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Abstract— The increasing deployment of robots in co-
working scenarios with humans has revealed complex safety and
efficiency challenges in the computation of the robot behavior.
Movement among humans is one of the most fundamental
—and yet critical—problems in this frontier. While several
approaches have addressed this problem from a purely nav-
igational point of view, the absence of a unified paradigm
for communicating with humans limits their ability to prevent
deadlocks and compute feasible solutions. This paper presents
a joint communication and motion planning framework that
selects from an arbitrary input set of robot’s communication
signals while computing robot motion plans. It models a hu-
man co-worker’s imperfect perception of these communications
using a noisy sensor model and facilitates the specification
of a variety of social/workplace compliance priorities with
a flexible cost function. Theoretical results and simulator-
based empirical evaluations show that our approach efficiently
computes motion plans and communication strategies that
reduce conflicts between agents and resolve potential deadlocks.

I. INTRODUCTION

Technological breakthroughs of the past decade have led
to increasingly common human-robot co-working environ-
ments [1]. Navigating among humans is an imperative task
that most cobots, ranging from industrial to service robots,
are expected to perform safely and efficiently. Although
motion planning for autonomous robots has been studied
from multiple perspectives [2]–[4], these approaches focus
on movement actions and do not address the problem using
communication to resolve situations that require extensive
human-robot interaction. The objective of this paper is to
develop a unified paradigm for computing movement and
communication strategies that improve efficiency and reduce
movement conflicts in co-working scenarios (see Fig. 1).

Although the problem of integrated task and motion plan-
ning has received significant research attention [5]–[10] the
integration of these deliberative processes with communi-
cation has not been studied sufficiently. Prior work on this
topic includes extensions to sampling based motion planning
paradigms that model pedestrians as moving obstacles [11],
[12]. While these extensions provide valuable enhancements
of well-known and efficient algorithms, they view humans
as impervious entities and have limited applicability in co-
working scenarios where both the human and the robot need
to adjust their behavior to allow feasible solutions. On the
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Fig. 1: An example of a social navigation scenario in a
confined environment where the robot’s movement can not
reveal any information about its future intentions.

other hand, there are approaches that employ disjoint predic-
tion models to establish simple interactions with humans to
generate safer and more risk-aware motion plans [13]. Since
these approaches neglect the effect of the robot’s motion on
the human’s behavior, they suffer from the robot freezing
problem where the robot cannot find any safe solution. To
address this limitation, socially compliant methods consider
potential human-robot cooperation via learning and planning
techniques to produce legible plans or plans subject to
stipulations on the information divulged during plan execu-
tion [14]–[16]. [17] employs inverse reinforcement learning
(IRL) to learn interactive models of pedestrians in the
environment for social compliant path planning. Further, [18]
presents a social navigation framework that adapts the social
force model (SFM) to generate human-friendly collision-
free motion plans in unknown environments. Although these
approaches model the effect of the robot’s movement on
the humans’ behavior for legible motion planning, relying
purely on motion actions, taxonomically known as implicit
communication [19], could be misleading for the human [20]
and may lead to deadlocks in confined environments.

Clearly, employing explicit communication [21] coupled
with the robot’s movements would enrich the human-robot
interaction. [22] uses IRL to model the effects of both
explicit and implicit actions of the robot on the human’s
behavior. Further, a robot planner relies on this model to pro-
duce communicative actions to maximize the robot’s clarity.
Since this method assumes predefined behavior modes for
the robot and human (robot priority and human priority),
the solution always impels one agent to slow down, which
degrades the planning effectiveness.
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In contrast, we formalize a unified deliberative commu-
nication planning problem that addresses the joint prob-
lem of computing the robot’s communication strategy and
movements while taking into account the human’s imperfect
perception about the robot and its communications (Sec. IV).
We use a noisy communication model to estimate the results
of robot’s communications on the human’s belief of the
robot’s possible locations. In contrast to the human prediction
framework in [22], which requires the robot’s future trajecto-
ries (the need for socially compliant planning illustrates the
difficulty of obtaining such inputs), our approach supports
arbitrary human movement prediction models that can pre-
dict human behaviors given a set of possible obstacles. Our
solution paradigm derives estimates of the human’s belief on
the robot’s positions to compute robot communication and
movement plans (Sec. IV-C)). This is done using a hierarchi-
cal search process with a socially compliant motion planner
Control Barrier Function enabled Time-Based RRT (CBF-
TB-RRT) [23] (Sec. IV-B). Theoretical results and extensive
simulations on various test environments show that this
approach efficiently avoids deadlocks and computes mutually
efficient solutions without requiring preset behavior modes.

II. PRELIMINARIES

A. Control Barrier Function (CBF)

Assume that the robot R is following a nonlinear control
affine dynamics as

ṡr = fr(sr) + gr(sr)ar, (1)

where sr ∈ SR ⊆ Rn denotes the state of R, ar ∈ AR ⊆ Rm
is the control input, and fr : Rn → Rn and gr : Rn → Rn×m
are locally Lipschitz functions.

A function α : R → R is an extended class K function
iff it is strictly increasing and α(0) = 0 [24]. A set C ⊆ Rn
is forward invariant w.r.t the system (1) iff for every initial
state s0

r ∈ C, its solution satisfies str ∈ C for all t ≥ 0 [25].

Definition 1 (Control Barrier Function [24]). A continuously
differentiable function B(sr) is a Control Barrier Function
(CBF) for the system (1), if there exists a class K function
α s.t. ∀sr ∈ C :

sup
ar∈AR

(
LfrB(sr) + LgrB(sr)ar + α(B(sr))

)
≥ 0 (2)

where LfrB(sr) = ∂B
∂sr

>
fr(sr), LgrB(sr) = ∂B

∂sr

>
gr(sr)

are the first order Lie derivatives of the system.

Any Lipschitz continuous controller ar ∈ Kcbf (sr) =
{ar ∈ AR | LfB(sr)+LgrB(sr)ar+α(B(sr)) ≥ 0} results
in a forward invariant set C for the system (1).

B. Control Barrier Function Enabled Time-Based Rapidly-
exploring Random Tree (CBF-TB-RRT)

CBF-TB-RRT, proposed in [23], provides a probabilistic
safety guaranteed solution in real-time to the start-to-goal
motion planning problem. At each time step, given a proba-
bilistic trajectory of dynamic agents, this method extracts
ellipsoidal reachable sets for the agents for a given time

horizon with a bounded probability. This method extends
time-based RRT (each node of TB-RRT denotes a specific
state in a specific time), proposed in [26], in conjunction
with CBFs to generate path segments for R (Eq. (1)) that
avoid the agents’ reachable sets while moving toward goal.
If the probability distribution over the dynamic agents’
future trajectory for a given finite time horizon is accurate,
the generated control by CBF-TB-RRT guarantees that the
probability of collision at each time step is bounded.

III. DELIBERATIVE COMMUNICATION PLANNING

We formulate the deliberative communication planning
problem PDC as the problem of jointly computing communi-
cation signals with corresponding feasible motion plans for
R in a social navigation scenario. As a starting point, we
focus on settings with a single robot and a single human
H . In such problems, R’s actions A include communication
as well as movement actions. In order to model realistic
scenarios, we use potentially noisy models of H’s movement
(TH ) and of H’s sensing (O) of R’s communications. We
use these models to evaluate possible courses of action
while computing efficient, collision-free communication and
movement plans for R.

Intuitively, TH maps the current state of H and H’s belief
about the possible positions of R at the next planning cycle
to possible motion plans for H . We model H’s sensor model
O as a variation of the standard noisy sensor paradigm
used in planning under partial observability. O relates H’s
current state, R’s communication action and R’s intended
next state to the observation signal that H receives. In this
formulation, H need not know R’s current/intended states
nor the exact communication that it executed – H only
receives an observation signal. Such sensor models are very
general: they can capture a variety of scenarios ranging
from perfect communication to imperfect communication
settings where H may not have a perfect understanding or
observation of R’s communications and may conflate R’s
communication actions with each other.

Definition 2. A deliberative communication planning prob-
lem is a tuple PDC = 〈S, s0,A, T,G, O, J〉, where:
• S = SR ×SH is the set of states consisting of R’s and
H’s states, respectively.

• s0 = s0
r × s0

h are the initial states of R and H ,
respectively, where s0

r ∈ SR and s0
h ∈ SH .

• A is the set of R’s actions defined as A = Ac ∪
Am, where Ac is a set of communication signals that
includes the null communication, and Am is the implicit
uncountable set of R’s feasible motion plans. Each
feasible motion plan πR ∈ Am is a continuous function
πR : [0, 1]→ SR where πR(0) = s0

r and πR(1) ∈ SR.
• G = 〈GR,GH〉 is the goal pair where GR ⊆ SR is R’s

goal set and GH ⊆ SH is H’s goal set.
• T = 〈TR, TH〉 constitutes transition/movement models

of both agents where TR is R’s transition function
defined as TR : SR × Am → SR, and TH : SH ×
GH×BR

′

H → 2ΠH denotes H’s movement model where



BR′H is the set of possible beliefs over the state of R at
the next planning cycle and ΠH is the set of feasible H
movement plans within SH . TH may be available as a
simulator that yields a sample of the possible H plans.

• O is H’s sensor model defined as O : SH × Ac ×
SR → Ω, where Ω denotes H’s observation. Situations
where H cannot perfectly understand or observe R’s
communication can be modeled by mapping multiple
tuples 〈sh, ac, sr〉 to the same ω ∈ Ω, where ac ∈ Ac.

• J : SH×SR×A → R is a utility function denoting the
value of a joint H-R state and a communication-motion
action. In practice, we express J as a cost function.

A solution to PDC is a sequence of communication actions
and motion plans that satisfy GR, and is defined as follow.

Definition 3. A solution to the deliberative communication
planning problem PDC = 〈S, s0,A, T,G, O, J〉 is a finite
sequence of communication and movement actions: Ψ =
〈(a1

c , π
1
R), (a2

c , π
2
R), · · · , (aqc , π

q
R)〉, where aic ∈ Ac, πiR ∈

Am, π1
R(0) = s0

r , πiR(1) = πi+1
R (0), and πqR(1) ∈ GR for

i = 1, · · · , q.

IV. METHODOLOGY

A. Overview

In the proposed paradigm of joint communication and mo-
tion planning, a motion planner (MP) returns a set of feasible
and collision-free motion plans ΠR ∈ Am considering the
goal set G.Accordingly, a communication planner (CP) uses a
search tree to select a combination of a communication action
and a motion plan at each planning cycle that minimizes J .
Each node of this search tree is defined by 〈s, ac, πR〉 where
s ∈ S, ac ∈ Ac and πR ∈ ΠR. ac denotes the communication
action being considered at this node while πR denotes one
of the plans returned by MP.

Fig. 2 illustrates the mechanism by which MP and CP
interact. MP utilizes CBF-TB-RRT with H’s movement
model and R’s dynamic model to produce a finite set of
feasible motion plans ΠR ⊂ Am (Sec. IV-B). Starting with
a node representing the current state, CP creates a successor
node for each combination of a feasible plan in ΠR and a
communication action from Ac. For each such combination,
it uses a belief update process to compute and store an
estimate of H’s next belief if R were to use the corre-
sponding communication action. At each planning cycle, CP
selects a node of tree that minimizes J (CP is described in
Sec. IV-C). An important property of this approach is that
our solution algorithms are independent of the choice of R,
the environment, and H’s movement and sensor models.

B. CBF-based TB-RRT as MP

We obtain a set ΠR of diverse plans in Alg. 1 by employ-
ing CBF-TB-RRT [23] as MP. We modified the original CBF-
TB-RRT method to better serve our hierarchical framework
as follows. First, the set of possible future trajectories for H
can either be given by a stochastic TH or by a deterministic
TH with an ε tube around the predicted trajectory. We denote
this region by SunsafeR . MP maintains a continually updated
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Fig. 2: An overview of our approach.

estimate of R’s safe states, SsafeR = SR \ SunsafeR , where
SsafeR would be collision-free with respect to the predicted
trajectories of H . Second, the original CBF-TB-RRT expands
a tree for a finite time horizon and just apply the control
for the first time-step at each planning cycle. In contrast,
here, we let R to execute the full returned partial plan.
Finally, instead of selecting one plan to execute, we select
a set of p plans ΠR ⊆ Am of π̄R,j : [t0, tj ] → SsafeR for
j = {1, 2, · · · , p}. Here, each plan π̄R,j represents a path
segment from the initial vertex ν0 at location π̄t0R in time t0
to another vertex νj at location π̄tjR in time tj . Assuming cj
to be the cost of vertex νj in the set of all expanded RRT
vertices V , we minimize the following cost to select p diverse
plans π̄R,j with the minimum costs cj for j ∈ {1, 2, · · · , p},

min
r

Jd =

|V|∑
i=0

wcrici

wd
∑|V|
j=1,i6=j rjdij

,

s.t.
|V|∑
i=0

ri = p, (3)

ri ∈ {0, 1}, for i = 0, · · · , |V|,

where wc and wd are the numerator and denominator
weights, respectively, dij is the Euclidean distance between
vertices i and j, and r is a vector of binary values ri for
i = 1, · · · , |V|, that determines the selected plans (vertices).
Given the expanded RRT at each planning cycle, we mini-
mize (3) using Alg. 1 to find p diverse π̄R plans.

Proposition 1. Given that RRT includes a finite set of
vertices and Jd ≥ 0, Alg. 1 terminates in a finite time.

Assumption 1. The future human motion remains within the
unsafe region SunsafeR predicted by TH .

Lemma 1. Following Assn. 1, all generated path segments
π̄R,j for j = 1, · · · , |V| by CBF-TB-RRT are guaranteed to
remain in SsafeR if π̄t0R ∈ S

safe
R .

Proof. This proof is immediate following [23, Prop. 1].



Algorithm 1: RRT Plan ΠR Generation (MP)
Input: V and p
Output: ΠR

1 P ← Randomly select p vertices from V
2 OPT COST ← Calculate the cost Jd for the vertices

in P
3 while CONVERGE do
4 for ν ∈ V \ P do
5 Calculate the cost Jd for all p-combinations

of P ∪ {ν} and update OPT COST and P
with the minimum cost combination

6 end
7 end
8 ΠR ← Extract the path segments π̄R from ν0 to each

p vertex in P

C. Communication Planner Module (CP)

As discussed in Sec. IV-A, CP builds a search tree to select
an optimal combination of communication action and motion
plan. Recall that each node in the search tree consists of
a state s, a communication action ac and a motion plan
πR. Here, πR denotes the discretization of the continuous-
time path segment π̄R given by MP. We use a belief-space
formulation to represent the set of locations where H might
expect R to be at the next planning cycle k+1. Thus, the set
of all possible beliefs of H , is the power set of SR. However,
in practice H needs to keep track of only a subset of possible
locations, in a small neighbourhood around H .

Definition 4. A δ-local neighborhood of H is a subset L ⊆
SR s.t. the Euclidean distance from SH d(sxyz,SH) of R’s
base coordinates sxyz in state s is less than δ ∀S ∈ L.

We maintain a bounded, discretized set of regions to
approximate H’s belief about R’s presence in their δ-
local neighborhood. Let LH be the set of these discretized
zones {l1, . . . , l`}. Collectively these regions can represent
neighborhoods in domain-specific configurations (e.g., an H-
centered forward-biased cone or a rectangular region around
H with discretized cells). Given a state (sR, sH) ∈ S we
use sR ∈ li(sH) to express that when R’s state is sR and
H’s state is sH , R will be in the region li in H’s local
neighborhood. In this notation, H’s belief is a Boolean vector
of dimension |lH |, so that bi = 1 in a belief b represents a
belief that sR ∈ li(sH) is possible at the next time step.

Given a starting belief bk and an observation symbol ωk,
we can invert the sensor model and the transition function
to derive a logical filtering based belief update equation
for computing bk+1 as follows. Let ϕ1(sk+1

R , i) state that
R at sk+1

R would be in H’s ith neighborhood zone, i.e.,
sk+1
R ∈ li(s

k
H); ϕ2(skR, j) state that bkj was 1 with R at

sR, i.e., bkj = 1 ∧ skR ∈ lj(s
k−1
H ); ϕ3(skR, s

k+1
R ) state that R

can move from skR to sk+1
R , i.e., ∃am ∈ Am, TR(skR, am) =

sk+1
R ; and ϕ4(skH , ω, s

k+1
R ) state that R may have executed a

communication action ac that resulted in observation ω, i.e.,
∃ac ∈ Ac, o(skH , ac, s

k+1
R ) = ω. Inverting the sensor model

and the transition function gives us bk+1
i = 1iff ∃skR, s

k+1
R ∈

SR; j ∈ [1, `] : ϕ1(sk+1
R , i)∧ϕ2(skR, j) ∧ϕ3(skR, am, s

k+1
R )∧

ϕ4(skH , ω, s
k+1
R ). CP uses this expression to compute R’s

estimate of H’s belief bk+1 given a belief bk at the parent
node and the observation ω that H would receive as a result
of the communication action being considered at that node.
We use b(n) to denote this belief for node n.

CP uses a cost function J to evaluate a node n =
〈s, ac, πR〉 in the search tree. Intuitively, J needs to consider
H and R’s future paths ΓH and ΓR, respectively. Γ̃R(n) is
an estimate for ΓR based on πR. However, we do not have an
accurate future path for H and we use b(n) and the human
movement model TH to obtain an estimate Γ̃H(n). We omit
the node argument unless required for clarity.

For computational efficiency, we discretize ΓR and ΓH
as sequences of waypoints: ΓR = {γiR}

imax
i=1 and ΓH =

{γiH}
imax
i=1 . W.l.o.g., both sequences have the same length

as the agent with the shorter path can be assumed to
stay at their final location for remainder of the other
agent’s path execution. Let c(Γ̃) be the sum of pairwise
distances between successive waypoints in a path Γ̃ and let
δ(Γ̃1, Γ̃2) be δ(Γ̃1, Γ̃2) = max(dmin(Γ̃1, Γ̃2) − σsafe, 0),
where σsafe denotes the safety threshold and dmin(Γ̃1, Γ̃2)
is the minimum Euclidean distance between Γ̃1 and Γ̃2:
mini=1,...,imax

{d(γi1, γ
i
2)}. Besides, let cC(ac) be the cost of

executing the communication action ac, and ηR, ηH , ηP , and
ηC be the weights of the cost function. Using this notation,
we define J(n) as follows:

J(n) = ηRc(Γ̃R(n)) + ηHc(Γ̃H(n))+

ηp1/δ(Γ̃R(n), Γ̃H(n)) + ηCc(ac) (4)

In Alg. 2, at each planing iteration (lines 3-20), CP gets a
library of motion plans ΠR from MP. In lines 7-11, a branch
of the tree is created for each ac and πR. As explained in
(4), the path-to-goal of H and R are required to compute a
cost value for each branch. ΓH is thoroughly given by TH ,
as mentioned in line 9. On the other hand, since a πR is
likely a partial path, TR is utilized in line 10 to compute a
completed path-to-goal for R given πR.

Fig. 3 exemplifies two branches of the CP search tree
evaluated in lines 7-11 of Alg. 2. In each example, H is
shown at the center of its δ-local neighborhood visualized
as a set of nine squares around her, where the colored
squares stand for bk. Besides, R is pictured at the bottom
of each example with a partially expand RRT, where dark
gray branches of RRT represented ΠR selected by MP. In
Fig. 3(a), R communicates ac =“Right” and πR is the right
branch of RRT, emphasized by a star, which makes H believe
that it will be in one of the squares on her left. In Fig. 3 (b),
R goes forward and communicates “Forward” as well, which
makes H believe that R will be in one of the middle squares.
In scenario (b), R takes a shorter path to goal but scenario
(a) results in less conflicting paths for both R and H . Thus,
the more optimal branch will be determined based on the
weights of J in (4).



Algorithm 2: Communication Planner
Input: PDC
Output: Ψ

1 initialize: b0 and S0

2 while GOAL TEST(GR,SR) == FALSE do
3 ΠR ← get the plans from the MP
4 MIN COST ←∞
5 for πR ∈ ΠR do
6 for ac ∈ Ac do
7 ωk+1 ← O(ac,Sk)
8 bk+1 ← UPDATE(bk, ωk+1)
9 Γ̃H ← TH(SkH ,GH ,bk+1)

10 Γ̃R ← TR(SR, πR)

11 cbranch ← J(Γ̃R, Γ̃H , ac)
12 if cbranch < MIN COST then
13 MIN COST ← cbranch
14 BEST ACTION ← 〈πR, ac〉
15 end
16 end
17 end
18 EXECUTE(BEST ACTION)
19 Sk ← Sk+1

20 Ψ.APPEND(BEST ACTION)
21 end

Assumption 2. The predicted trajectories ΓH given by TH
in the discretized domain is an over-approximation of the
predicted trajectories by TH in the continuous domain.

Assumption 3. The discretized projection of π̄R on ΓR (πR
in discretized domain) is an over-approximation of π̄R in the
continuous domain.

Theorem 1. Let PDC = 〈S, s0,A, T,G, O, J〉 be a delib-
erative communication problem and let Ψ∗ = 〈(aic, πiR)〉qi=1

be its solution computed by Alg. 2 using the cost function
J in (4). Let ΓR be the discretized waypoints of R in
Ψ∗ defined as ΓR = 〈πiR〉i, and ΓH be a corresponding
discretized waypoint sequence of a trajectory for H predicted
by TH and starting at s0 with the goal GH . If Assn. 1-
3 hold, ΓR will either lie within S̄safeR or it will satisfy
dmin(ΓR,ΓH) > σsafe.

Proof. Since R has a null communication action that does
not alter H’s belief, Alg. 2 will always have a node reflecting
the default behavior of CBF-TB-RRT with cost <∞. In this
case, Lemma 1 guarantees R’s trajectory not to leave S̄safeR .
If Assn. 2 and 3 hold, and if Alg. 2 selects a node other than
the default CBF-TB-RRT behavior, the min distance will be
at least σsafe, otherwise ∀ ηP > 0, J would be ∞ and the
default CBF-TB-RRT behavior will be selected.

V. EMPIRICAL EVALUATION

We conducted extensive experiments in various simulation
environments to evaluate the proposed method. These exper-
iments 1) draw a comparison between the proposed method
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ForwardRight
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a) b)

Fig. 3: Two examples of the reasoning procedure of CP for
a branch of the search tree.

and the baseline method CBF-TB-RRT, and 2) illustrate the
performance of the proposed method in deadlock situations.

A. Implementation
1) CBF-TB-RRT Design: In our implementation, we con-

sider the nonholonomic unicycle model for R dynamics as

ṡr = gr(sr)ar =

[
cos(θr) 0
sin(θr) 0

0 1

]
ar. (5)

where states are sr = [xr, yr, θr]
T ∈ SR ⊆ R2× [−π, π)

and control inputs are ar = [vr, ωr]
T ∈ AR ⊆ R2. The

parameters xr, yr, θr denote the longitudinal and lateral
positions of R and heading angle, respectively. The controls
vr and ωr also represent the linear and angular velocities of
R, respectively. Moreover, the goal set Sg ⊂ SR of R can
describe a set of position states in R2 as follows

Sg =
{
sr ∈ SR |

∥∥[xr, yr]
T − sg

∥∥2

2
− r2

g ≤ 0
}
, (6)

where ‖·‖2 denotes the Euclidean norm, sg = [xg, yg]
T is

the center, and rg is the radius of the goal set.
While expanding the RRT tree, the following cost ci is

assigned to each vertex νi ∈ V for i = 0, 1, · · · , |V|,

ci = wGd c
G
d + wHd c

H
d + wgcg + wtct, (7)

where cGd is the Euclidean distance between vertex i and the
goal point, cHd is the Euclidean distance between vertex i and
H , ch is the heading cost, and ct is the trap cost. The heading
cost cg calculates the angular difference between the sampled
vertex heading and the heading toward goal. To calculate
the trap cost ct, the algorithm checks the waypoints of a
discretized direct straight line from the sampled vertex to the
goal point. The trap cost ct is then the number of waypoints
lied within the occupied regions. Readers are referred to [23]
for further details on CBF-TB-RRT tree expansion. wGd , wHd ,
wg , and wt are weight terms.
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2) Human Movement Model: We assumed H’s movement
is described by a deterministic kinematic motion transition
function (TH ) and we used the Dynamic Window Approach
(DWA) in MP, proposed in [27], to predict H’s shortest
trajectory to the goal for a finite time horizon. Since DWA is
a deterministic prediction method, we assumed an ε bound
around the human’s predicted trajectory following Assn. 1
to derive the CBF safety constraints. Given the human’s
predicted trajectory sh, we define the safe set SsafeR ⊆ SR as
SsafeR =

{
sr ∈ SR, sh ∈ SH | B(sr, sh) ≥ 0

}
, where B(sr)

is a continuously differentiable safety measure defined as

B(sr, sh) = ‖[xr, yr]T − sh‖22 − (ε+ rh + rr)
2, (8)

rh, and rr are the radii of human and robot, respectively. The
safety measure B(sr) is employed as a CBF to impose the
safety constraint (2) on the control input ar in a Quadratic
Program (QP) to generate safe plans πR [23].

As illustrated in Sec. IV-A, CP also utilizes TH to predict
a trajectory-to-goal for H for each branch of the search
tree. Besides, in contrast to the requirements of the motion
planning module, H movement prediction must be provided
for the whole horizon in communication planning module.
Therefore, for the sake of computational efficiency, CP
utilizes another H movement model rather than DWA. CP
considers a grid-based abstraction of the environment and
utilizes A* search algorithm to predict a path-to-goal for H .
In general this abstraction could be derived using methods for
automatically predicting reliable state and action abstractions
such as [28].

Assumption 4. Predictions drawn from A* and DWA ap-
proaches complied with the Assn. 2 in all our experiments.

3) Human Motion Execution Model: We utilized the
Social Forces model [29] to simulate the human movement,
as it is very fast, scalable, and yet describes observed pedes-
trian behaviors realistically. We modeled H and R both as
pedestrians. To mimic H’s reactivity to R’s communication
action ac, the model creates multiple virtual agents moving
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Fig. 5: Schematic illustration of diversified test environments
that capture various conflicting situation.

from R’s current position to all x-y projections of discretized
zones li ∈ lH in the CP’s belief model for which bi = 1.
If bk = ∅, R’s goal is computed as a linear projection
from its current position based on its current velocity, i.e. H
makes no assumptions over R’s future trajectory. Thus, in
our experiments, the models used by H are different from
the model H used by R, which is likely in real-world setting.

B. Experimental Setup

Test environments: Fig. 5 the environments used in our
experiments. The basic floor map exemplifies spacious en-
vironments, while the hallway and intersection floor maps
model more restricted and confined environments.
Measurements: Aside from cost-to-goal of R and H , there
are four more quantitative measures to evaluate the perfor-
mance and effectiveness of the proposed method:
• R’s normalized speed (RNS): RNS = c∗R/timeactual

R

measures R’s normalized mean speed from s0
r to GR,

where c∗R and timeactualR denote the optimal cost-to-
goal of R and R’s actual travel time respectively.

• H’s normalized speed (HNS): HNS = c∗H/timeactual
H

measures H’s normalized average speed from s0
h to GH ,

where c∗H and timeactualH denote the optimal cost-to-
goal of H and H’s actual travel time respectively.

• Planning iterations (PI): PI denotes the number of
iterations of lines 2 to 17 in Alg. 2.

• Proximity cost (PC): PC measures the closeness of R
and H during an experiments. Let ΓR = {γiR}

imax
i=1

be R’s discretized trajectories given by a solution Ψ
and ΓH = {γiH}

imax
i=1 be the corresponding discretized

waypoint sequence of an actual trajectory for H . We
defined PC using (8) as follows.

Z ={ζi| ζi = B(γiR, γ
i
H) < thresh}imax

i=1 (9)

PC =

{
∞ if ∃ζi ∈ Z, ζi < 0
1/

∑imax
i=1 ζi otherwise

, (10)

Hypotheses: throughout the experiments, we evaluate the fol-
lowing hypotheses 1) In confined environments, the chances
of a deadlock are higher. Therefore, the effect of com-
munication to avoid such deadlocks is more effective. 2)
The proposed deliberative communication approach not only



TABLE I: Comparison with CBF-TB-RRT.

Maps
Measures Our approach CBF-TB-RRT

R cost-to-goal H cost-to-goal PI PC R cost-to-goal H cost-to-goal PI PC

Basic 5.65–5.68 7.33–7.52 2–2 0.50–0.53 5.51–6.27 6.90–6.99 46–113 0.21–0.57
Intersection 3.63–3.88 6.10–6.29 2–2 0.22–0.24 4.20–4.24 5.76–5.90 51–98 0.34–∞

Hallway 10.12–10.58 6.85–7.39 4–4 0.72–0.89 10.27–10.30 6.65–6.77 121–123 ∞ –∞
The results show the range of the measurements in 10 trials per map; PI: planning iterations; PC: proximity cost.

Robot's Normalized Speed Human's Normalized Speed Proximity Cost

Priority Factor (F) Priority Factor (F) Priority Factor (F)

Fig. 6: Flexible prioritization of H and R in different test environments, where F = 1 prioritizes the robot.

results in less conflicting social navigation, but also prevents
deadlock situations where non-communicative approaches
fail to find a solution. 3) By adjusting the weight vector of
the cost function J , H or R can be prioritized. Accordingly,
the non-prioritized agent is expected to have a decreased
normalized average speed due to an increased cost-to-goal.

C. Results

1) Comparison with CBF-RRT: In this section, we aim to
demonstrate that the proposed method performs as optimally
as CBF-TB-RRT, in terms of the traveled distances, while
it reduces the conflict between H and R. In Table I, the
results are presented as the range of 10 experiments the
experiments for each test environments of Fig. 5, where
ηR = 1.5, ηH = 0.25, ηP = 3, ηC = 1, and Ac =
{north, south, east, west}.

Our results show that PC of the baseline drastically
increases in more confined environments. E.g., PC has a
finite range in the basic environment since the room is
spacious, while the PC range is infinity in the intersection
environment where the floor map is confined and only one
agent can pass through a corridor at a time. The situation
is even more severe in the hallway environment in which
the baseline method results in an infinite PC for all 10
experiments. These observations validate Hypothesis 1. In
contrast, the proposed method handles conflicting situations
of the intersection and hallway environments effectively.
The PC values of our method in all environments are
dramatically lower compared to the baseline method, while
cost-to-goal of R and H do not increase noticeably.

Moreover, employing the proposed method eliminates the
necessity for frequent re-planning as PI drops significantly
compared to the experiments with the baseline method.

2) Handling potential deadlocks: According to V-C.1,
the proposed method is significantly more effective in re-
ducing PC in confined environments while maintaining

the efficiency in terms of cR and cH . This property is
particularly imperative in preventing potential deadlocks in
narrow passages, where a lower PC implies less conflicting
path for H and R. Fig. 4 demonstrates a pervasive case
where lack of communication leads to a freezing situation.
In this example, at the first planning iteration, R transmits an
“east” signal, selected automatically by CP, to H by which
H is informed about R’s plan before she enters the narrow
corridor. As shown in Fig. 4 (top left), this communication
signal updates H’s belief about R’s next location adequately
and impels H to clear the passage. At the second planning
iteration, R has already passed through the intersection, so
it remains silent and H’s belief indicates no collisions, as
depicted in Fig. 4 (bottom left).

In the same scenario, the baseline method performs inef-
fectively since H enters the left corridor before R departs
it. When H gets closer to R, there won’t be enough room
for the RRT to be expanded and a deadlock happens since
the passage will be blocked for R permanently. This anal-
ysis supports Hypothesis 2 regarding the capability of the
proposed method to handle potential deadlocks.

3) Flexible prioritization: H or R can be prioritized
flexibly by adjusting the weights of J . A parameter study
on ηR and ηH reveals the way that each agent is favored in
different social navigation scenarios, as shown in Fig. 6. In
these experiments, the weights are adjusted as ηR = Fηconst,
and ηH = (1 − F )ηconst, where F ∈ [0, 1] denotes the
priority factor (R is fully prioritized for F = 1), and
ηconst = 1.5. In all three environments, prioritizing R
increases R’s normalized speed significantly. Fig. 6 shows
that in the basic environment, R’s normalized speed increases
by 2.7 times when R is prioritized, compared to the case
where H is highly prioritized. Likewise, H speeds up when
she is prioritized in the basic and intersection environment.
However, in the hallway environment, the whole H-R in-



teraction is relatively smoother and less conflicting when R
has a higher priority. Together, the present findings support
Hypothesis 3. Furthermore, the results support the fact that
the proposed method maintains a reasonably low PC in all
test environments not matter which agent is prioritized. In
other words, the proposed method can be used to identify
appropriate priorities for smooth social navigation.

VI. CONCLUSION

This paper proposes a joint communication and motion
planning framework that selects from an arbitrary input
set of communication signals while computing the robot
motion plans. The simulation results demonstrated that the
presented framework avoids potential deadlocks in confined
environments by leveraging explicit communications coupled
with robot motion plans. We found that producing less con-
flicting trajectories for the robot in confined environments,
which led to drastically lower proximity costs, indicates
lower chances of a deadlock. We also observed that the
proposed method does not degrade the robot’s efficiency (in
terms of traveled distances) compared to CBF-TB-RRT. In
contrast, the non-communicative baseline method resulted
in high proximity cost overall, which shows its incapability
of generating viable solutions when extensive human-robot
interaction is required. Furthermore, the proposed method
can flexibly prioritize either the robot or the human while
maintaining its effectiveness in handling potential deadlocks.

REFERENCES

[1] J. Cheng, H. Cheng, M. Q.-H. Meng, and H. Zhang, “Autonomous
navigation by mobile robots in human environments: A survey,” in
2018 IEEE International Conference on Robotics and Biomimetics
(ROBIO), pp. 1981–1986, IEEE, 2018.

[2] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 1343–1350, IEEE, 2017.

[3] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation.,” in
Robotics: science and systems, 2012.

[4] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: the case for cooperation,” in 2013 IEEE
international conference on robotics and automation, pp. 2153–2160,
IEEE, 2013.

[5] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the
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