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Abstract— We consider the problem of mapless collision-
avoidance navigation where humans are present using 2D laser
scans. Our proposed method uses ego-safety to measure collision
from the robot’s perspective and social-safety to measure the
impact of robot’s actions on surrounding pedestrians. Specif-
ically, the social-safety part predicts the intrusion impact of
the robot’s action into the interaction area with surrounding
humans. We train the policy using reinforcement learning on
a simple simulator and directly evaluate the learned policy in
Gazebo and real robot tests. Experiments show the learned
policy smoothly transferred to different scenarios without any
fine tuning. We observe that our method demonstrates time-
efficient path planning behavior with high success rate in the
mapless navigation task. Furthermore, we test our method in
a navigation task among dynamic crowds, considering both
low and high volume traffic. Our learned policy demonstrates
cooperative behavior that actively drives our robot into traffic
flows while showing respect to nearby pedestrians. Evaluation
videos are at https://sites.google.com/view/ssw-batman

I. INTRODUCTION

The problem of autonomously navigating a robot in a
map-unknown (mapless) environment while avoiding both
static and dynamic obstacles, is important but challenging
in applications like delivery robots, indoor service robots,
etc. The path planning and static obstacle avoidance parts
in this problem are often formatted as mapless naviga-
tion [1, 2] where a robot is driven by observed sensory data
from the unknown environment, assuming the relative pose
from robot to target is given by a third party localization
module (e.g., GPS for outdoor cases and UWB / Wifi /
Zigbee for indoors.). The dynamic obstacle avoidance part
in this problem is more complicated since it requires future
prediction on unknown surrounding dynamics like moving
pedestrians, vehicles or other robots [3, 4]. As complexity of
surrounding dynamics increases, the prediction may result in
occupying a large portion of free space, successively causing
no solution in path planning, namely the freezing robot prob-
lem [5]. Moreover when the moving obstacles are human, not
only collision avoidance, but also human-awareness [6, 7]
should be considered. While recent approaches using multi-
modal sensing [8] or high-end object/pedestrian detection
pipelines [4, 9, 10] have been proposed to tackle part of the
problem, we are still curious to ask: is it possible to solve
for all parts purely based on 2D laser scans?
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Fig. 1: Given a target location, humans can navigate locally
without knowing a detailed map of surroundings. We typically
make decisions from sensory inputs to avoid obstacles and walk-in
pedestrians while showing respect to other people. Our decisions
come from both our egocentric and allocentric spatial cognition.
Can we train a robot with a similar behavior?

Recent works on deep reinforcement learning have proven
the capability of using 2D laser scans in mapless naviga-
tion[2, 11] and multi-agent / dense crowd[12, 13] collision
avoidance tasks. Such methods share a similar reward struc-
ture by adding a reaching target reward and a collision
penalty, but differ in the training process. For example,
in a mapless navigation task, policy training is done by
using a fixed number of floor plans[2, 11]; In multi-agent
/ dense crowd[12, 13] collision avoidance task, the training
involves interactions with randomized autonomous agents.
It is observed that the collision penalty combined with
sufficient exploration in training, makes the learned policy
show cooperative behaviors that solve the freezing robot
problem. However, this collision penalty only measures near
impact of the robot from surrounding agents and obstacles.
When humans are present nearby, the inverse directional
impact on human safety should also be considered: namely
human-awareness [6, 7].

Inspired by the concept of egocentric and allocentric
spatial cognition [14], we propose a framework using ego-
safety to measure collision from the robot’s perspective and
social-safety to measure the impact of our robot’s actions on
surrounding pedestrians. Specifically, social-safety is defined
as the intrusion into surrounding human’s interaction area
considering a look-ahead distance (fig. 2A). We train a policy
in our specially designed simulator with both randomized
maps, obstacles, and moving agents of randomized numbers,
sizes, shapes, and locations. Our learned policy is then
directly evaluated in Gazebo and real robot test. Results
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show the learned policy demonstrates both time-efficient
path planning behavior in a mapless navigation task and
cooperative behavior which actively drives the robot into the
crowd flows while showing respect to nearby pedestrians.

II. RELATED WORKS

This work is inspired by researches in the following topics.
Mapless Navigation: The problem of mapless naviga-

tion [2, 11] studies how to autonomously navigate a robot
in unknown environments given a predefined target. The as-
sumption of accessibility to a 3rd party localization module is
commonly applied, however limits its practical applications.
For example, in outdoor scenarios, there are situations when
GNSS signals are weak or denied by surroundings; in indoor
scenarios, deploying a localization solution is tedious. Vi-
sual navigation [15–18] approaches remove the assumption,
however, is challenging to learn dynamic collision avoidance
behavior simply from visual inputs. One potential solution
is a hierarchical approach [17] which has both a high-
level global path planner and low-level motion controller.
The high-level global path planner, is obtained from either a
visual navigation module or simply GPS waypoints, that en-
ables long-term navigation. The low-level motion controller
learns both static and dynamic collision avoidance behavior
to reach a local target defined by the global path planner.
In this paper, we assume such high-level path planner for a
long-term navigation is given, the focus is to learn a local
navigation controller.

Social-aware/ Human-aware robot navigation: Follow-
ing the same approach as CADRL, social-aware navigation
problem is further considered which views more human-
robot interactions in the navigation behavior. Chen et al. [9]
propose SACADRL which considers human-like social norm
behavior by adding a complex social norm reward. Similarly,
Tai et al. [19] train a social-compliant policy from RGB-
D raw data inputs. These methods consider human-aware
robot navigation with social rules (norm) and human comfort.
Apart from these complicated considerations, a simplified
version is practical by only considering learning a coopera-
tive ability to solve the freezing robot problem [5]. Pfeiffer
et al. [10] propose a framework to learn cooperative mo-
tion planning behavior by modeling human-robot interaction
using maximum entropy methods. Chen et al. [4] jointly
model human-robot and human-human interaction followed
by a similar value function estimation in CADRL [3]. Above
methods depend on explicit pedestrian detection.

Navigation learning from observations: Recently, learn-
ing the navigation strategy end-to-end directly from 2D laser
scan readings proves possible. Long et al. [12] propose a
framework to train a multi-agent collision avoidance policy
using PPO [20] which maps 3 frames of historical laser scans
to continuous robot actions. They show the learned model
can be further directly applied in dense crowd navigation
tasks [13]. Apart from using 2D laser scans, navigation learn-
ing from visual inputs, a.k.a. visual navigation problem [16,
17] has also been intensively studied.

III. APPROACH

A. Problem Formation

We formulate the problem as a Partially-Observable
Markov Decision Process (POMDP) defined by a tuple
(S,A,P,R,Ω,O), where S is the state space, A is the
action space, P is the state transition model, R is the reward
function, Ω is the observation space, O is the probability
function defining how observations are obtained from the
underlying environment state (ot ∼ O(st)). The robot can
only observe laser scan otz from surroundings and relative
location otg to the target.

We define ot = [otm,o
t
g]. o

t
m is a motion feature which

encodes the laser scan response changes along time axis due
to surrounding motions. Robot action at is sampled from a
stochastic policy π given observation ot: at ∼ πθ(a

t|ot),
where at = [atx,a

t
y] is within range [-1.5,1.5]. Considering

a nonholonomic kinematics model, at is further converted to
linear and angular velocity [vtl ,v

t
w] with vtl = sqrt(atx,a

t
y)

and vtw = atan(aty/a
t
x) ∈ [−π, π].

1) Motion features: otm plays as a prediction feature to
learn a cooperative path planning behavior among dynamics.
We consider disentangling robot ego motion out while con-
structing otm from historical laser scans {ot−kz , ...,otz}. We
observe laser scan response can be changed by either robot
or surrounding motions. By disentangling, motion feature
otm will only encode surrounding motions, which helps our
policy training. While there are advanced methods to detect
dynamic objects from laser scans [21, 22], we observe that
during a small step duration, laser reading is affected mostly
by rotation rather than translations. For the efficiency of
simulator training, we simply calibrate previous laser scan
ot−iz based on the difference between robot heading angles
at time t-i and t by a shift operation in the scan array. Fig.
3 shows the comparison between calibrated and uncalibrated
results.

2) Reward function: The reward at each step is obtained
from system state St which is fully accessible in simulator
training. Our reward function is a sum of ego-safety Re,
social-safety Rs and reaching target Rg rewards:

R(st) = Re(st) +Rs(st) +Rg(st) (1)

We define the ego-safety zone (fig. 2B) of the robot as a
circle around with radius (ri + 0.4), where ri is the physical
dimension of the robot. Given a set of nearby pedestrians
{ptj} and obstacles {Bk}, their closest distance to robot is
dt. Re(st) is defined as:

Re(st) =


−10 if collision happens
−0.25 ∗ (1− dt

ri+0.4 ) else if dt < ri + 0.4

0 otherwise
(2)

We define the social-safety zone (fig. 2C) of each pedes-
trian as their interaction region stretching along current mov-
ing direction with a minimum safe headway distance in ∆t.
For computational efficiency, only pedestrians within 5m are
considered. This zone is represented as a rectangle defined



Fig. 2: A: An example of robot and surrounding pedestrians’ movements during a time window of 40 steps. B: Illustration of robot
ego-safety zone. C: Illustration of pedestrian’s social-safety zone.

Fig. 3: Visualization of ot
m with calibration (top) and without

(bottom). When either the robot or a nearby pedestrian moves, the
laser scan response will change, so will ot

m. We disentangle robot
ego motion out to help the policy training.

in pedestrian’s reference frame with width = −robject and
height = robject/2+dmin+∆t.vobject, where robject is the
radius of pedestrian bounding circle, dmin = 0.5m is the
minimum safe distance, vobject is the current speed. We set
∆t = 0.77s in training. The safety zones are then projected
back into the world frame. Then we also construct the ego
robot’s social-safety zone likewise, and check if it intersects
with that of other moving pedestrians. If intersects, we count
it as one violation. Now we define Rs(st) as:

Rs(st) = −0.1 ∗ number of violations
total number of pedestrians

(3)

Let pt be position of robot and p∗ be the target. The last
term Rg(st) is defined as:

Rg(st) =

{
+10 if reach the target

−0.01 ∗ ‖p
t−p∗‖

‖p0−p∗‖ otherwise
(4)

B. Parameterization

Our special consideration in parameterization is to make
our network less sensitive to object shapes, which are mostly
encoded in data along column axis in otm. So we design a
large kernel size on the column direction followed by a max-
pooling layer. We use DDPG [23] for training. Our actor and
critic network structure are illustrated in fig. 4.

C. Training the Policy

1) Simulator: The policy is trained on our hand designed
simulator (fig. 5) that runs a laser scanner at 40Hz and an
inner differential drive controller at 20Hz. We model the
laser scan simulation according to Hokuyo UTM-30LX with
a 270◦ scanning range and 0.1 meter and 10 meters scanning
distance. Historical 40 frames of laser scan are used to

Fig. 4: Structure of our actor and critic network.

construct otm. The number, size and shape of static obstacles
are randomized in simulation. Pedestrian behavior is also
randomized with the following considerations: number of
pedestrians in the scene, each pedestrian’s current pose /
velocity, each pedestrian’s desired target and direction, each
pedestrian’s geometric shape and size, the behavior of stop-
and-go, new walk-in pedestrians from random directions.
Each pedestrian’s behavior is controlled using ORCA [24]
but ignores the robot since otherwise pedestrians will always
avoid the robot.

2) Training strategy: We train an ego policy by only
including the ego-safety reward and a social policy by adding
both ego-safety and social-safety rewards for comparison.
The policy is trained using DDPG [23]. To facilitate training,
the social policy is trained based on learned ego policy
parameters.

IV. EVALUATION

We evaluate the learned policy on three tasks that all
require the robot reaching a target: (1) Mapless path plan-
ning: The robot is required to find a path while avoiding
obstacles in an unknown environment without pedestrians.
(2) Navigation among dynamic crowds: Given a dynamic



Fig. 5: The policy is trained in our specially designed simulator
(A) and tested under various settings on our simulator, Gazebo(B)
and a Jackal robot(C) in real world environment respectively.

TABLE I: Results of mapless path planning test in simulator. For
each test, the robot needs to reach a fixed target in 10 randomly
generated maps.

Success Rate Arriving Time Ego Score

Greedy Baseline 80 % 7.0 ± 1.6 s 100
(Ours) Ego Policy 100 % 3.1 ± 0.3 s 100

(Ours) Social Policy 100 % 3.3 ± 1.3 s 100

crowd with random behaviors, the robot needs to cross the
crowd while showing awareness of social-safety without
the ‘freezing robot’ behavior. (3) Mapless path planning +
navigation among dynamic crowds: A combination of the
above two.

Baselines: To the authors’ best knowledge, there are no
current methods that tackle both the mapless navigation and
collision avoidance among dynamic crowds using 2D laser
scans. However we still hand designed two baselines for
comparison. (1) The greedy baseline takes input of laser scan
and mimics human intuition on reaching the target while
avoiding collisions locally. In the planner we take robot’s
direction and the difference of angle between the robot and
the destination. We apply 1D convolution window with laser
scan and find the index having the higher convoluted value
with a p controller to turn the robot to the direction. (2)
The CADRL [3] baseline takes the full state of surrounding
pedestrians as input. It’s not designed for avoiding static
obstacles in path planning, so it’s only used in navigation
among the dynamics crowds. Though it can’t handle laser
scan observations, we still feed in full states of all humans
obtained from simulator, while testing our methods using
only laser scans.

Metrics: We designed four metrics for quantitative evalu-
ation: (1) Success Rate (%) after 10 runs in random settings.
(2) Arriving Time (s). (3) Ego Score (0-100) to measure
ego-safety awareness of robot. Let k be the number of ego-
safety violation steps, and N be total steps to reach the target,
Ego Score = (1− k/N) ∗ 100. (4) Social Score (0-100) to
evaluate social-safety awareness of nearby human. Let m be
the number of social-safety violation steps, Social Score =
(1−m/N) ∗ 100.

We compare both our ego policy and social policy to the
above two baselines. Experiments are conducted in both our
simulator and Gazebo for quantitative evaluation, while in
real world tests for qualitative evaluation (fig. 3).

Fig. 6: Comparison between our method (ego policy, social policy)
and the baseline in simulator. Left: results on the navigation among
dynamic crowds task. right: results of the combined task.

A. In the simulator

1) Mapless path planning task: In this task, we fix the
target while generating 10 random maps that only have static
obstacles. Since CADRL can’t handle this task, we only
compare with greedy baseline (Table 1). Results show both
our ego and social policy reach the target more efficiently
with a higher success rate.

2) Navigation among dynamics task: We evaluate using
10 random crowds for each method. Each crowd has at least
8 pedestrians in a 5m×5m area with a chance of walk-in
humans from a random direction. All pedestrians have no
sense of the robot so they won’t avoid it. We compare our
methods to both baselines (Fig. 6-left).

3) The combined task settings: Now we combine the
above two task settings. Since CADRL can’t work in mapless
path planning, we only compare with the greedy baseline.
Results are plotted in fig. 6-right.

Our results show the CADRL baseline typically has a
passive ‘wait and go’ behavior which is not efficient and
easily get trapped by crowds. In comparison, both our
policies show more cooperative behaviors. This cooperative
behavior helps the robot reach target more efficiently with
higher success rate. While all methods achieve high ego
score, the social policy shows better performance in social-
safety awareness. By observation, the ego policy is more
aggressive compared to our social policy. Detailed videos
are on our website.

B. In Gazebo environment

We used the Gazebo maps and the ROS platform for our
experiments.

1) Mapless path planning task: We evaluate the mapless
navigation ability of our learned policy in three maps from
simple to complex. Complexity increases from map 1 to
map 3 by blocking key passages and adding more random
obstacles. All tasks require the robot reaching the target
(orange square) without knowing the map. We test in two
scenarios: fixed target and random targets. Each scenario
for each map runs 10 times on each method. Our results
show the greedy baseline always fail as the map is too
complex compared to simulator. Results (Fig. 7) show that
all methods achieve ego score 100 in successful runs. We
observe both ego and social policy show the behavior of
slowing down when obstacles are highly aggregated. The



Fig. 7: Evaluation results on the mapless path planning task in three Gazebo maps on a ROS environment. Map complexity increases
from left to right. Up and down rows show result of a fixed target and a random target respectively.

Fig. 8: Comparison between our method and two baselines on navigation among dynamic crowds tasks in Gazebo.

ego policy performs better since it positively runs via small
gaps between obstacles. However, it easily gets trapped into
dead loops, where it will run circle loops instead of tracing
back to find a way out. As comparison, the social policy is
more cautious even towards static obstacles. It always runs
into wider open spaces and won’t take the risk to go through
small gaps, in which case, it will switch to other directions.
If the gaps in all directions are small, it will run a circle
loop.

2) Navigation among dynamics crowds: We designed
four random behaved crowd scenarios (Fig. 9) considering
crowd size 4, 8, 12 in a 5m×5m area. Each method on
each scenario / crowd size combination needs to run 10
times to get evaluation results, as shown in Fig. 8. Results

show our method reaches the target in a shorter time with
a higher success rate. We observe the CADRL baseline
prefers moving slowly to wait for crowds pass, however,
may collide with human approaching from other directions.
In comparison, our ego and social policies typically move
into the crowd flow while avoiding pedestrians dynamically.
In all tests, the social policy has the highest social score.
Among the four scenarios, the ‘towards’ one is most difficult.
Our ego policy has the best performance since it’s more
agile running through small gaps. The ‘ahead’ scenario is
the easiest one. Both baselines simply move slowly behind
the crowds. In contrast, our ego and social policy positively
try to pass the crowd ahead. So they are significantly faster
than the two baselines.



Fig. 9: The four crowd behavior scenarios. A crossing: The robot
needs to move through the random crossing flow. B towards:
Pedestrians are walking towards the robot. The robot needs to react
fast since the relative velocity is large. C ahead: Pedestrians are
walking ahead. The robot needs to decide how to pass. D random:
All pedestrians’ intention are randomized.

Fig. 10: Our observed robot behavior using social policy on the
four crowd scenarios. Blue curve shows human trajectory; Orange
curve shows robot trajectory. Our observation of robot behaviors in
real world experiments aligns with our Gazebo test results. More
evaluation results are included in our video.

C. In real world tests

We also conduct qualitative evaluations on a Jackal robot.
It is worth noting the robot pose we used in training is
accurate since it is obtained from the simulator. However,
in our real world test, we don’t have a precise 3rd party
localization module due to resource limits. Using laser scan
based SLAM localization[25] methods may help, but the
localization output contains errors when running among
dynamic human crowds. As a trade-off, we rely on robot’s
built-in odometry module which computes robot pose using
wheel encoders and on-board IMU. To avoid drifting errors
long time, we reset the odometry module after each run. We
observe that, even with this coarse localization input, the
robot performs relatively well.

We tested two tasks in an indoor room. For each task, the
robot needs to navigate to the target while avoiding obstacles
and humans. For each run, we assign the target coordinates
in the robot’s initial odometry frame when we reset it. In
general, the target is around 3 to 6 meters ahead of the robot.

1) Mapless path planning task: We design two maps for
this task without pedestrians. In each map, the robot needs to

navigate to the target while avoiding static obstacles. We also
test our method’s performance while humans push obstacles
into the robot’s path. Evaluation results are shown in our
video. For static obstacle avoidance in the two maps, both
ego and social policies perform well. For pushing obstacles
setting, the ego policy agilely avoids human kicking boxes
while the social policy behaves more cautiously.

2) Navigation among dynamics task: We also test our
social policy in the four crowd scenarios (Fig. 9). Fig. 10
shows the observed robot behavior. Our empirical results
show the policy generalizes from regular geometric shape
based obstacles in simulation to human legs in real world.
This is achieved by specially designed convolution filter and
stride size on the historical laser scan observations otm. The
row axis of otm encodes changes along the time line, while
the column axis encode changes because of geometry shapes
of surrounding objects. We designed large convolution filter
and stride size on the column axis while small scales on the
row axis.

In experiments we observed the circling behavior when
the robot tries to pass an exit point out of an obstacle
closure or avoid a near-close pedestrian, but restricted to
its nonholonomic kinematics constraints. The policy learns
to gradually change its twist velocities until precisely hit
the exit point to escape the obstacle closure or avoid close
pedestrians. Ideally, such behavior is not the most efficient
one since the robot can simply stop, rotate and move. We
leave it as a future problem to learn stop behaviors without
sacrificing efficiency.

V. CONCLUSION

We propose a method to tackle the problem of mapless
collision-avoidance navigation where humans are present
using 2D laser scans by the formation of ego safety and
social safety. Extensive experiments were conducted with
both quantitative and qualitative evaluation. Results show our
method can demonstrate cooperative path planning behavior
by predicting the future motion of humans, while considering
the impact of the robot actions on surrounding humans,
namely the awareness of social-safety.

Though some success is achieved in this project, other
practical considerations are worth pointing out: (1) To define
the target, mapless navigation relies on a third party local-
ization module. This is usually unrealistic considering it is
expected to work in unknown environments. As discussed
in section 2, a high level abstract path planner with vision
sensor support may solve the problem. (2) We find the
training process is still tedious to fine tune the parameters.
Though [12, 13] propose a practical multi-stage training
strategy which trains the policy from simple scenario to
complex ones, hitherto, it lacks theoretical guarantees. We
expect finite horizon reinforcement solutions may help since
path planning problem essentially needs to consider multiple
steps ahead.

The authors would like to give thanks to all our colleagues
participating in the real world tests.
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