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Flocking-Segregative Swarming Behaviors using Gibbs Random Fields

Paulo Rezeck1 and Renato M. Assunção1 and Luiz Chaimowicz1

Abstract— This paper presents a novel approach that allows
a swarm of heterogeneous robots to produce simultaneously
segregative and flocking behaviors using only local sensing.
These behaviors have been widely studied in swarm robotics
and their combination allows the execution of several complex
tasks. Our approach consists of modeling the swarm as a Gibbs
Random Field (GRF) and using appropriate potential functions
to reach segregation, cohesion and consensus on the velocity
of the swarm. Simulations and proof-of-concept experiments
using real robots are presented to evaluate the performance of
our methodology in comparison to some of the state-of-the-art
works that tackle segregative behaviors.

I. INTRODUCTION

Due to the advances in technology that have enabled the

mass production of increasingly smaller robots [1], control

methods that yield desired collective behaviors using simple

local interactions have received much interest in recent years.

Inspired by the emergent behaviors commonly observed in

nature, one of the main goals of swarm robotics is to develop

such methods in a decentralized and scalable fashion, mainly

relying on local sensing and communication capabilities.

In this sense, one of the most fundamental mechanisms a

robot swarm must exhibit is the ability of group formation

and cohesive navigation [2]. Segregation is a particular type

of group formation in which robots with common character-

istics are placed together and set apart from other groups [3].

Several applications can benefit from using these behaviors,

such as area coverage, surveillance and reconnaissance,

transport, foraging, among others.

This work presents a novel stochastic and decentralized

approach that allows a swarm of heterogeneous robots to

achieve simultaneously segregation and flocking behaviors

using only local sensing. To the best of our knowledge, this

is the first work to tackle these behaviors together starting

from a random initial state and using only local information.

Our approach consists of modeling the robot swarm as a

Gibbs Random Field (GRF) defining its potential energy as

a combination of Coulomb-Buckingham potential and kinetic

energy. Such concepts have been extensively used in statis-

tical mechanics and quantum mechanics to model particle

interactions, but we revisit them in the swarm robotics

context. As a consequence of using GRF and such potentials,

besides supporting the segregation and navigation of different

groups avoiding collision with obstacles, the approach allows

the swarm to reach configurations sufficiently close to the

global minimum energy.

Using simulated experiments, we contrast the method-

ology with a deterministic gradient descent-type algorithm
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using potential differentials showing that such mechanism is

easily trapped at local minima of potential. In addition, we

compare our segregative behavior with some of the state-of-

the-art approaches and evaluate the flocking behavior in the

presence of noise. Real experiments were also performed as

a proof-of-concept for our GRF approach.

II. RELATED WORK

Most works in swarm robotics usually focus on homo-

geneous systems, in which all robots have the same char-

acteristics [4]. However, in recent years, there is a growing

interest in heterogeneous systems. As a consequence, new

types of swarming behaviors have been investigated, such as

segregation. One of the first works to deal with this problem

was proposed by Groß et al. [5]. The authors presented a

control algorithm inspired by a collective phenomenon in

which segregation occurs by constantly shaking a mixture of

different sizes particles (Brazil Nut effect). This study was

later extended by Chen et al. [6] and Joshi et al. [7], when

they evaluated and improved performance and presented

experiments with real robots.

Another approach to segregate a swarm of heterogeneous

robots was presented by Kumar et al. [8]. The authors

took inspiration from a biological theory that explains how

differences in cell adhesion generate mechanical forces that

drive cellular segregation (Differential Adhesion Hypoth-

esis) [9]. This mechanism is modeled with the concept

of differential potential, in which robots are subjected to

differential artificial potential fields according to their groups.

The method’s convergence is guaranteed for two classes,

but the swarm may be trapped in local minima when more

classes are employed. This approach was later extended in

Santos et al. [3], [10] to deal with more than two groups

of robots. One limitation is the requirement that robots must

have global knowledge about the positions of other robots.

Motivated by the use of differential artificial potential

fields, Ferreira Filho and Pimenta [11] proposed a novel

controller that differs from the previous ones by using

abstractions [12] to represent each group. One advantage of

such a controller is that it may not require that all robots

receive information from all other robots all the time. More

recently, the authors extended this controller to incorporate

a collision avoidance scheme that does not interfere with the

original segregation controller [13]. In a different work [14],

they presented a decentralized control strategy to segregate

heterogeneous robot swarms distributed in curves using

consensus protocols and heuristics to compute the traveled

geodesic distances on curves. This approach assumes that

robots know the curve and maintain an underlying fixed

communication topology.
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Recently, two works assuming minimal and local-only

requirements for segregating a swarm of heterogeneous

robots have been proposed. Mitrano et al. [15] extended the

concept of a minimalistic reactive controller [16] to achieve

segregation. They demonstrate that robots with only a ternary

sensor and a controller that maps sensor readings to wheel

speeds can reach a segregated state. Also, considering local

sensing and a memory mechanism supported by communi-

cation, Inácio et al. [17] proposed a strategy that combines

concepts of Particle Swarm Optimization (PSO) [18] with

the Optimal Reciprocal Collision Avoidance (ORCA) [19]

to archive segregation.

Following the works that rely only on local information,

we assume that our robots only use their neighbors’ relative

position and velocities to achieve simultaneous segregation

and cohesive navigation. However, most of these works

only consider collisions with other robots. Our method also

allows the robots to avoid collisions with obstacles in the

environment, considering that they are equipped with range

sensors, such as infrared sensors.

Besides dealing with the segregation problem, our ap-

proach also generates a cohesive navigation behavior for the

different groups of robots. One of the main challenges in

achieving such behavior is reaching a consensus on each

part of the group’s velocity as its size increases. In addition

to that, the groups must remain segregated while navigating.

One of the earliest and most influential approaches to steer

a swarm of homogeneous agents using only local interactions

was proposed by Reynolds [20]. This mechanism, called

boids, combines three simple rules: separation, cohesion, and

alignment. While most works on this subject deal with ho-

mogeneous groups, some use heterogeneous robotic swarms

to study the flocking of distinct groups. Momen et al. [21]

extended the flocking mechanism with heterospecific attrac-

tion rules [22] to model different attraction forces between

two groups of robots, producing a mixed-species flocking.

Ducatelle et al. [23] proposed a mechanism that emerges

cooperative self-organized behaviors to solve complex tasks

using simple local interactions between the robots of the two

different groups. Another study on self-organized flocking

explored the concept of Swarm heterogeneity in the sense

that robots with more capabilities help others that lack some

capabilities in order to yield the desired behavior [24].

Some works tackle the problem of segregated navigation,

in which the robots start in a segregated state and have

to maintain the segregation during navigation. For example,

Santos et al. [25] introduces a novel concept called Virtual

Group Velocity Obstacles that combines the concepts of

flocking [20] and Velocity Obstacles [26] with abstractions

to represent the groups. To improve performance over such

approach, Inácio et al. [27] proposed the combination of the

Optimal Reciprocal Collision Avoidance algorithm [28] with

the concepts of flocking.

Different from these works, our approach simultaneously

generates segregation and flocking behaviors. The robots

start in a completely random state and, as they move around,

they segregate into different groups and keep this segregation

while navigating. To the best of our knowledge, this work is

the first to present a fully decentralized stochastic controller

that performs both behaviors using only local interactions.

Moreover, although our approach produces flocking be-

haviors, we do not use or extend the mechanism proposed by

Reynolds [20]. We model the swarm using dynamic Gibbs

Random Fields (GRF), which provide a robust framework

for dealing with spatially correlated probabilities. We have

been inspired by Tan et al. [29] that used GRF to self-

organize homogeneous robots. Besides the use of hetero-

geneous robots, there are other crucial differences between

our work and [29]: we model a continuous movement of

the robots in a bounded environment and limit the robots’

maximum velocities, while Tan et al. consider a discrete

and a bounded environment and assume lattices as their

environment. In addition, we introduce a different potential

function that makes all the difference in our approach.

In contrast with previous work, we adopt the Coulomb-

Buckingham Potential [30] coupled with a Kinetic Energy

term to model the robots’ interactions.

III. BACKGROUND

In this section, we overview some concepts about Gibbs

Random Fields (GRFs) explaining their properties and why

they make sense in a swarm robotics context. A GRF is

a probabilistic graphical model that is a particular case of

the Markov Random Field (MRF) when the joint probability

density of the random variables is strictly positive. GRF

models are based on local interactions between neighboring

agents. The Markov property is a conditional property that

allows one to ignore more distant information as soon

as local information is provided. The Hammersley-Clifford

theorem establishes the equivalence between a MRF and a

GRF [31].

To describe these models succinctly, assume an undirected

graph G = (V,E) with vertices as spatial sites and indexed

by v = 1, 2, ..., η. A random field on G is as collection

of random variables X = {Xv}v∈V and, for each v ∈ V,

let Λv be finite set called the phase space for site v that

represents where the random variable Xv takes it values.

An instance of X establishes a state of the random field

x = {(x1, ..., xη) : xv ∈ Λv, v ∈ V} and the product space

Λ , Λ1 × ...× Λη forms the configuration space.

A neighborhood system on V is a family N = {Nv}v∈V,

where Nv ⊂ V is the set of neighbors for site v satisfying

v/Nv and r ∈ Nv ⇔ v ∈ Nr. The neighborhood system

induces the configuration of the undirected graph G by

setting an edge {v, r} ∈ E between v and r if and only

if r ∈ Nv. A set C ⊂ V is called a clique if all elements of

C are neighbors of each other.

Thus, a random field X is called an MRF concerning the

neighborhood system N if, ∀v ∈ V,

P (Xv = xv|(Xr = xr)r 6=v) = P (Xv = xv|(Xr = xr)r∈Nv ),
(1)

which indicates that the probability of the site v assuming

the state xv given the state of all other sites is equal to the

probability of v assuming the same state xv given only the

states of neighboring sites. Such a definition reflects the local

characteristics of the MRF constrained by the local Markov



properties [32]. It is convenient to model robotics swarms,

since it implies the conditional independence of information

coming from outside a neighborhood system, which supports

the requirement of local interactions.

A GRF is a particular application for (1) when the Gibbs

measure can represent its joint probability density. A Gibbs

measure is a generalization of the canonical ensemble to

infinite systems, which gives the probability of the system

X being in the state x. Formally, let us denote a potential U

as a family {UA : A ⊂ V} of functions on the configuration

space Λ, where UA : Λ → R, and UA(x) depends only on

xA , {xv : v ∈ A}. At the end, UA is only a function

of the values at the sites contained in the set A, that is

UA(x) ≡ UA(xA). In this way, given a potential U, the

potential energy H(x) for configuration x is defined as

H(x) =
∑

A⊂V

UA(xA). (2)

By definition [31], if UA ≡ 0 whenever A is not a clique

or a singleton, U is called a nearest-neighbor potential. If

UA ≡ 0 whenever A is not a pair or a singleton, U is called

a pairwise potential. U is called a pairwise, nearest-neighbor

potential if it is both a pairwise potential and a nearest-

neighbor potential. In particular, for a pairwise, nearest-

neighbor potential U , we can write (2) as

H(x) =
∑

v∈V

U{v}(xv) +
∑

(v,t)∈V×V,t∈Nv

U{v,t}(xv, xt).

(3)

Finally, a random field X is called a GRF if,

P (X = x) =
1

Z
e−

H(x)
T , with Z =

∑

z

e−
H(z)
T , (4)

where Z is the partition function (normalizing constant);

T is interpreted as temperature in the context of statistical

physics; and 1
Z
e−

H(x)
T is called Gibbs distribution.

Researchers in statistical mechanics and mathematics usu-

ally applied the GRF to describe the distribution of system

configurations at the thermodynamic equilibrium or measure

the probability of such a system yielding the desired state.

One of the challenges of directly evaluating (4) is the high

cardinality of the configuration space, which makes the

computation of Z intractable.

A typical approach to sequential sampling states in a

configuration space given a probability function consists of

using Markov Chain Monte Carlo (MCMC) methods, such as

the Metropolis algorithm [33]. A process to parallelly sample

over (4) is described in the next section.

IV. METHODOLOGY

The general idea of our methodology consists of modeling

the configuration of a swarm of heterogeneous robots as

a GRF and then sampling velocities for each robot in

a decentralized way, which leads the entire swarm to a

convergence towards the global minimum of the potential.

A. Formalization

Consider a set R of η heterogeneous robots navigating

in a bounded region within the two-dimensional Euclidean

space1. The state of the i-th robot at time step t is represented

by its pose q
(t)
i and velocity2 q̇i

(t) = v
(t)
i , which is

bounded by vmax, ||v
(t)
i || ≤ vmax. In addition, robots

are driven by a holonomic kinematic model with motion

model K : (q
(t)
i ,v

(t)
i ) → (q

(t+1)
i ). The heterogeneity of the

system is modeled by a partition τ = {τ1, ..., τm}, with each

τk ⊂ R containing exclusively all robots of type k. That is,

∀(j, k) : j 6= k → τk ∩ τj = ∅.

Each robot has a circular sensing range of radius λ,

where it can estimate the relative position and velocity of

other robots as well as their type, and also obstacles within

the environment. Obstacles are represented as a finite set

of points O = {o1, ...,on}. An obstacle detected by the i-
th robot consists of a subset of points Oi ⊂ O, where

oj ∈ Oi → ||oj − qi|| ≤ λ and ||oj − qi|| is the Euclidean

norm between two points.

The neighborhood system for the i-th robot, constrained

by the sensing range λ, defines a set of robots:

Ni , {j ∈ R : j 6= i, ||qj − qi|| ≤ λ}. (5)

B. Extension of the GRF to swarm robotics

Inspired by the GRF capability in modeling local interac-

tions, here we discuss its concepts in the context of swarm

robotics. Following the modeling presented in section III,

let us define a graph G = (R,E) with a set of random

variables X = {Xi}i∈R, in which each Xi models the

random velocity vi of the i-th robot. A configuration of the

system X is x = {v1, ...,vη} where vi ∈ Λi and represents

the velocities performed by each robot.

A neighborhood system on R, given a configuration space

x, is a family N = {Ni}i∈R, where Ni ⊂ R is the set

of neighbors defined in (5) and satisfies i/Ni and the

symmetry j ∈ Ni ⇔ i ∈ Nj . The neighborhood system N
induces the configuration of the graph G by establishing an

edge between each pair (i, j) of robots if and only if j ∈ Ni.

Until now, our definitions only allow us to calculate the

probability of the entire swarm reaching a certain configura-

tion, but what we require here is to sample velocities for each

robot given the information about the robots in its neighbor-

hood. Next, we explain how we perform such a procedure

in a decentralized way using the Gibbs distribution.

C. Parallel Gibbs sampling

Parallel Gibbs sampling implies that all robots are simulta-

neously updating their velocities based on the configuration

x at time t. Such a method is possible here due to the local

nature of the Gibbs potential energy.

Formally, let t denote the temporal index and

x(t) = x = (v1, ...,vη) be the swarm configuration at time

t. Let Zi(x) , {zi : ||zi|| ≤ vmax}, where Zi(x) ⊂ Λi,

be the set of possible velocities for the i-th robot given

1We assume two-dimensional space for convenience but one can straight-
forward extend it to three-dimensional space.

2From now on, we use the symbol v to represent robot velocities.



the configuration x(t). Using (4), the i-th robot updates its

velocity vi
(t) = vi to vi

(t+1) = v̄i with probability

Pi(vi, v̄i|x) =











e
−H(v̄i,xR\i)/T

∑

zj∈Zi(x)

e
−H(zj ,xR\i)/T

, if v̄i ∈ Zi(x)

0, otherwise.
(6)

Note that (6) still depends on the global knowledge at the

potential energy H(·,xR\i). However, if we rewrite (3) as,

H(·,xR\i) =



U{i}(·) +
∑

∀j∈R\i

U{j}(vj)



+

∑

∀j∈Ni

U{i,j}(·,vj),

(7)

one may note that the second term inside the parenthesis is

constant for the i-th robot, which lets us reduce the form for

H(v̄i,xR\i) and H(zi,xR\i) in (6). This shows the local

nature of the Gibbs potential energy and implies that we do

not require the knowledge of the entire swarm to sample

velocities for the i-th robot, but only information about its

neighbors Ni. Thus, we can rewrite (6) as

Pi(vi, v̄i|x) =
e
−

(

U{i}(v̄i)+
∑

∀j∈Ni

U{i,j}(v̄i,vj)

)

T−1

∑

zi∈Zi(x)

e
−

(

U{i}(zi)+
∑

∀j∈Ni

U{i,j}(zi,vj)

)

T−1

,

(8)

where v̄i ∈ Zi(x).

D. Potential energy

Here we propose combining two potential functions

into the potential energy H(·) to achieve simultaneous

segregative-flocking behaviors of the swarm.

1) Coulomb-Buckingham potential: The Coulomb-

Buckingham potential [30] is a combination of the

Lennard-Jones potential with the Coulomb potential used to

describe the interaction among particles considering their

charges. We took advantage of such a mechanism to model

the swarm’s heterogeneity by setting the particle charges.

The formula for the interaction is

Φ(r) = ε

(

6

α− 6
eα

(

1−
r

r0

)

−
α

α− 6

(r0
r

)6
)

+
cicj
4πε0r

,

(9)

where r = ||qj − qi|| is the euclidean distance between the

particles i and j; ε is the depth of the minimum energy; r0
is the minimum energy distance; α is a free dimensionless

parameter; ci and cj are the charges of the particles i and j;

and ε0 is an electric constant.

We define the interaction among the i-th and j-th robots

by replacing the product cicj by the following function,

C(i, j) = (2 1((i, j) ∈ τk)− 1) |cicj |, (10)

where 1(·) denotes the indicator function. In this way C(i, j)
will be positive if the i-th and j-th robots belong to the

same group τk and negative otherwise. Fig. 1 illustrates the

Coulomb-Buckingham potential.

Fig. 1: The Coulomb-Buckingham potential function. It

depends on the distance r among the i-th and j-th robots

and a function C(i, j) that produces attractive or repulsive

behaviors depending on the heterogeneity among them.

2) Kinetic energy: We assume classical mechanics to

compute the kinetic energy produced by relative velocities

of the i-th robot neighbors. Let Vi define the resultant of

the relative velocities among all neighbors within the same

partition of the i-th robot. The kinetic energy Ek relative to

the i-th robot is:

Vi =
∑

∀j∈Ni∧(i,j)∈τk

vj , Ek(Vi) =
1

2
m(Vi ·Vi), (11)

where m is the cumulative mass of the group.
3) Combination: We combine the Coulomb-Buckingham

potential and the kinetic energy to define the potential

energy H(v̄i,xR\i). Here, the individual potential U{i}(v̄i)
represents an obstacle avoidance factor defined by

U{i}(v̄i) =
∑

∀j∈Oi

Φ(||K(qi, v̄i)− oj||), (12)

and ∀j ∈ Oi : C(i, j) > 0.

The nearest-neighbor potential establishes a segregative-

flocking factor formulated as
∑

∀j∈Ni

U{i,j}(v̄i,vj) =
∑

∀j∈Ni

Φ(||K(qi, v̄i)−K(qj ,vj)||)+

Ek(Vi) +Ek(vmax − v̄i),
(13)

where the first term defines the attraction and repulsion

among two robots and the second one is the relative velocity

of the neighbors. Since we compute the kinetic energy using

relative velocities, when Ek(Vi) → 0, there is a duality on

the behavior produced by the robots. More specifically, one

may not differentiate if the robots are stationary or moving

with the same velocities. To avoid such duality, we added

a third term to force the i-th robot to reach its maximum

speed.

E. Sampling algorithm

Finally, given the probability function (8) and the potential

energy defined by combination of (12) and (13) one may use

a MCMC algorithm to sample velocities for the i-th robot.

In this work, we use the Metropolis-Hastings algorithm [34]

for sampling the velocities.



(a) n = 0 (b) n = 50 (c) n = 200 (d) n = 500 (e) n = 1000 (f) n = 3500

Fig. 2: Demonstration of segregative flocking of 5 heterogeneous groups with 100 robots each.

V. EXPERIMENTS AND RESULTS

To evaluate the performance of our approach, we conduct

a series of simulated experiments. We first analyze the

segregative behavior by measuring the method’s performance

for different configurations and comparing the results with

other methods from the literature. Then, to analyze the

flocking capabilities, we evaluate the velocity consensus and

the cohesion among the robots when there is noise in the

sensor. Finally, we performed experiments with real robots

as a proof-of-concept to show the feasibility of our approach

in real scenarios. Fig. 2 shows snapshots illustrating the

simultaneous flocking segregative behavior produced by our

methodology. A video of the experiments is available at

Youtube3 and the source code at Github4.

A. Segregation Analysis

To evaluate the segregative behavior considering only

local information, we compare the convergence rate of our

approach against the one presented by Mitrano et al. [15]

and Inácio et al. [17]. We consider the work proposed by

Santos et al. [10] as a baseline since it assumes global

knowledge about the positions of other robots leading to a

fast convergence rate. We also contrast our methodology with

a deterministic gradient descent approach using potential

differentials to show that such mechanism may be easily

trapped at local minima.

The experiments consisted of 100 runs of each approach

with a maximum of 20000 iterations. A random initial state is

generated for each run, but it is the same for all approaches.

At each iteration, the robot can move a maximum of 0.02
meters in a square area of 10 by 10 meters with the walls

being considered obstacles. We varied the number of robots

and the number of heterogeneous groups to evaluate each

approach’s performance. As a metric, we compute the total

amount of clusters formed by robots of the same type and the

number of iterations necessary to reach it. Here, two robots

of the same type are considered to be in the same cluster

if their relative distance is less than 0.3 meters – the robot

radius is 0.07 meters. The sensing range is set to 0.5 meters

(λ = 0.5) Fig. 3 shows the mean and the 99% confidence

interval comparing one with the other approaches.

Analyzing the segregation using the number of formed

clusters, we can see that all approaches executed relatively

well for a small number of groups, even for an increasing

3https://youtu.be/KooNGIStWlM
4https://github.com/verlab/2021-icra-grf-swarm

(a)

(b)

Fig. 3: The minimum number of clusters yield by each

approach in up to 20000 iterations when: (a) we increase

the number of robots |τm| = {10, 30, 60} keeping |τ | = 5
heterogeneous groups; and (b) we increase the number of

groups |τ | = {5, 15, 30} keeping |τm| = 10 robots per group.

number of robots per group (Fig. 3a, top). The exception

is the Gradient-Descent method, which gets trapped in

local minima and cannot reach a segregated state. When

the number of groups increases, our approach significantly

outperforms the others, with a performance close to the

baseline which uses global information (Fig. 3b, top). When

there is a large number of groups, robots usually get trapped

by other groups and cannot reach a segregated state. By

relying on the stochastic nature of the GRF, our approach

can handle these situations better.

Regarding the performance in terms of the number of

iterations to reach segregation, we can see that the methods

have a similar performance on average when increasing the

number of robots. However, all of them are significantly

slower than the baseline, which uses global information (Fig.

3a, bottom). When we vary the number of groups, we can see

that Inácio et al. have a better performance (Fig. 3b, bottom).

However there may be a caveat, specially for |τ | = 30: our

metric considers the number of iterations spent until reaching

the minimum number of clusters. As previously mentioned,

https://youtu.be/KooNGIStWlM
https://github.com/verlab/2021-icra-grf-swarm


Inácio’s method does not reach the minimum number of

clusters on several occasions. So, it may be converging faster

but to a sub-optimal configuration. On the other hand, our

method may take longer due to its stochastic nature, but has

a much better success rate.

B. Flocking Analysis

To evaluate the effectiveness of our approach in producing

flocking behaviors, we carried out some experiments and

analyzed them regarding the average distance (cohesion)

and consensus speed between robots of the same type. The

robustness of our method is assessed by adding Gaussian

noise ǫ to the sensor model so that the relative position

and velocity estimates are not reliable. Here, we perform

100 runs with a maximum of 20000 iterations. We assume

|τm| = 30 robots into |τ | = 5 heterogeneous groups and

sensing range λ = 0.5 meters. The robots start each run

in a random initial state and perform both segregation and

flocking within an environment of 10 by 10 meters at a

maximum speed of vmax = 1.0 meters per second. Noise

in the sensor model ranges from ǫ = {0%, 2%, 6%, 10%}
for both relative position and velocity. A noise of ǫ = 10%
implies an error of up to 10%λ = 0.05 meters in position

and 10%vmax = 0.10 meters per seconds in speed. Fig. 4

shows the mean and the 95% confidence interval evaluating

the impact that such a noise causes in our methodology.

As expected, increasing noise in the sensor model sig-

nificantly impacts the velocity consensus. We observed that

up to ǫ = 6%, the swarm is able to maintain the flocking-

segregative behavior for the experiments’ configuration.

When ǫ = 10%, we notice the velocity consensus degrading

and, consequently, the flocking behavior does not converge.

However, even with the noise we can segregate the swarm

to the minimal number of clusters most of the times for a

sufficiently large number of iterations.

Fig. 4: Impact of the noise in the sensor model on the

performance of our method. The graphics display the number

of clusters yield, the average distance, and velocity error

among the same group of robots in up to 20000 iterations.

C. Real robots

To evaluate the feasibility of our approach in a real

environment, we performed proof-of-concept experiments

using five e-puck robots [35]. The robots receive velocity

commands from a remote server executing ROS. Given that

our robots do not have any sensor that allows them to

estimate the relative position and velocity of neighboring

robots, we emulate such a sensor using the Optitrack motion

capture system [36].

Here we consider the bounded environment as a square

area of 2 by 2 meters restricted by walls. We set the sensing

distance to λ = 0.3, and as we have only a few robots, we

evaluate cases where we have one or two groups. That is one

group with five robots and two groups with two and three

robots each. Fig. 5 shows the performance of our approach

using real robots. We can see that the robots can reach

segregation and also keep the flocking behavior, but with

some noise in the velocity consensus due to the uncertainties

observed in real settings.

Fig. 5: Results on real experiments using five epuck robots

divided into one or two groups.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel decentralized approach that

allows a swarm of heterogeneous robots to achieve simulta-

neously segregation and flocking behaviors using only local

sensing. We compared the segregative behavior with some

state-of-the-art approaches and evaluated the flocking behav-

ior in simulated and real scenarios. Results showed that our

methodology can segregate a group of heterogeneous robots

while keeping cohesive navigation around the environment.

In future work, we intend to equip our robots with distance

and bearing sensors and temporally combine their infor-

mation to locally estimate the neighboring robots’ velocity

and position. Moreover, there are several opportunities for

future studies and applications using the GRF framework.

In particular, we intend to investigate the possibility of

performing more complex tasks, such as transport and shape-

formation.
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