorithm is complex and time-

consuming. CoLo is created to reduce cooperative localization algorithm development cycle

time. The system consists of two main parts: a physical experiment (CoLo-PE) for data

collection and a software analysis tool (CoLo-AT) using real-world datasets to evaluate the

performances of users’ cooperative localization algorithms. CoLo uses an intuitive algorithm

framework to allow researchers to conveniently add their cooperative localization algorithms

to it. Instead of creating simulations or designing a new robotic testbed from the ground

up, researchers only needed to load their algorithms in CoLo-AT and analyze them using

data collected from CoLo-PE. Also, CoLo is aimed to create a standard so that effective

comparisons can be made across research on localization algorithm.

This paper details the design and operation of the physical experiment (CoLo-PE) which

provides users guidelines to create their own robotic testbed with a ROS-based, scalable and

affordable robotic team. And the paper explains how the software analysis tool (CoLo-AT)

tests algorithms by running simulation processes to recreate the experiment trials using com-

patible real-world datasets of odometry data, measurement data, and the related groundtruth
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data. Researchers can test their algorithms and compare them with other state-of-the-art

algorithms in various settings. CoLo-AT provides insightful metrics, and graphs include lo-

cation error for localization accuracy and trace of state covariance to detect over-confident

estimation results. It also has an animated plot to show the estimated trajectory and actual

trajectory of each robot, which presents an intuitive visualization of the algorithm.

CoLo has been used in the development of a published localization algorithm, where it

was used to test the performance of the algorithm and compared to other existing algorithms

objectively. CoLo provided the performance results in various setting and saved much time

in experimental validation, which enabled a more rapid algorithm design process.

CoLo is available at https://git.uclalemur.com/billyskc/CoLo
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CHAPTER 1

Introduction

Robotic localization is the problem of estimating a robot’s own pose. The development of

multi-robot systems has attracted more and more attention for its wide range of potential

applications from underwater exploration to disaster rescue missions [STS16]. Since these

applications require accurate information on robots’ poses, cooperative localization for multi-

robot systems has developed from single-robot localization. Cooperative localization provides

positioning data for a multi-robot system, which often relies on its robots’ sensors and

communication within the system.

With the growing need for cooperative localization, different cooperative localization al-

gorithms have been developed [MR06, WMG14]. However, the development of cooperative

localization algorithms from formalization to experimental validation for performance eval-

uation is complicated and time-consuming. As a result, CoLo has been developed to help

researchers validate algorithms by providing the framework to set up a complete evaluation

system, in which users only need to provide their algorithms. CoLo is a performance evalu-

ation system using real-world datasets for two-dimensional multi-robot cooperative localiza-

tion algorithms. CoLo has two modular parts: a physical environment setup (CoLo-PE) and

software algorithm analysis tool (CoLo-AT). The structure of CoLo is captured in Figure

1.1, where CoLo-PE provides real-world datasets for CoLo-AT to evaluate the performance

of users’ cooperative localization algorithms.
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CoLo-PE CoLo-AT

Real-world
datasets

Evaluation 
results 

Users’ localization 
algorithms

Figure 1.1: CoLo Structure

The main goal of CoLo is to provide researchers a toolbox to test their algorithms effi-

ciently and conveniently. As a result, we built a physical environment setup (CoLo-PE) for

real-world data collections so that researchers can evaluate their algorithm not only using

simulated data but also real-world data for more realistic performance results. Also, we

created an analysis tool (CoLo-AT) to enable users to test their algorithms using compatible

real-world datasets without spending much time to build their own. Moreover, since CoLo-

PE and CoLo-AT are two independet modules that can be used separately, researchers can

use CoLo-AT to assess their algorithm using publicly available real-world datasets without

building CoLo-PE. The objective of CoLo is to make research on cooperative localization

more accessible.
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CHAPTER 2

Background

Experiment validation is critical for multi-robot localization algorithm development but can

be difficult to set up. CoLo aims to provide an accessible way for users to test their algorithms

effectively using real-world data. Typically, researchers have built the whole experiment

setup in their labs to evaluate the performance of their algorithms [RB02, MR06, HDJ10,

CNG13]. These setups usually contain a team of multiple robots with external sensors

to take measurements, internal sensors to collect odometry data as well as equipment for

groundtruth collection [MR06,HDJ10]. However, thees experiment setups are expensive and

complicated to develop since there are many components in the experiment that need to

work in coordination. The cost and time investment associated with physical experiemnt

setups make it less accessible to many researchers. As a result, some researchers tested

their algorithm on simulations [LN12,LLS16,WMG14,KCA06]. Although simulation results

can provide a general idea for the performance of cooperative localization algorithms, it is

difficult to simulate all the issues related to the multi-robot system accurately such as the

effects of asynchronous control.

To address this problem, there are several remotely accessible testbeds like Robotarium

[PGW17] and the HoTDoc [SVF06] for multi-robot systems available for researchers, but

using these remotely accessible testbeds may not be the optimal solutions. The general

limitation of these testbeds is the limited selections of sensors and configurations of the

robots. Since testbeds like the Robotarium [PGW17] or the HoTDoc [SVF06] focus on

coordinated control, their robots do not have the appropriate sensors for testing localization

algorithms. Researchers can also build or purchase robots for multi-robot localization from

some existing multi-robot testbeds [RGU13,MFK08]. A detailed list of multi-robot testbeds

3



can be found in this survey paper [JDO13]. Different from these robots, CoLo’s robots use

off-the-shelf products instead of customized parts for greater availability and upgradability.

CoLo’s robots can have processors with higher processing rates that make them more suitable

for compute-intensive tasks like image-processing when robots observe their surroundings.

More importantly, CoLo’s integrated software analysis tool can extract data from its robots

and evaluate different localization algorithms directly.

Other than using testbeds, researchers can use real-world datasets collected from exper-

iments to evaluate their cooperative localization algorithms. Using datasets is more conve-

nient for researchers to test the performance of their algorithm compared with testbeds, but

the main drawback of using dataset is that researchers have limited options on experiment

settings. Although there are different datasets to study different localization problems like

vision localization [PC09], there is a limited number of datasets for multi-robot systems like

the UTIAS datastes [LHB11] available to researchers [CCC16]. To address these problems,

CoLo provides both the physical experiment setup (CoLo-PE) to help researchers create the

dataset they need to evaluate their algorithms. If they can’t create their own setups, the

dataset collected by the CoLo-PE in our lab to expand the selection of multi-robot local-

ization dataset available. Moreover, CoLo contains the software analysis module which can

directly use the datasets and save users time creating their own analysis tool.

What makes CoLo different from existing testbeds or datasets is that CoLo is a complete

performance evaluation system for two-dimensional localization algorithms from physical

experiment to algorithm analysis, which only requires users’ algorithms formulation within

the CoLo’s algorithm framework.
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CHAPTER 3

CoLo Overview

CoLo is designed to evaluate the performance of two-dimensional localization algorithms.

CoLo is composed of 2 modular parts: CoLo-PE (the physical experiment setup) and CoLo-

AT (the software analysis tool). CoLo-PE sets up the physical experiment to collect multi-

robot localization data, which will be processed and organized as datasets. Then, CoLo-AT

will load these datasets from CoLo-PE and test users’ algorithms. CoLo-AT can be used

independently by using compatible datasets including the UTIAS multi-robot cooperative

localization and mapping dataset [LHB11].

In CoLo, a multi-robot system uses a cooperative localization algorithm to update its

estimated states which includes its robots’ locations: s = [x1, y1, x2, y2, . . . ] and their orien-

tations: Θ = [θ1, θ2, . . . ]; as well as its state covariance Σs which indicates how confident the

algorithm is in its estimation. The algorithm itself can be either centralized or distributed.

The multi-robot system performs localization updates using data from robots’ four different

operations:

1. Propagation: The robots’ internal sensors like odometry sensors provide odometry data

continuously.

2. Landmark observation: The robots’ external sensors like cameras provide observation

data when they observe landmarks

3. Relative observation: The robots’ external sensors like cameras provide observation

data when they observe other robots from the multi-robot system

4. Communication: Robots from the multi-robot system send data to each other using a

communication network.
5



3.1 System Model

We consider a 2D multi-robot system with N robots denoted by R = {1, . . . , N}, together

with several landmarks with known known locations to the robots in advance. Landmarks

are denoted as L, and Ω = R ∪ L. The position of robot i at time t is regarded as the state,

denoted as si,t = [xi,t, yi,t]⊺, where ⊺ denotes matrix transpose. The orientation of robot i at

time t is denoted by θi,t, and we do not incorporate θi,t in the estimation state due to the

linearization issue [BNG06]. The state of the whole system is denoted by st = [s⊺1,t, . . . , s⊺N,t]⊺.

In EKF, each robot i keeps an estimate of the whole system st, denoted by ŝ
(i)
t , together

with its covariance Σs(i),t.

3.1.1 Motion Model

The motion model describes the spatial displacement of robots due to odometry inputs.

While the framework is not limited to any specific models, we use velocity input vi,t and

orientation θi,t in this paper. Let Tp be the time interval between two consecutive odometry

inputs, the state of robot i at the next time is given by

s
(i)
i,t = fi(s(i)

i,t , vi,t) =

xi,t + vi,tTp cos(θi,t)

yi,t + vi,tTp sin(θi,t)

 . (3.1)

3.1.2 Observation Model

If robot i observes an object j (either a robot or a landmark), the relative observation

obtained by robot i is

oij = C⊺(θi,t)


xj,t

yj,t

 −

xi,t

yi,t


 = h(s(i)

t ), (3.2)

where C(θ) is the rotation matrix with argument θ.

Most of the time, the relative positions can not be obtained directly, but they are general

enough to incorporate different kinds of sensing result. The observation is often accomplished

by distance and bearing sensors. Consequently, the relative position can also be expressed
6



as

oij = dij

cos(ϕij)

sin(ϕij)

 , (3.3)

based on the relative distance dij and relative bearing ϕij.

3.2 algorithm framework

For users to add and evaluate different localization algorithms into CoLo conveniently, we

have created an algorithm framework based on robots’ four operations for users to define

their localization functions.

n = number of robots in the team

s(i) = roboti state vector

Σs(i) = roboti state covariance matrix (m2)

Θi = roboti estimated orientations of the team

δt = duration (s)

v = linear velocity (m/s)

w = angular velocity (rads/s)

θi = roboti own orientation (rad)

lm = landmark location [x (m), y (m)]

r = measurement range (m)

ϕ = measurement bearing (rad)

7



Algorithm 1 CoLo Algorithm Framework
1: Initialization

2: For each roboti :

3: user-defined initialization function

4: Return : s(i), Σs(i) , , Θi

5: Propagation Update

6: For roboti :

7: Given : s(i), Σs(i) , Θi, i, δt, v, θi, w

8: user-defined propagation function

9: Return : s(i), Σs(i) , Θi

10: Landmark Observation Update

11: For roboti :

12: Given : s(i), Σs(i) , Θi, i, lm, r, ϕ

13: user-defined landmark observation function

14: Return : s(i), Σs(i) , Θi

15: Relative Observation Update

16: For roboti detects robotj

17: Given : s(i), Σs(i) , Θi, i, j, r, ϕ

18: user-defined relative observation function

19: Return : s(i), Σs(i) , Θi

20: Communication Update

21: For roboti recives from robotj

22: Given : s(i), Σs(i) , Θi, i, sj, Σsj, Θj, j

23: user-defined communication function

24: Return : s(i)i, Σs(i) , Θi

8



CHAPTER 4

Physical Experiment Setup: COLO-PE

CoLo-PE is the physical experiment part of CoLo. It provides guidelines for setting up a

physical robotic testbed for data collection with a scalable and affordable robot team. Each

robot in CoLo is built with standardized components and shares the same software structure

so that users can easily create a robot and add it to the team. CoLo-PE contains a team of

robots, a group of landmarks and a motion tracking system to keep track of locations of each

landmark and each robot during the experiment for groudtruth data. The Network Time

Protocol (NTP) is used to synchronize the time between each robot and the groundtruth

logging computer with its error on the scale of 1 ms, which is acceptable for the experiment.

An experiment run is captured in Figure 4.1, where a team of three robots moved within the

setup and used their onboard camera to take measurements by detecting the ArUco [GMM14]

markers on other robots or landmarks, while these robots and landmarks are tracked by the

motion tracking system for collecting groundtruth data.

4.1 Robot system

The robot system in CoLo-PE is designed to be configurable and economical. Each robot has

four main components: a transportation platform, a computer, a battery and a camera. We

chose the iRobot Create2 as the transportation platform that supports up to 2 kg payload,

which is enough for a laptop or other smaller computers. This transportation platform gives

users the freedom to build different performing robots. The components are commercially

available products rather than customized parts for robots to be economical. These com-

ponents are connected through standard interfaces like the universal serial bus (USB). This

9



Figure 4.1: An experiment trial in CoLo-PE

enables users to create robots with different hardware configurations and upgrade them in

the future easily.

There are four main components in general robotic setup in CoLo-PE: Transportation

platform, a computer running Ubuntu, a camera and a battery for the computer. Users can

configure different robots in CoLo-PE for their own needs. There are two types of robot

designs available in our lab with different computers as two possible instantiations of CoLo

on physical robots: type I with a full-size laptop and type II with a much smaller compute

stick and an external battery. Compared with type II robots, type I robots have better

performance, but they need additional structure to support their laptops, which makes it

bulkier and harder to maneuver between landmarks. Instead of using full-size laptops, we

selected compute sticks as the type II robots’ computers. The compute stick and the batteries

are stored in the dustbin in the back of each iRobot Create2 to avoid any additional support

structures. Table 4.1 and Table 4.2 shows the details of components used in both types of

robots with estimated costs.

Since Robot Operating System (ROS) [QCG09] is a widely used robotic middleware which

has a large selection of packages available, developers can easily find the packages they need

to accelerate their development process. ROS Kinetic is chosen to be the software framework

for the robots. In CoLo-PE, robots can perform two kinds of actions and record propagation

and measurement data. Table 4.3 shows the list of ROS packages used in CoLo-PE’s robots.

We developed several ROS packages can combine them with some public available ROS

10



Table 4.1: Hardware components in type I robot

Component Product name Price

Transportation platform iRobot Create2 $200

Computer Asus F510UA Laptop $510

Camera Logitech Webcam C920 $50

Accessories USB hub $10

Total Cost $760

Table 4.2: Hardware components in type II robot

Component Product name Price

Transportation platform iRobot Create2 $200

Computer Azulle Access Plus PC Stick $200

Camera Logitech Webcam C920 $50

Battery Anker PowerCore 13000 $30

Accessories USB hub $10

Total Cost $490

packages for the software structure of each robots. Users can easily modified our packages

for different tasks like different robotic paths instead of pseudo random movements.

For propagation, robots are controlled through a ROS driver to perform pseudo-random

movements with barrier avoidance. Command inputs on linear velocity, v, and angular

velocity, w, are logged as odometry data around 10 Hz in the following format: [time,

velocity, angular velocity].

For observation measurement, CoLo-PE uses ArUco [GMM14] markers which are widely

used for camera pose estimation for both landmark observations and relative observations.

The camera (resolution: 1280 by 720, the field of view: 78 degrees) on each robot will process

images to detect these markers at around 10 Hz. When an ArUco maker is detected, robots

11



Table 4.3: ROS Packages used CoLo-PE

ROS package Function

create_autonomy [Per16] iRobot Create drivers

robot_control motion control and odometry data recording

usb_cam [PT14] webcam driver

aruco_detect [Vau18] ArUco markers detection

meas_record measurement data recording

bt_network (optional) Bluetooth communication network setup

will log the measurement data in the following format: [time, marker ID, range, bearing].

For communication, robots in CoLo-PE can communicate with others using Bluetooth

or radio module. Although the robots could set up a reliable peer-to-peer communication

network in a small experiment via Bluetooth, they failed to provide accurate link quality

metrics (LQ) for users to study the topology of the communication networks. Currently,

we are working on using RF modules for inter-robot communication and measurement link

quality metrics (LQ) and receive signal strength indicator (RSS)I for each message sending.

4.2 Groundtruth

In order to evaluate the performance of localization algorithms accurately, a high accuracy

tracking system is needed to track the locations of the robots and the landmarks. An

Optitrack motion capture system is deployed to capture the 2-dimensional grouthtruth data

for the robots [time, x, y, orientation] and the landmarks [time, x, y] at around 120 Hz.

4.3 Dataset

CoLo-PE can create datasets with arbitrary numbers of robots and landmarks for arbitrary

duration depending on the size of the experiment setup. We used CoLo-PE to provide a

12



multi-robot cooperative localization dataset collected by in a 3 m by 4 m indoor rectangular

space with three robots and eight landmarks. There are four subdataset in the CoLo dataset

with different landmark positions. The duration of each subdataset is approximately 5

minutes long. Each subdataset contains 18 files, which include:

• One CSV file from Optitrack.

• One label file for robots’ markers.

• One groundtruth files for the landmarks.

• Three groundtruth files for the robots.

• Three odometry files for the robots.

• Three raw measurement files for the robots.

• Three processed measurement files for the robots.

Landmarks and robots are considered subjects in the dataset. Each landmark or robot is

assigned a unique subject ID, where robots’ subject IDs are different from their marker IDs.

The three raw measurement files for the robots have the measurement data format: [time,

marker ID, range, bearing] with respect to their camera; whereas processed measurement

files contain measurement data format [time, subjects ID, range, bearing] with respect to

the centers of the robots using the label file to transform some of the marker IDs to robot

IDs.

13



CHAPTER 5

Analysis Tool: COLO-AT

CoLo-AT as the core of CoLo is a Pyhton-based localization algorithm analysis tool using

real-world datasets to evaluate the performance of different localization algorithms. CoLo-

AT is aimed at helping researchers develop cooperative localization algorithms by providing

insightful algorithm evaluation data. It can test the performance of cooperative localization

algorithms on various settings by running a simulation process to recreate the experiment

trials using compatible real-world datasets including the UTIAS dataset [LHB11]. If there

is no communication data in the dataset, users can define their communication scheme for

the simulation.

5.1 CoLo-AT structure

CoLo-AT itself is highly modularized, and users can edit or add new modules to fit their

needs. The structure of CoLo is captured in Figure 5.1. There are six main modules in

CoLo-AT:

• Dataset manager (DM): reads a compatible dataset and puts it in a proper data struc-

ture for convenient lookup so that it can communicate with the simulation manager

efficiently. If there are datasets with different formats, users only need to modify the

dataset manager and other parts of CoLo-AT will remain the same.

• Simulation manager (SM): manages simulation process by communicating between

different modules. It has two modes: native and schedule. In native mode, robots

will perform actions based on the chronological order of the dataset which will mimic

14



the operations taken in the dataset exactly. In schedule mode, users can control the

frequency for each operation type, which provides more flexibility on robot control.

• State recorder (SR): records the robots’s data after each localization update, including

their estimated locations, state covariances, groundtruth (actual locations), operation

type.

• Robot system (RS): a multi-robot system uses data provided by the dataset manager

for each robotic operation to update its estimated states based on its loaded localization

algorithm (LA). There are two different types of robot system: it can be a team of

distributed robots with a distributed cooperative localization algorithm or a centralized

system using a centralized cooperative localization algorithm.

• Algorithm library (AL): an extendable localization library provides the robot system

with different localization algorithms.

• Result analyzer (RA): compares estimated results with the groundtruth to generate

graphs and numerical values of the performance of the localization algorithms after a

simulation process is finished.

 RSDM AL

Simulation Process 

LA

SM

SR

RA
Performance 

Results

Figure 5.1: CoLo-AT’s modularized structure
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5.2 Evaluation Process

In order to evaluate localization realistically, CoLo-AT uses real-world datasets to recreate

the experimental trails for multi-robot systems. As a result, users don’t need to run physical

experiments and still obtain realistic algorithm performance results.

The simulation manager and the dataset manager communicate based on a request-

response mechanism, where the dataset manager interacts with different datasets and the

simulation manager is in charge of the simluation process. During each update in a simulation

process, the simulation manager will request a set of data for this update from dataset

manager. Then, the dataset manager will provide the data needed by responding to the

request. The robot system will update its estimated states based on the data provided by

the simulation manager using its localization algorithm. After that, the state recorder will

record the robots’ states. When the simulation process is completed, the state recorder will

send all of its data to the analyzer which provide performance evaluation results.

There are two modes of simulation process: naive (passive) mode and scheduling modes.

In naive (passive) mode, the simulation manager will receive all the data from the dataset

manager and let the robot system perform different operation update depends on the data

provided by the dataset manager. This is suitable for localization algorithm that have no

requirement on the order of the operations. In scheduling mode, the simulation manager will

receive a subset the data from the dataset manager based on the frequency of each operations

and let the robot system perform different operation update coordinately. Scheduling mode

is designed for localization algorithm that have no requirement on the order of and frequency

of each operation type. Users can also use scheduling mode to study the optimal scheduling

problems in cooperative localization.

5.3 Algorithm Library

The library already includes six popular or state-of-art algorithms for algorithm evaluation

and comparison. These can be categorized into two types: local state algorithms which are
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implemented by a centralized robot system where each robot only need to have estimated

localization results for itself; and global state algorithms which are implemented by dis-

tributed robots where each robot needs to have estimated localization results for itself and

other robots. Here is the list of algorithms in CoLo-AT library:

• Extended Kalman Filter (EKF) [WB06]: a standard EKF-based localization algorithm

for each robot itself.

• Local State Centralized extended Kalman Filter (LS-Cen) [KRM14]: a centralized

EKF-based localization algorithm for the centralized robot system.

• Local State covariance Intersection (LS-CI) [CNG13]: a covariance Intersection (CI)-

based algorithm for the centralized robot system.

• Local State Block Diagonal Approximation (LS-BDA) [LSR16]: an EKF-based lo-

calization algorithm with block diagonal approximation on covariance matrix for the

centralized robot system.

• Global State Split Covariance Intersection (GS-SCI) [LN12]: a cooperative localization

algorithm base on split covariance intersection filter for distributed robots.

• Global State Covariance Intersection (GS-CI) [CCM17]: a distributed cooperative

EKF-based localization algorithm using covariance intersection.
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CHAPTER 6

Using CoLo

Using CoLo is straight-forward and users will get insightful results of their algorithms. After

users have created a cooperative localization algorithm within CoLo’s algorithm framework,

they can easily load it into the robot system and run CoLo-AT using different datasets with

various setting to test the algorithm for different scenarios.

There are two main indicators for localization algorithms: location error and trace of

state covariance. Location error is defined as 1
N

√∑N
i=1 ||ŝ(i)

i − s
(i)
i ||2 (how much estimated

locations deviate from actual locations) and trace of state covariance is defined as tr(Σs(i))

(how uncertain robots are for their estimated locations).

CoLo offers a various plots and metrics based on these two indicators to show the perfor-

mance of the cooperative localization algorithm. Here are some of the algorithm evaluation

options from CoLo-AT.

• An animated plot to recreate robots’ estimated tracks with their groundtruth. Figure

6.1 shows the estimation deviation error (how much estimated locations deviate from

actual locations), trace of state covariance and the track including both estimated

locations and actual locations for each robot in the multi-robot system

• A plot of location error and the trace of state covariance vs. time for each robot.

• A plot of location error and the trace of state covariance vs. time for the multi-robot

system.

• A histogram of the number of robotic operations vs. time for the multi-robot system.
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Figure 6.1: A snapshot of the animated plots for a multi-robot system with three robots with

centralized extended Kalman filter cooperative localization algorithm (LS-Cen) [KRM14]

after 94.5 s from simulation start using CoLo Dataset 4

6.1 Algorithm Development and Evaluation

The main goal of CoLo is to provide localization algorithm developers a toolbox for conve-

nient and effective algorithm evaluation. Running CoLo is simple, users only need to load the

algorithm into the robot sysem, specify the which dataset to use and the duation they want

to test their algorithms. Also, there are various setting users can choose from from robot

types to different performance plots. Instead of letting developers to design and building a

simulation environment for their algorithms, developer can use CoLo effortlessly and collect

more realistic performance results.

CoLo has been used in a published paper for algorithm developemnt [CCM17]. We used

CoLo to help develop our extended Kalman Filter (EKF) based global state covariance-

intersection (GS-CI) cooperative localization algorithm with explicit communication updates.

It decouples communication update and relative observation. It achieves great performance

under limited communication scenario. We have used CoLo to test the performance of GS-

CI cooperative localization algorithm in different real-world datasets. In Figure 6.2, a team

of 3 distributed robots achieves less than 0.12 m location errors in a sparse communication

scenario using CoLo dataset 1 collected by CoLo-PE.
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Figure 6.2: Performance of based global state covariance-intersection (GS-CI) cooperative

localization algorithm in CoLo Dataset 1

6.2 Algorithm Comparison

Other than showing the performance results of a single cooperative localization algorithm,

users can have CoLo-AT compare the performance between any algorithms that are in-

cluded in CoLo’s algorithm framework. Here is an example of using CoLo-AT to compare

the performance of Local state block diagonal approximation cooperative localization algo-

rithm (LS-BDA) [LSR16] with centralized extended Kalman filter cooperative localization

algorithm (LS-Cen) [KRM14]:
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(a) How far away are the multi-robot systems’ estimated locations from its actual loca-

tions with respect to time.

(b) Trace of the multi-robot systems’ state covariance matrices.

(c) Number of observations including(landmark observation and relative observation)

taken for the multi-robot during the simulation process.

Figure 6.3: Some of the plots that can be used for comparing the performances of two

cooperative localization algorithms: Local state block diagonal approximation (LS-BDA)

[LSR16] and centralized extended Kalman filter (LS-Cen) [KRM14].

These results show that both local state block diagonal approximation (LS-BDA) [LSR16]

and centralized extended Kalman filter (LS-Cen) [KRM14] have similar performances but

LS-Cen performs slightly better when there is a lack of observation data using CoLo Dataset

4. Users can use other datasets with different settings to compare these two algorithms more

thoroughly.
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Table 6.1: Algorithm comparison performance metrics

Settings

Dataset CoLo Dataset 4

Duration (s) 240

Robots [1, 2, 3]

Results LS-BDA LS-Cen

Robot 1 location errors (m) 0.1034 0.1117

Robot 1 trace(Σs) (m2): 0.0061 0.0090

Robot 2 location errors (m): 0.0946 0.1080

Robot 2 trace(Σs) (m2): 0.0098 0.0067

Robot 3 location errors (m): 0.1614 0.1922

Robot 3 trace(Σs) (m2): 0.0075 0.0153

Avg. location errors (m): 0.1092 0.1207

Avg. trace(Σs) (m2): 0.0095 0.0144
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CHAPTER 7

Conclusion

In this thesis, I presented a performance evaluation system CoLo for two-dimensional co-

operative localization algorithms from physical experiment (CoLo-PE) to software analysis

tool (CoLo-AT). Researchers can easily test their cooperative localization algorithms using

different real-world datasets with various settings on CoLo to evaluate the performance of

their algorithms more thoroughly instead of creating their own simulation environments. We

introduced CoLo’s physical experiments setup (CoLo-PE) for real-world data collection with

a scalable team of low-cost and configurable robots, as well as CoLo’s software analysis tool

(CoLo-AT) which effectively tests the performance of cooperative localization algorithms us-

ing the datasets from CoLo-PE or other compatible datasets. With the creation of CoLo,

it will be much more convenient for researchers to evaluate their cooperative localization

algorithms, which can reduce the algorithm development cycle time. As better performing

cooperative localization algorithms emerge, these algorithms can provide more accurate data

on robots’ poses to support the development of multi-robot systems.
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