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Abstract— Despite recent progress of robotic exploration,
most methods assume that drift-free localization is available,
which is problematic in reality and causes severe distortion
of the reconstructed map. In this work, we present a sys-
tematic exploration mapping and planning framework that
deals with drifted localization, allowing efficient and glob-
ally consistent reconstruction. A real-time re-integration-based
mapping approach along with a frame pruning mechanism
is proposed, which rectifies map distortion effectively when
drifted localization is corrected upon detecting loop-closure.
Besides, an exploration planning method considering historical
viewpoints is presented to enable active loop closing, which
promotes a higher opportunity to correct localization errors
and further improves the mapping quality. We evaluate both
the mapping and planning methods as well as the entire system
comprehensively in simulation and real-world experiments,
showing their effectiveness in practice. The implementation of
the proposed method will be made open-source for the benefit
of the robotics community.

I. INTRODUCTION

Autonomous exploration, which sends robots to com-
pletely map an unknown environment, has been a popular
topic in robotics research, because it is a fundamental prob-
lem for a variety of applications such as aerial photography,
geographic mapping, disaster management, and search and
rescue. During the past decades, many algorithms have been
proposed to improve exploration performance [1]–[3].

Despite recent progresses, most of the current methods
concern only about the exploration efficiency and give less
consideration about the map quality. In particular, many of
them assume that perfect localization is available throughout
the exploration, so accurate reconstruction is easily obtain-
able as well. Unfortunately, in practice, accumulating drift
of onboard state estimation is inevitable in a long run. The
drift often has a negative impact on the reconstructed map,
such as causing significant distortions. Consequently, the
resulting map may be of poor quality, which is unsatisfactory
for many applications that require accurate reconstruction.
Therefore, to enable a broader range of applications, the
mapping algorithm should be able to rectify the distortion
caused by localization drift explicitly. Moreover, previous
methods seldom account for potential opportunities to detect
loops, although the map quality is highly dependent on the
detection of loop closure. Instead, detecting loop closure dur-
ing exploration is mostly passive and depends on whether the
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Fig. 1. The quadrotor autonomous exploration tests are conducted in
a complex indoor scene with size 20 × 14 × 3m3. From top to bottom:
Actual scene of experiment field; Our exploration results; FUEL [1] results.
Significant differences are marked with red box.

robot happens to pass a previously visited place. Hence, the
exploration algorithm should seek for more opportunities on
loop closing without sacrificing much efficiency to improve
map quality further.

In order to solve the two issues mentioned above, we
propose a systematic solution for autonomous exploration,
which enables the generation of accurate and globally con-
sistent maps. First, we introduce a TSDF-based mapping
framework with real-time re-integration and a frame pruning
mechanism based on a set cover formulated selection crite-
rion. When loop closure is detected and drift is eliminated by
the localization module, the map distortion caused by local-
ization drift is rectified by re-integrating the keyframes with
updated camera poses, resulting in a globally consistent map.
To enable real-time re-integration on the onboard computer,
we novelly apply a keyframe selection method based on set
cover formulation to prune the redundant frames. Then, we
utilize space partitioning to incrementally solve the set cover
problem, increasing the real-time performance. Moreover, we
adopt an active loop closing strategy in exploration planning
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to allow a higher opportunity to detect loops, which further
reduces localization drift and enhances map quality.

Extensive experiments are conducted in both benchmarked
simulations and the real world to validate the performance
of our proposed method. In the simulation, we compare our
proposed framework with the results from other mapping
approaches. The results show that our proposed method
outperforms other works, especially under severe odometry
drift. In real world tests, our proposed method generates a
more globally consistent exploration result, comparing with
the state-of-the-art exploration system [1]. The contributions
of this work can be summarized in the following:

1) A globally consistent mapping framework with online
re-integration and frame pruning mechanism, which
can rectify the map distortion.

2) An active loop closing planning strategy which allows
more loops to be detected thus further improves the
mapping quality.

3) Benchmark comparison experiments and field tests
are conducted to evaluate the performance of our
proposed method. The source code of our work will
be published.

II. RELATED WORK

A. Autonomous Exploration

Robotic exploration has been investigated over the years.
Some works aim at quick coverage [4, 5], while others
emphasize precise mapping [6, 7]. Frontier-based approaches
are presented earliest in [8] and assessed more comprehen-
sively later in [9]. In [2] a stochastic differential equation-
based strategy is used for 3D environments. Unlike [8]
choosing the closest frontier as the next target, [4] chooses
the frontier inside the FOV that minimizes the velocity
change. The strategy is advantageous for a high flight speed
and shows higher efficiency than [8]. [10] presented a dif-
ferentiable formulation of information gain, which is useful
for gradient-based optimization of the exploration path.

Another major category is sampling-based approaches,
which produce viewpoints randomly to explore the space.
These approaches are closely related to next best view (NBV)
[11], where views are computed repeatedly to model a scene
completely. [12] grows RRTs and executes the most infor-
mative edge repeatedly. Uncertainty [13], visual importance
[14],inspection [15] and history [16, 17] are considered later
under this framework [12].

Approaches combining the advantages of frontier-based
and sampling-based approaches are presented in [1, 7, 18]–
[22]. [18, 19] generate global paths based on frontiers and
sample paths locally. A two-level framework [21] computes
exploration paths coarsely at the global scale and finely
around the robot. In [22], sparse topological graphs are built
to provide high-level guidance. [1] proposed a hierarchical
planning framework based on the incrementally extracted
frontiers, which shows high-performance exploration in com-
plex environments.

A common issue of existing methods is that they seldom
consider the rectification of map under odometry drift, except

Fig. 2. System overview of our proposed exploration framework.

[23], which may not produce globally consistent map in prac-
tice. In this work, we deal with this problem systematically.

B. Globally Consistent Dense Mapping

Researchers have suggested a number of approaches to
rectify distorted map when loop-closures are detected. One
idea is to attach a deformable mesh [24] to a pose graph
representing the past trajectory of the camera. Alternatively,
a deformable collection of surfels may be maintained [25].
Although these approaches provide a richer understanding of
the occupied space, the free space and unknown space are not
distinguished, so they are not suitable for robotic exploration
where information of unknown space is essential.

Another approach is building a collection of submaps
to present the global map. The relative transformation of
each submap is corrected when localization is rectified by
loop-closure, which can maintain map consistency efficiency.
Several works have shown the efficacy of such approaches,
including [26]–[29] One limitation of these methods is that
they put the burden on the motion planner, which has to
query map information from multiple submaps. Besides,
they can not eliminate distortion completely under severe
localization drift.

[30] proposes a re-integration method to maintain a glob-
ally consistent map, which stores sensor measurements and
associated sensor poses to rectify the map upon localization
correction. It produces higher reconstruction quality, but
requires significant computational resources. [31] improves
the computational efficiency by a large margin. However,
it does not explicitly represent unknown space. In contrast
to submaps, these works provide constant query time for
motion planning module. In this work, a mapping method
based on re-integration is adopted and further optimized by
a frame pruning technique, enabling real-time mapping in
exploration.

III. SYSTEM OVERVIEW

An overview of our proposed systematic solution for au-
tonomous exploration can be found in Fig. 2. With the depth
measurement and onboard state estimation, the mapping
module can carry out a globally consistent reconstruction
for exploration planning. The re-integration (Sect. IV-B) of
rectified point cloud plays a key role in eliminating map
distortion caused by pose drift during the flight. We use a
frame pruning method (Sect. IV-C) formulated as a set cover
problem to enable online re-integration. Besides considering
frontiers in space, possible loop closure viewpoints (Sect.



IV-D) are also included in autonomous exploration planning
for better global consistency.

IV. METHODOLOGY

A. TSDF-based 3D Mapping

The mapping module of the proposed method is based on
Truncated Signed Distance Field (TSDF), whose construc-
tion method is similar to [30, 32, 33]. The key difference is
that our framework allows real-time and globally consistent
reconstruction by adopting the re-integration (Sect.IV-B) and
frame pruning (Sect.IV-C) methods.

We take the point cloud generated from the depth image
as an input frame. For each frame, ray-casting is performed
from camera position wC to each point wP in the point
cloud and all voxels along the ray are updated with new
distance value sdf and weight w. The distance value sdf can
be computed as the length difference of the vector

−−−−→wCwP

and
−−−−→wCwV , where wV is the point that the center of voxel

v projected on the ray
−−−−→wCwP . Note that the sdf value is

bounded to range [−δ, δ] as [30] to support de-integration
process, where δ = tσmap is the truncated distance and t is
a scaling factor and σmap is the map resolution.

sdf = min{δ,max{−δ, ‖
−−−−→wCwP ‖ − ‖

−−−−→wCwV ‖}} (1)

For the TSDF weighting method, a constant weighting
policy can be applied to the TSDF construction for simplicity.
While aiming to improve the quality of details in the mapping
result, a weighting strategy considering both depth value z
and behind-surface voxels, which is proposed by [32, 34], is
applied.

w =

{
1
z2 , −σmap < sdf ≤ δ
1
z2

δ+sdf
δ−σmap

, −δ ≤ sdf < −σmap
(2)

Now for a TSDF voxel v along the ray, its distance value
v.sdf and weight v.w can be updated as

v.sdf =
v.sdf ∗ v.w + sdf ∗ w

v.w + w
, v.w = v.w + w (3)

Thanks to that TSDF construction inherently supports
the reversible updating, we can de-integrate redundant or
drifted frames from the mapping result to maintain global
consistency by re-integration (See IV-B). To de-integrate a
frame from the map, v can be updated in reverse as

v.sdf =
v.sdf ∗ v.w − sdf ∗ w

v.w − w
, v.w = v.w − w (4)

One important function of the mapping framework is to
provide information about known and unknown space to
our exploration planner. Traditionally, the voxel is regarded
as known if its TSDF weight is not zero, i.e. has been
observed by at least once. To efficiently execute frontier-
based exploration planning and maintain a good observation
quality for mapping at the same time, we set a weight
threshold τw > 0.0 as the criterion for known and unknown
voxels recognition, where

v.state =

{
Unknown, 0.0 < v.w ≤ τw
Known, τw ≤ v.w

(5)

By applying this strategy, we can make sure every place
in the map can get enough observations by a proper τw and
larger τw means more observations are needed to change the
area to a known area in exploration planning.

B. Online Re-integration

When loop closure is detected, a 4-DOF pose graph
optimization is performed with multiview constraints from
loop closing frames and camera poses on the pose graph
are relocalized [35], in which the global consistency of state
estimation is obtained.

In order to rectify the map distortion correspondingly,
all keyframes with correction on its corresponding camera
pose are de-integrated from the map with its drifted pose
and re-integrated with its rectified pose [30]. Keyframes are
selected from input frames in the keyframe database based
on the method introduced in IV-C. The number of keyframes
that are going to be re-integrated depends on the size of
the subgraph rectified by loop closure. A large rectified
subgraph of the rectified pose graph will generate a long
list of keyframes to be re-integrated, which will cause a load
burst on computing and might block the normal integration
process. To reduce its influence, keyframes that need re-
integration are put into a waiting list and then distributed
to following regular integration cycles. Besides, for safety
flight concerns, local maps have a higher demand for map
consistency. Therefore, keyframes in current and neighbor
blocks have utmost priority during the re-integration process.
The blocks are obtained by space partitioning illustrated in
IV-C.

C. Redundant Frame Pruning

The objective of the frame pruning process is to remove
redundant point cloud frames that provide much duplicate
information about map details but cumber the re-integration
process, as shown in Fig. 3. To identify the representative
frames that do not contain superfluous information and en-
able real-time re-integration, we form this selection criterion
as the well-studied un-weighted Set Cover Problem (SCP).

The universe set U is a voxel grid in the explored area with
resolution σscp. As this voxel grid only served for the check-
ing of space observed by each frame, the resolution require-
ments here is lower than mapping which needs clear details
about obstacles. We set σscp = 2σmap to accelerate visibility
check for each frame without significant changes on frame’s
coverage. For frame f , the voxels {vf,1, vf,2, ..., vf,nf

} in
U within its Field of View (FOV) are gathered as a subset
Sf ⊆ U with cost cf = 1.0 for an un-weighted set cover
problem. The cost effectiveness α for frame f is defined
as follows, where f.nnew is the number of new voxels the
frame f covered.

αf =
cf

f.nnew
(6)

In the classic greedy algorithm for set cover problem, the
goal will be formed as that for k frames, we need to find
a keyframe set K ⊆ {S1, S2, ..., Sk} with minimum total



Algorithm 1 Keyframe Selection
Input: Point cloud frames list L
Output: Keyframe list LK

1: gain←∞
2: while gain > τgain do
3: for each f ∈ LR do
4: if f is not selected then
5: f.nall ← number of grids f covers
6: f.ncovered ← 0
7: for each g ∈ f.coveredGridsList do
8: if g.visbilityCount == 0 then
9: f.ncovered ← f.ncovered + 1

10: end if
11: end for
12: f.nnew ← f.nall − f.ncovered
13: end if
14: end for
15:
16: f∗ ← argmin

f

f.cost
f.nnew

17: gain← f∗.nnew
18: f∗.selected← true
19: LK .push(f∗)
20:
21: for each g ∈ f∗.coveredGridsList do
22: if g.visbilityCount > 0 then
23: g.visbilityCount← g.visbilityCount− 1
24: end if
25: end for
26: end while

cost ctotal =
∑
i∈[1,k] ci, such that ∪i∈[1,k]Si = U . We

make several changes based on the classic algorithm to make
the implementation compatible and practical with our frame-
work. First, we make a minimum number of observations nob
for each voxel and each voxel in U will be initialized with
a visibility counter with value nob. Only when the visibility
counter of one voxel is deducted to zero, this voxel will
be marked as covered and more observation on this voxel
will be disposed. This is because covering each voxel in
U just once is not enough, which will be easily disturbed
by noise or drifted pose. With this manner, the nnew of
frame f can be calculated as the difference between total
number of its visible voxels and how many voxels among
these are already marked as covered. Second, we modify
the termination criterion from ∪i∈[1,k]Si = U to the gain of
one cycle , which is counted as the number of new voxels
covered by this frame in U , is less than a certain threshold
τgain. Ideally, τgain is set to 0 to ensure a full coverage.
However, in practice, the solution got from the classic greedy
algorithm usually have a number of frames providing little
new information compared with tens of thousands voxels
covered by each frame, i.e. f.nnew � f.nall. Such a few
new voxels have almost no effect on the mapping result as
shown in Fig. 4. Therefore, we assign τgain with a small
value (∼ 10

σscp
), which can reduce the keyframe amount and

Fig. 3. Illustration of the frame pruning. The pyramids represent the frame’s
FOV. In the top image, inessential frames (grey) will decelerate the re-
integration process. In the bottom picture, keyframes (red) are selected from
above frames by adopting set cover formulation.

(a) Actual scene (b) Frame pruning with
τgain = 0

(c) Frame pruning with
τgain = 50

Fig. 4. The frame pruning and a small value of τgain has little effect on the
map quality. The number of frames in (b), (c) is 544 and 456 respectively.
The total number of frames is 1468.

accelerate re-integration process without loss of quality. With
the initial visibility count for each voxel set to 1 and τgain set
to 0.0, our keyframe selection will degenerate to the classic
greedy method. More details can be found in Algorithm 1.

Solving the set cover problem for the frames on the entire
path is extremely time-consuming after a long flight. We
adopt space partitioning and divide the map into equal-size
axis-aligned blocks and execute set cover solver only on
blocks with new frames. For N frames, this can reduce
the time complexity from O(logN) to O(Mnew log N

Mall
),

where Mall and Mnew are number of all blocks and blocks
with new frames and Mnew �Mall typically.

D. Exploration Planning with Active Loop Closure

Since the mapping result relies on globally consistent
localization, which requires more loop closure to be detected,
we propose an exploration planning with Active Loop-
Closure (ALC) technique based on our previous approach
[1]. The key idea is to find an exploration tour that efficiently
visits all frontier clusters frontier clusters [8] as well as
potential loop-closing sites.

To identify the candidate location where the quadrotor may
have an opportunity to detect a loop-closure, consecutive
historical viewpoints along the flight path are grouped into
clusters, as illustrated in Fig. 5. We empirically constrain the
size of each cluster in order to distinguish distinct regions
previously visited by the quadrotor. To efficiently find the
nearby viewpoints, which are considered by our exploration
planning, we also maintain a KD-Tree for the historical
viewpoints1 in the flight path (Line 1, Algorithm 2).

Firstly, we consider the active loop closure clusters into
the global tour planning [1]. In [1], a global tour passing
only frontier clusters is generated, while in our method

1Though the viewpoint belongs to (x, y, z, φ), the construction and query
of KD-Tree here only consider the viewpoint’s position.



Fig. 5. An illustration of the proposed active loop closure method. The
UAV will search loop closure candidate within a certain range and evaluate
the cost of different global tours.
we also consider previously visited viewpoints. If a loop
closure cluster candidate exists nearby the quadrotor, we
choose a cluster with minimum cost from current state to its
center viewpoint. Next, an optimal tour Tloop that visits the
candidate first and all frontier clusters subsequently is found
by solving an Asymmetric Traveling Salesman Problem
(ATSP). To this end, a cost matrix Mloop containing the
cost information among all frontiers and the selected ALC
cluster is computed. The cost calculation of two viewpoints
utilizes the time lower bound required to move between them
proposed in [1]. In order to avoid large detour which will
significantly reduce the exploration efficiency, the optimal
tour Tfrt considering only frontier cluster is also generated
and compared with Tloop. To find Tfrt, a cost matrix Mfrt,
which contains the cost information among all frontiers and
current state is also generated. Note that although an extra
tour Tloop is computed comparing with [1], it does not
introduce significant overhead, as Mloop can be obtained
trivially by slightly modifying Mfrt, as shown in Line 7-
10, Algorithm 2. Then the next goal of flight is decided by
comparison between the total cost of original global tour with
only frontiers Cfrt and the cost of global tour containing the
selected ALC cluster Cloop.

Cloop ≤ (1 + ε)Cfrt (7)

Since active loop closure will usually take a detour which
reduce the exploration efficiency, different ε denotes a trade-
off between the exploration efficiency and global consistency.
The greater ε means the planner will tolerate more cost
spending on loop closure and maintain a more globally
consistent map.

As the global planning only decide if the active loop
closure is needed and select the center viewpoint, more
viewpoints in the ALC clusters besides the center viewpoint
are taken into consideration for local viewpoints refinement
based on the graph search-based approach in [1], which fur-
ther improves the path quality and allow faster exploration.
Finally, a minimum-time trajectory is generated towards the
next viewpoint along the refined path through an efficient

Algorithm 2 Active Loop Closure Planning
Input: Flight path P , current position p, cost matrix Mfrt

and global tour Tfrt with only frontiers, frontier list
FrtList

Output: Global exploration tour TG
1: loopClusters← nearestNeighbors(p)
2: for each c ∈ loopClusters do
3: c.cost← computeCost(p, c)
4: end for
5: c∗ ← argmin

c
c.cost

6:
7: Mloop ←Mfrt

8: for each frt ∈ FrtList do
9: Mloop(0, frt.index)← computeCost(c∗, frt)

10: end for
11: Tloop ← solveAsymmetricTSP (Mloop)
12:
13: Cfrt ← 0, Cloop ← 0
14: computeTotalCost(p, Tfrt,Mfrt, Cfrt)
15: computeTotalCost(p, Tloop,Mloop, Cloop)
16: Cloop ← Cloop + c∗.cost
17: if Cloop < (1 + ε)Cfrt then
18: TG ← Tfrt
19: else
20: TG ← Tloop
21: end if
22:
23: function computeTotalCost(p, T ,M,C):
24: vpLast← p
25: for each vp ∈ T do
26: C ← C +M(vpLast, vp)
27: vpLast← vp
28: end for

gradient-based optimization framework [36], enabling safe
and agile navigation. The quadrotor will be detached from
local ALC clusters if no loop closure is successfully detected
within a certain period, which prevents distraction from ex-
ploration the task. Note that we may evaluate the possibility
of loop-closure for historical viewpoints as [37] does, which
is left as a future work.

V. EXPERIMENT RESULT & COMPARISON

A. Benchmarked Simulation

Extensive experiments are conducted in simulation en-
vironment. We compare our mapping result obtained from
autonomous exploration with other representative works. For
a better evaluation on the accuracy and robustness of the
methods, we set four different level of odometry drift from
s1 to s4 by applying a Gaussian Noise vxyz ∼ N(µxyz, σ

2
xyz)

and ωφ ∼ N(µφ, σ
2
φ) on each odometry updating cycle with

frequency 200Hz. Details of the drift parameter setting can
be found in Table I. The dynamic parameters are set as
vmax = 2.0 m/s, amax = 2.0 m/s2 and rmax = 0.9 rad/s.



Fig. 6. Mapping result of exploration in simulation environment (30× 16× 3 m3) under severe odometry drift (s4). From left to right: the ground truth
point cloud, Voxblox, C-blox, our method w/o frame pruning and our method. It can be found that our method can maintain a good global consistency
during the exploration flight. If the loop closure result is close to the actual localization, our reconstruction result is approximate to the ground truth.

TABLE I
DRIFT PARAMETER SETTING

param (m/s) s1 s2 s3 s4
µxyz 0.0 0.0 0.0 0.0
σ2
xyz 0.0 2e-2 5e-2 8e-2
µφ 0.0 0.0 1e-3 1.5e-3
σ2
φ 0.0 2e-2 5e-2 8e-2

TABLE II
ACCURACY COMPARISON

Method RMSE (m)
s1 s2 s3 s4

Voxblox [32] 0.092 0.084 0.169 0.266
C-blox [26] 0.109 0.081 0.147 0.157

Ours(w/o frame pruning) 0.089 0.091 0.098 0.085
Ours 0.089 0.087 0.094 0.087

We uniformly sample a collection of zero-level iso-surface
points on the TSDF. For each of the point, a nearest point
from the ground truth point cloud is found to compute the
distance error.

As the result shown in Fig. 6 and Table II, four methods
have a similar performance under negligible odometry drift.
When it comes to odometry drift, the result of Voxblox [32]
distorts the most as it does not include rectifying global
map according to input loop closure results. C-blox [26]
can support such map rectification by correct each submap
with rectified camera localization. However, it still has a
higher RMSE mainly because it assumes state estimation is
consistent within a submap, which is not reasonable under
large drift. The result of our method w/o frame pruning, i.e.
re-integrate all frames, shows a similar result as ours, but its
real-time performance is poor on onboard computer.

We also compare the time cost for exploration w/ and
w/o active loop closure under s3 drift in Table I, which is
115s(w/o ALC) and 124s(w/ALC). The exploration flight is
shown in Fig. 7. With ε = 0.2 in Sect. IV-D, the time of
exploration planning with ALC is only 8% more than that
w/o ALC but it gains 3 more opportunity to detect loop
closure. The final mapping result shows that exploration w/
ALC has superior performance under odometry drift.

B. Field Test

In order to further evaluate the performance of our pro-
posed approach, comparative field experiments are conducted
in a large classroom with cluttered environment between the
FUEL [1] and ours. The bounded size of the exploration area
is 20×14×3 m3. With the installation of a RealSense depth
camera D435i and a DJI Manifold 2-C onboard computer
powered by Intel Core i7-8550U, the quadrotor platform fully

Fig. 7. Left: Ground truth (20 × 16 × 3 m3), Middle: w/o ALC; Right:
w/ ALC. Successful loop closure is marked as red dot.

Fig. 8. From left to right: the intercepted actual scene from Fig. 1, the
reconstruction result from FUEL [1] and ours. For the first row, the result
from [1] has strong distortion on the ring and the tripod. On the second
row, our method reconstructs three coplanar rings well.
relies on onboard sensors and computation to perform the
exploration task without any external devices. The onboard
state estimation and loop closure method is VINS-Fusion
[35]. The linear velocity, acceleration and yaw rate limits of
both methods are set to vmax = 1.0 m/s, amax = 0.5 m/s2

and rmax = 0.6 rad/s.
A global map and local details comparison between FUEL

and ours is shown in Fig. 1 and 8. Though loop-closure
of localization is enabled for both methods, the mapping
result from FUEL still has several distortions. In our result,
a globally consistent map is maintained. The flight path in
Fig. 1 labeled with black line shows the effect from the active
loop closure planning. This experiment demonstrates that our
novel approach has the ability to maintain a global consistent
mapping result during autonomous exploration.

VI. CONCLUSIONS

In this paper, we propose a systematic mapping and
planning framework for exploration under odometry drift,
which can maintain the global consistency of the exploration
map. The mapping is based on an online re-integration
method with frame-pruning to enable real-time performance.
Moreover, we consider the possible loop closure viewpoints
actively into the exploration planning to improve the map-
ping result. The proposed method is evaluated by extensive
experiments in both benchmarked simulation and real-world
environment. The results show the effectiveness of our pro-
posed method.
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