
Publications of the DLR elibelibelib

This is the author's copy of the publication as archived with the DLR's electronic library at http://elib.dlr.de. Please
consult the original publication for citation.

Kinematic Transfer Learning of Sampling Distributions for
Manipulator Motion Planning
Peter Lehner; Maximo A. Roa; Alin Albu-Schaeffer

Copyright Notice

c 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Citation Notice

@ARTICLE{lehner2022,

author = {Peter Lehner and Maximo A. Roa and Alin Albu-Schaeffer},

title = {Kinematic Transfer Learning of Sampling Distributions for Manipulator Motion Planning},

booktitle={Proc. 2022 IEEE Int. Conf. Robotics and Automation ({ICRA})},

year={2022},

pages={7211--7217},

}

Kinematic Transfer Learning of Sampling Distributions
for Manipulator Motion Planning

Peter Lehner Máximo A. Roa Alin Albu-Schäffer∗†

Abstract

Recent research has shown that guiding sampling-based planners with sampling distributions, learned
from previous experiences via density estimation, can significantly decrease computation times for motion
planning. We propose an algorithm that can estimate the density from the experiences of a robot with
different kinematic structure, on the same task. The method allows to generalize collected data from
one source manipulator to similarly designed target manipulators, significantly reducing the computation
time for new queries for the target manipulator. We evaluate the algorithm in two experiments, including
a constrained manipulation task with five different collaborative robots, and show that transferring
information can significantly decrease planning time.

1 INTRODUCTION
Collaborative robots (cobots) have evolved in recent years from research prototypes to a wide range of
commercial products. Manufacturers are changing their workflows to incorporate these cobots in their
production lines. Based on perception modules, these robots can detect and manipulate objects automatically
or in cooperation with operators. To autonomously perform their task, these manipulators require motion
planning algorithms that efficiently generate motions within the demanding cycle times in production lines.

Gathering and exploiting data for efficiency in production has become even more relevant. Recent
research on motion planning has focused on gaining efficiency by learning from previous instances of a
similar task [1, 2, 3], including our own contributions [4, 5]. These approaches explicitly or implicitly
assume that the kinematic of the manipulator does not change. In a market where many different cobots are
available, this presents a problem: If the manufacturer chooses a particular robot for an application, is the
collected data only useful for generating motions for this kind of robot?

In this work we present an algorithm for transferring collected data from a source robot to a target robot,
increasing the efficiency of motion planning for the new robot on the same task. This technology allows to
share experiences between different robots designed for similar applications, a key step in realizing a robot
independent database - increasing the flexibility of operators when choosing cobots for their production.

The algorithm transfers previous solutions of the source robot into the configuration space (C-space) of
the target robot, and estimates a sampling distribution that guides a sampling-based planner to exploit the
relevant C-space of the task. We present an algorithm for transferring the solutions, learning the sampling
distribution and biasing a sampling-based planner to solve new problem instances.

We evaluate the algorithm in two experiments, including an experiment that transfers experience for a
constrained manipulation task between five cobots, as shown in Figure 1. The experiments show that such
experience transfer leads to significant reduction in computation time.

∗All authors are with the Institute of Robotics and Mechatronics, German Aerospace Center (DLR) at Oberpfaffenhofen,
Germany. Contact: peter.lehner@dlr.de

†This work was partially funded by the DLR internal project “Factory of the Future Extended”; by the Helmholtz Association,
strategic future topic ARCHES ZT-0033, and project COVIPA KA1-Co-02; and the Bavarian Ministry of Economic Affairs, Regional
Development and Energy, project OPERA DIK-2107-0005//DIK0374/02

Figure 1: The core idea of kinematic transfer learning: Transfer information from known motions for one
type of manipulator into the state space of other manipulators - accelerating the search for motions of the
target manipulators.

2 RELATED WORK
Classical sampling-based planning approaches include the Probabilistic Roadmap Method (PRM) [6], which
constructs a graph of feasible (collision-free) robot configurations in the C-space for multi-query planning;
and the Rapidly-Exploring Random Tree (RRT) [7], which expands a search tree toward unknown regions
of the C-space while trying to reach the goal configuration. A derived method, the CBiRRT2 algorithm [8]
uses projection and rejection sampling to extend a tree from the starting and the goal configurations on the
constraint manifold, until finding the connection between both trees, which provides the required solution.
In our experiments we guide the search of the RRT and the CBiRRT2 algorithm with learned sampling
distributions.

To gather experience before the query, a pre-computed discrete roadmap (using PRM) allows the iden-
tification of relevant connections in the C-space. Lazy PRM [9] delays collision checks to gain efficiency
in slightly changing environments. Experience Graphs [10] construct a discrete graph from previous paths,
which guides the current query based on heuristics. Similarly, Experience-Based Planning with Sparse
Roadmap Spanners [11] constructs a sparse roadmap and gains new experience with a parallel RRT planner.
In our previous work on Repetition Roadmaps (RepMaps) [5], we constructed a roadmap by connecting the
individual components of a learned distribution, which creates a roadmap that is able to capture the relevant
portion of the C-space.

Adaptive sampling-based approaches encode the experience from previous solutions in the sampling
distribution of the planner. The resulting planners are not bound to discrete states, but contain less connec-
tivity information of the C-space than roadmap methods. Existing methods learn sampling distributions,
for example with reinforcement learning based on workspace features [12]. A recent trend investigates
density estimation of sampling distributions in the C-space of the robot based on previous experience. These
sampling distributions are either constructed with Kernel Density Estimation [13], trained with conditional
variational auto encoders [1, 14] or generative adversarial networks [15, 3]. None of these methods attempts
to transfer the sampling distribution in between robots with different kinematic structures. The method here
proposed computes sampling distributions based on our previous work with Gaussian Mixture Models [4],
but any of the mentioned methods could potentially be used for the density estimation.

start

goal

scene
objects

a) b) c) d) e)

A B CA
B

C

C
C

Figure 2: Overview of the transfer learning process with planar manipulators. a) shows the repetitive
motion planning problem: all objects as well as the start configuration vary between problem instances.
b) shows three different kinematics with two 5 DoF (A, B), and a 7 DoF (C) planar manipulators. c)
shows the translated path of kinematic A from a) into kinematics B and C. d) visualizes the learned sampling
distribution transferred from 200 solution paths from A to C, by sampling 10000 configurations and overlaying
the end-effector frames as dots. e) shows five configurations, sampled from the distribution.

3 KINEMATIC TRANSFER PROBLEM
In this work we design an algorithm to solve a repetitive motion planning problem. The robot has a certain
start configuration qs and is requested to move the tool or grasped object to a certain goal pose Tg relative to
the robot base, following a solution path P of configurations qi. In each instance of the problem the same
objects are in the scene but each object has a locally different pose, assumed to be normally distributed. Not
all objects have to be present at each problem instance, but the algorithm performs best when each object
is present at some point during the learning phase. In each problem instance, the manipulator starts at a
different qs and can plan to a different pose Tg.

In addition, there are 𝑀 previous solution paths Pm,S available in the C-space of a source robot with
a similar workspace, but with a different kinematic structure than the current target robot. The goal of
the algorithm is to exploit the information of these paths to efficiently solve new instances of the repetitive
motion planning problem.

4 KINEMATIC TRANSFER LEARNING
The basic idea of the algorithm is to augment the sampling distribution of a sampling-based planner to
efficiently sample the relevant C-space for the repetitive motion planning problem at hand. By focusing the
search on the relevant C-space, the algorithm saves computation time.

To estimate a sampling distribution of a target robot from the solutions of a different source robot, the
algorithm first A) transfers the configurations into the C-space of the target robot. Based on the transferred
configurations the algorithm B) estimates a sampling distribution in the C-space of the target robot. During
production, the algorithm exploits the sampling distribution to C) guide the sampling-based planner with
samples drawn from the distribution.

4.1 Transfer solution paths
To transfer the configurations qi,S of the 𝑀 previous solutions Pm,S from the source robot to the target robot,
we assume that the end-effector poses of the source robot are relevant for the planning problem of the target
robot. This is a reasonable assumption: To solve the same task in a similar environment, both end-effectors
follow similar motions.

The algorithm transfers each configuration qi,S of a solution path Pm,S of the source manipulator
into 𝐿 configurations qi,T of the target manipulator. For each qi,S the algorithm computes the pose of a
specific transfer frame TT,S of the source manipulator. An inverse-kinematics (IK) solver computes the 𝐿
configurations for a matching transfer frame TT,T on the target manipulator. The IK query can result in no
solution or infinitely many solutions. In the former case, we skip the configuration qi,S as it is not important
to capture every configuration for the sampling distribution. To avoid the case of more than 𝐿 solutions,
the algorithm enforces a minimum joint space distance 𝑑 between different configurations, and selects 𝐿

configurations randomly. The IK solver can be an analytic solver for manipulators with known analytic
equation (fast), or a solver that relies on projection sampling, i.e., sampling configurations and following a
gradient-descent to the desired pose (slow). Figures 2 a) and 2 c) show a path transferred from a planar
manipulator with kinematic A to the kinematics of B and C using the transfer frames shown in Figure 2 b).

The algorithm iterates through every configuration qi,S of each solution path Pm,S and collects the 𝑁
transferred configurations qi,T in a learning set Q - the basis for estimating the sampling distribution for the
target manipulator.

4.2 Estimating the sampling distribution
Once the configurations are transferred into the C-space of the target manipulator, we can apply the repetition
sampling algorithm we previously published [4]. The algorithm estimates a Gaussian Mixture Model (GMM)
from the learning set Q, which contains the stacked 𝑁 configurations qi,T:

Q =
[
q0,T . . . qi,T . . . qN,T

]𝑇 (1)

The algorithm starts by initializing the distribution with k-Means and estimates the GMM using Expectation
Maximation (EM) [16]. The algorithm iteratively computes the responsibility 𝑟i,k of each Gaussian Nk
representing the configuration qi,T as

𝑟i,k =
𝑤kNk(qi,T)∑K
𝑗=1𝑤jNj(qi,T)

(2)

Based on the responsibility the EM algorithm recomputes the mean of each component

𝜇k =
1
𝑅𝑘

𝑁∑︁
𝑖=1

𝑟i,kqi,T, (3)

the variance of each component

Σk =
1
𝑅𝑘

𝑁∑︁
𝑖=1

𝑟i,k(qi,T − 𝜇k) (qi,T − 𝜇k)𝑇 , (4)

and the new weight of each component
𝑤k =

𝑅𝑘

𝑁
, (5)

where 𝑅𝑘 represents the sum of responsibilities of this component.

𝑅𝑘 =
𝑁∑︁
𝑖=1

𝑟i,k, (6)

The EM algorithm iterates until the log likelihood

lnp(Q) =
𝑁∑︁
𝑖=1

ln

(K∑︁
𝑘=1

𝑟i,kN𝑘 (qi,T)
)

(7)

reaches a local optimum.

4.3 Guiding the sampling-based planner
During production, the algorithm guides the sampling-based planner with the new sampling distribution into
the relevant C-space. During each expansion step of the planner, new samples are drawn from the learned
distribution instead of using a uniform distribution. In our experiments we bias the sampling distribution
of a Bi-directional RRT (BiRRT) planner for the planar manipulator experiment and a Constrained Bi-
directional RRT (CBiRRT2) [8] for the cobot experiments. Nevertheless the distributions can guide any
sampling-based-planner, for example PRM-based methods.

5 EXPERIMENTS
We evaluated the presented algorithm in two experiments: A 2D planar toy example to gain insights and
visualize the distributions, and a constrained manipulation experiment in which existing collaborative robots
pick and store a container without spilling its contents. The statistics for both experiments were computed
on a desktop computer with an Intel(R) i7 CPU with 2.8 GHz and 16 GB of RAM.

5.1 Planar manipulators
An overview of the planar planning problem is depicted in Figure 2 a). The manipulator delivers the orange
object to the goal, without colliding with the three gray obstacles. In each problem instance the poses of
all objects vary locally and are sampled from a normal distribution each. We created three manipulators
depicted with the chosen transfer frames in Figure 2 b). The structure for robots A and B both consist of five
revolute joints placed at different positions, while kinematic C consists of seven revolute joints.

We recorded a learning set of solutions on 200 problem instances for each of the three manipulators using
a Bidirectional RRT (BiRRT) with uniform sampling. To decrease the learning set path length we employed
a shortcut algorithm for 100 ms on each solution [17]. From the learning set we estimated nine distributions,
one for each tuple of kinematics. We biased the BiRRT with each sampling distribution and evaluated each
resulting planner with 50 test problem instances. The resulting data are depicted in Figures 4 and 5, as well
as in Table 1.

Figure 4 shows that the mean number of collision checks is significantly lower for all planners with a
learned sampling distribution than for the planners with a uniform distribution. The reduction ranges from a
factor of 2.2, for the case of the 5 DoF A kinematic trained on the 7 DoF C kinematic, to a factor of 9.2, for
the case of the 7 DoF C kinematic trained on the 5 DoF B kinematic. Figure 5 shows that this trend is not as
pronounced in the computation time speedup, which ranges from a factor of 1.1 to 3.4. We investigated the
statistical relevance in a two-sided Wilcoxon test: Comparing the number of collision checks of each learned
distribution with the uniform distribution, for each target robot, yields a maximum p-value of 2.1× 10−12,
indicating high significance of the results.

5.2 Collaborative Robots
We evaluated the algorithm in a realistic setting using five collaborative robots (cobots). As depicted in
Figure 3, the task of the cobot is to move a container from the table into a bin. To not spill any contents,
the motion has to respect an additional orientation constraint. In each problem instance the poses of the bin
and container vary locally, and one of the two deposit locations in the bin is already occupied by another
container. In the target application the operator can repeatedly place the relevant objects in the same general
poses on the table, but does not need to precisely position the objects. We choose five existing cobots shown
with their transfer frames in Figure 3 b): The DLR SARA robot (7 DoF), the KUKA IIWA robot (7 DoF),
the Universal UR10E (6 DoF), the Franka PANDA robot (7 DoF), and the Rethink SAWYER robot (8 DoF
- 7 relevant for the task). For all robots we placed the transfer frames onto the inner palm of their gripper,
keeping the same orientation.

We recorded a learning set of solutions on 500 problem instances for each of the cobots using a CBiRRT2
planner with uniform sampling. To decrease the learning set path length we a employed a shortcut algorithm
for 100 ms on each solution [17]. From the learning set we estimated 25 distributions, one for each tuple of
kinematics.

For each distribution an average of 72160 configurations were transferred in an average time of 6.52 s
with analytic inverse kinematics solvers generated with IKFast [18], and the EM algorithm to compute each
distribution took an average time of 42.3 s. We biased the CBiRRT2 with each sampling distribution and
evaluated each resulting planner with 100 test problem instances. The resulting data is depicted in Figures 6
and 7, as well as in Table 2.

Figure 6 shows that the mean number of collision checks is significantly lower for all planners with a
learned sampling distribution than for the planners with a uniform distribution. The reduction in collision
check ranges from a factor of 1.4, for the case of the SARA trained on the UR10E robot, to a factor of 3.9, for
the case of the UR10E trained on the IIWA robot. Figure 5 shows that this trend is similar in the computation

start

goal

changing

a) b) c) d) e)

poses

SARA

IIWA

UR10E

PANDA

SAWYER
UR10E UR10E UR10E

PANDA PANDA PANDA

Figure 3: Overview of the transfer learning experiment with manipulators. a) shows the repetitive motion
planning problem: all objects as well as the start configuration vary between problem instances. b) depicts
two views of the five cobots used in the experiments, as well as the used transfer frame. c) shows the
translated paths of the UR10E and the PANDA robot from the path of the SARA robot in a). d) visualizes the
learned sampling distributions transferred from 500 solution paths from SARA to UR10E and PANDA, by
sampling 10000 configurations and overlaying the end-effector frames as dots. e) shows five configurations
each, sampled from the same distribution.

time: The speedup ranges from a factor of 1.3 to a factor of 3.9. We investigated the statistical relevance in
a two-sided Wilcoxon test: Comparing the computation time of each learned distribution with the uniform
distribution, for each target robot, yields a maximum p-value of 9.4×10−4, indicating high significance of
the results. Table 2 shows a slight trend that the learned sampling distributions produce shorter paths, but
no statistically relevant claim can be made.

In addition to the results from simulated experiments, we executed a few of the computed motions on the
SARA robot to solve the task with different object placements. The motions can be seen in the accompanying
video material.

6 DISCUSSION
The data from the experiments suggest that transferring experience from one robot increases the efficiency of
the search for a new motion of a target robot. Both experiments show significantly reduced collision checks
for all motion planners that were guided by the learned sampling distributions, when compared to uniform
sampling. This indicates that the learned sampling distribution focuses the search onto the relevant C-space,
which leads to significant computation time speedups in the cobot experiment. In addition, the variance in
computation time is significantly lower, increasing the predictability of the planning cycle time.

The reduction in computation time seems to correlate to how complex the motion is to compute for a
certain robot. The robots with the highest number of mean collision checks with uniform sampling, UR10E
as well as SAWYER, also have the highest computation time speedups. The SARA robot with the lowest
amount of collision checks during uniform sampling, has the lowest computation time speedup.

The average computation time of 6.52 s for transferring the configurations from the source manipulator to
the target manipulator shows the computational benefit, instead of computing a new learning set for the target
manipulator, which would take at least 395 s for the best case of the IIWA manipulator. Re-computation of
the learning set can also be difficult in cases where the obstacles are not available as meshes, but for example
perceived live from RGB-D data.

The data show no significant difference in path lengths between uniform sampling and the learned
sampling distributions, although the learning set solutions were locally optimized. This indicates that it is
difficult to transfer path qualities between the robots, since the C-spaces of the robots are fundamentally
different.

Surprisingly, the best computation time for each robot is not necessarily achieved with the sampling
distribution trained on the robot itself, as seen for the SARA and UR10E robots. One potential explanation
is that the learning sets of both robots contained less relevant information. Increasing the learning set size
might help alleviate this problem.

In the experiments we investigated serial manipulators with revolute joints (5R, 6R, 7R), targeting
kinematics of most cobots today [19]. Future work could investigate the transferrability to different kinematic
types, including parallel kinematics or kinematics with prismatic joints, and derive a transferrability measure
in-between different kinematics.

7 CONCLUSIONS
Transferring the experience of one manipulator to a new manipulator in the same application domain can
decrease the computation time for motion planning significantly. The proposed algorithm for transferring
configurations and estimating a sampling distribution for a sampling-based planner can achieve this goal, as
shown by the data presented in the experiments.

References
[1] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions for robot motion planning,” in Proc. IEEE Int. Conf.

on Robotics and Automation (ICRA), pp. 7087–7094, 2018.

[2] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning networks: Bridging the gap between learning-based
and classical motion planners,” IEEE Transactions on Robotics, vol. 37, no. 1, pp. 48–66, 2021.

[3] T. S. Lembono, E. Pignat, J. Jankowski, and S. Calinon, “Learning constrained distributions of robot configurations with
generative adversarial network,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4233–4240, 2021.

[4] P. Lehner and A. Albu-Schäffer, “Repetition sampling for efficiently planning similar constrained manipulation tasks,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 2851–2856, 2017.

[5] P. Lehner and A. Albu-Schäffer, “The repetition roadmap for repetitive constrained motion planning,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3884–3891, 2018.

[6] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[7] S. M. LaValle, “Rapidly exploring dense trees,” Planning Algorithms, pp. 228–237, 2004.

[8] D. Berenson, S. S. Srinivasa, and J. Kuffner, “Task space regions: A framework for pose-constrained manipulation planning,”
The Int. Journal of Robotics Research, vol. 30, no. 12, pp. 1435–1460, 2011.

[9] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 1,
pp. 521–528, 2000.

[10] M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev, “E-graphs: Bootstrapping planning with experience graphs.,” in
Robotics: Science and Systems VIII, pp. 337–344, 2012.

[11] D. Coleman, I. A. Şucan, M. Moll, K. Okada, and N. Correll, “Experience-based planning with sparse roadmap spanners,” in
Proc. IEEE Int. Conf. Robotics and Automation, pp. 900–905, 2015.

[12] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace biasing for sampling-based planners,” in Proc. IEEE Int. Conf.
Robotics and Automation, pp. 3757–3762, 2008.

[13] T. F. Iversen and L.-P. Ellekilde, “Kernel density estimation based self-learning sampling strategy for motion planning of
repetitive tasks,” in Proc. IEEE Int. Conf. Intelligent Robots and Systems, pp. 1380–1387, 2016.

[14] D. Molina, K. Kumar, and S. Srivastava, “Learn and link: Learning critical regions for efficient planning,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), pp. 10605–10611, 2020.

[15] R. Gieselmann and F. T. Pokorny, “Standard deep generative models for density estimation in configuration spaces: A study of
benefits, limits and challenges,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 5238–5245, 2020.

[16] C. Bishop, “Mixture models and EM,” Pattern Recognition and Machine Learning, pp. 423–455, 2006.

[17] R. Geraerts and M. H. Overmars, “Creating high-quality paths for motion planning,” The Int. Journal of Robotics Research,
vol. 26, no. 8, pp. 845–863, 2007.

[18] R. Diankov, “Inverse kinematics,” Automated Construction of Robotic Manipulation Programs, Ph. D. dissertation, pp. 78–98,
2010.

[19] E. Matheson, R. Minto, E. G. Zampieri, M. Faccio, and G. Rosati, “Human–robot collaboration in manufacturing applications:
a review,” Robotics, vol. 8, no. 4, p. 100, 2019.

Table 1: Results for the planar manipulators experiment

RRT
Guidance

Evaluated
Robot 5 DoF A 5 DoF B 7 DoF C

Computation time mean [s]
Uniform 0.42 0.49 1.57
5 DoF A 0.38 0.32 0.80
5 DoF B 0.30 0.30 0.46
7 DoF C 0.38 0.34 0.78

Computation time std. dev. [s]
Uniform 0.20 0.27 0.78
5 DoF A 0.21 0.15 0.59
5 DoF B 0.17 0.14 0.25
7 DoF C 0.26 0.16 0.54

Collision checks mean [#]
Uniform 5176 4695 20354
5 DoF A 2356 1862 3940
5 DoF B 1863 1772 2204
7 DoF C 2367 2054 3786

Collision checks std. dev. [#]
Uniform 2830 2867 10692
5 DoF A 1409 952 2971
5 DoF B 1128 871 1229
7 DoF C 1669 977 2640

Path length (joint distance) mean [deg]
Uniform 758.90 890.40 968.10
5 DoF A 732.90 848.60 897.40
5 DoF B 777.50 880.00 873.90
7 DoF C 747.20 886.90 882.80

Path length (joint distance) std. dev. [deg]
Uniform 192.40 220.40 280.50
5 DoF A 187.00 199.60 223.70
5 DoF B 194.00 226.30 224.90
7 DoF C 212.80 218.70 246.60

Figure 4: Barplots of the number of collision checks in the planar manipulator experiment with the manip-
ulators shown in Figure 2 b). Guidance denotes the source robot from which the sampling distribution was
derived, while Robot denotes the target robot. Uniform indicates uniform sampling.

Figure 5: Barplots of the computation time in the planar manipulator experiment with the manipulators
shown in Figure 2 b). Guidance denotes the source robot from which the sampling distribution was derived,
while Robot denotes the target robot. Uniform indicates uniform sampling.

Table 2: Results for the cobot experiment

RRT
Guidance

Evaluated
Robot SARA IIWA UR10E PANDA SAWYER

Computation time mean [s]
Uniform 0.80 0.79 2.51 1.08 2.59
SARA 0.59 0.38 1.22 0.69 1.50
IIWA 0.42 0.32 0.64 0.49 1.23
UR10E 0.61 0.38 0.67 0.39 1.39
PANDA 0.44 0.36 0.80 0.35 1.22
SAWYER 0.45 0.38 0.78 0.44 1.19

Computation time std. dev. [s]
Uniform 0.73 0.73 2.51 0.96 2.34
SARA 0.50 0.29 0.99 0.64 1.18
IIWA 0.34 0.24 0.52 0.51 1.06
UR10E 1.96 0.34 0.56 0.45 1.15
PANDA 0.34 0.27 0.71 0.33 0.90
SAWYER 0.36 0.32 0.59 0.39 0.97

Collision checks mean [#]
Uniform 5689 8054 11604 10321 9155
SARA 3667 3602 4763 5678 4802
IIWA 2827 2959 2707 4109 4183
UR10E 3959 3519 2971 3044 4514
PANDA 2793 3221 3276 2824 3931
SAWYER 3078 3549 3339 3693 4044

Collision checks std. dev. [#]
Uniform 5114 7313 11421 8984 8230
SARA 3089 2733 3790 5076 3732
IIWA 2242 2157 2166 4178 3557
UR10E 12557 3032 2518 3375 3690
PANDA 2088 2289 2888 2579 2872
SAWYER 2447 2891 2560 3221 3284

Path length (joint distance) mean [deg]
Uniform 880.99 947.69 1065.13 884.91 1038.26
SARA 816.39 846.28 791.32 679.50 909.09
IIWA 819.79 781.57 776.25 643.63 858.48
UR10E 866.78 819.03 802.66 637.73 855.76
PANDA 770.50 757.46 788.95 565.99 882.37
SAWYER 834.94 777.53 755.48 634.27 949.92

Path length (joint distance) std. dev. [deg]
Uniform 388.82 457.51 419.81 392.87 454.90
SARA 418.01 412.26 348.72 297.53 437.16
IIWA 420.43 402.76 339.86 336.45 387.98
UR10E 425.52 396.06 331.10 341.34 398.10
PANDA 385.64 377.02 346.76 300.37 412.89
SAWYER 398.78 373.37 328.53 329.80 400.35

Figure 6: Barplots of the number of collision checks in the cobot manipulator experiment with the manip-
ulators shown in Figure 3 b). Guidance denotes the source robot from which the sampling distribution was
derived, while Robot denotes the target robot. Uniform indicates uniform sampling.

Figure 7: Barplots of the computation time in the cobot manipulator experiment with the manipulators shown
in Figure 3 b). Guidance denotes the source robot from which the sampling distribution was derived, while
Robot denotes the target robot. Uniform indicates uniform sampling.

