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Abstract— This paper presents a novel trajectory optimiza-
tion formulation to solve the robotic assembly of the belt
drive unit. Robotic manipulations involving contacts and de-
formable objects are challenging in both dynamic modeling
and trajectory planning. For modeling, variations in the belt
tension and contact forces between the belt and the pulley
could dramatically change the system dynamics. For trajectory
planning, it is computationally expensive to plan trajectories for
such hybrid dynamical systems as it usually requires planning
for discrete modes separately. In this work, we formulate the
belt drive unit assembly task as a trajectory optimization
problem with complementarity constraints to avoid explicitly
imposing contact mode sequences. The problem is solved as
a mathematical program with complementarity constraints
(MPCC) to obtain feasible and efficient assembly trajectories.
We validate the proposed method both in simulations with a
physics engine and in real-world experiments with a robotic
manipulator.

I. INTRODUCTION

While we have seen tremendous developments in the fields
of artificial intelligence in recent years [1]–[4], robots can
achieve only limited autonomy during manipulation tasks [5].
One of the biggest challenges that restricts general-purpose
manipulation algorithms is contact dynamics. Contact-rich
manipulation tasks are difficult to solve from both modeling
and optimization perspectives. The manipulation problems
become further challenging when the manipulated objects
are deformable. These kinds of objects are ubiquitous in
a lot of assembly problems, and yet they remain poorly
understood. In the assembly challenge competition in World
Robot Summit 20181, assembly of a polyurethane belt onto
pulleys (see Figure 1) was one of the most challenging tasks
[6]. While there have been attempts to solve manipulation
problems involving deformable objects [7]–[12], there is no
general approach to it.

In this paper, we consider the problem of wrapping a
belt around a two pulleys system, considering as use case
the challenge introduced in the World Robot Summit 2018.
Working with a deformable object like the belt presents
several challenges. These include: (i) infinite degrees of
freedom for the belt; (ii) contact rich manipulation; and (iii)
long-horizon planning problem.

Optimization-based planning and control may be applied
to various problems in robotic manipulation. Given a con-
trolled dynamical system, ẋ = f (x,u), trajectory optimization
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Fig. 1. Belt drive unit assembly task. The robot grips a polyurethane belt
and assembles it on two pulleys, P1 and P2.

aims to design a finite-time input trajectory, u(t),∀t ∈ [0,T ],
which minimizes some cost functions over the resulting
input and state trajectories [13]–[15]. In the belt drive unit
assembly, variations in the belt tensions and contact forces
between the belt and the pulleys result in a hybrid dynamical
system. Elastic force can exist or not, depending on whether
the belt is slack or stretched. Contact forces can exist or
not, depending on whether the belt contacts the pulley or
not. Both elastic and contact forces might greatly impact the
system dynamics. Planning for such a hybrid system usually
requires planning for each dynamic system separately. There
are many existing works on trajectory planning for hybrid
systems [16]–[18]. But the drawback is that those methods
require a task-specific mode schedule, which may bring
extensive efforts in modeling and parameter tuning.

Inspired by the work on trajectory optimization of rigid
bodies through contact [13, 15, 19, 20], we model the physics
of contacts and the elastic properties through complemen-
tarity constraints. The elastic belt is modeled through a 3D
keypoint representation. The hybrid behavior of the keypoints
is captured by the complementarity constraints. We formu-
late the trajectory optimization problem as a Mathematical
Program with Complementarity Constraints (MPCC) [21].
We successfully solve the MPCC to compute feasible and
efficient trajectories to assemble the belt drive unit. Finally,
we implement the solution into the real system with a
controller to track the optimized trajectory.

The main contributions presented in this work are:
1) Trajectory optimization formulation for deformable ob-

jects manipulation with complementarity constraints.
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This provides a general-purpose, mathematical frame-
work to tackle these problems.

2) Introduction of 3D keypoint representation for de-
formable objects.

3) Validation of the proposed approach through simula-
tion as well as real experiments.

II. RELATED WORK

Deformable linear (one-dimensional) object manipulation
has been studied for decades. A randomized algorithm was
proposed to plan a collision-free path for elastic objects
[22]. Minimal-energy curves were applied to plan paths for
deformable linear objects in stable configurations [23]. In
[24], a local deformation model approximation method was
proposed to control the soft objects to desired shapes. The
authors of [25, 26] extended the local deformation model
to the manipulation of cables. A deep neural network was
trained to manipulate a rope to target shape based on a
sequence of images [27]. However, those works do not
consider the interaction between the deformable cables and
the environment. In [7], the authors proposed a strategy to
assemble a flexible beam into a rigid hole. An optimization-
based trajectory planning was utilized to assembly ring-
shaped elastic objects in [8], but the authors only validated
their method in simulation. In [9], the authors took the
advantage of environmental contacts to shape deformable
linear objects by a vision-based contact detector. The authors
of [10] considered a scenario to assemble the roller chain
to sprockets. Their strategy successfully assemble the chain
but lacks in generalization because each step is engineered
for the specific system. To advance the research on robotic
manipulation, the World Robot Summit 2018 proposed a
competition on assembly challenges [6]. The challenge high-
lighted the complexity of solving manipulation tasks in a
general manner, which still remains an open problem.

Optimization-based methods have been successfully im-
plemented in many trajectory planning scenarios [28]–[30].
[13] proposed a trajectory optimization method for rigid
bodies contacting the environment. They formulated an
MPCC to eliminate the prior mode ordering in discontinuous
dynamics due to inelastic impacts and Coulomb friction. The
MPCC framework was extended to a quadrotor with a cable-
suspended payload system in [31]. The complementarity
constraint was utilized to model the limitation of a non-
stretchable cable length. Inspired by [13, 15, 19, 20, 31],
we introduce complementarity constraints to the belt drive
unit assembly task to avoid the hybrid modes selection due
to elastic force in the belt and contact force between the
belt and the pulleys. We extend the keypoints representation
introduced for rigid objects, [32], to model elastic objects like
the belt and to formulate an MPCC to perform the assembly.

III. PROBLEM FORMULATION

The belt drive unit consists of two pulleys attached to
a base and of a deformable and stretchable belt as shown
in Figure 1. The belt is assumed to be composed of a
homogeneous isotropic linear elastic material which is a
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Fig. 2. Initial belt configuration, ρ0, with keypoints representation. The
red dots represent the “grasped” keypoint K1 and “opposite” keypoint K2.
The yellow dashed line shows the virtual cable, C , of length L.

common assumption in mechanics. The pulleys have known
geometries and can rotate freely around the shafts axis. The
base of the belt drive unit is fixed to the workbench in a
known pose. We assume that at the initial configuration,
called ρ0, the belt is grasped and lifted by a gripper held by
a robotic manipulator, and the belt is freely hanging under
the effect of gravity, see Figure 2. The task objective is to
wrap the belt around the two pulleys as shown in Figure 1.

Inspired by recent work [32], we introduce a 3D keypoints
representation for deformable objects. This representation
consists of identifying points in the object that are represen-
tative of the whole object. With the proposed representation,
the problem is mathematically tractable with a finite, low
dimensional state space and interpretable constraints and cost
function. In particular, we select two 3D keypoints for the
belt as shown in Figure 2. The “grasped” keypoint, K1,
corresponds to the point-mass on the belt grasped by the
robot gripper, and the “opposite” keypoint, K2, which is the
point on the belt that is the furthest away from K1 when
the belt is in configuration ρ0. In the proposed keypoint
representation, configuration ρ0 can be represented by a
virtual elastic cable, C , that connects K1 and K2. The gener-
alized coordinates of the system can now be described as
q = [Kx

1 ,K
y
1 ,K

z
1,K

x
2 ,K

y
2 ,K

z
2,K

roll
1 ,K pitch

1 ,Kyaw
1 ]> ∈ R9, where

Kx
1 ,K

y
1 ,K

z
1,K

x
2 ,K

y
2 ,K

z
2 are the Cartesian coordinates of two

keypoints and Kroll
1 ,K pitch

1 ,Kyaw
1 are the orientation of K1 with

reference frame shown in Figure 2. We utilize the orientation
of K1 to express the rotation and the twist of the belt. The
action space u= [Fx,Fy,Fz,Mx,My,Mz]

> ∈R6 is the vector of
forces and torques that are applied to K1 through the gripper.
This makes the belt drive unit an underactuated system as
we cannot directly control K2. Finally, we assume that in
configuration ρ0 the ellipsoidal shape of the belt is large
enough to go around the first pulley P1.

A. Subtasks Decomposition

Belt drive unit assembly is a complex task that requires
a long-horizon planner. As often proposed in the literature,
long-horizon planning tasks are decomposed into subtasks
to reduce complexity. The belt drive unit assembly can have
highly engineered solutions with a dense sequence of sub-
tasks and simple planners whose subgoals are trivial to reach.
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Fig. 3. Two subtasks decomposition. P1 and P2 are two pulleys. The blue
lines represent the belt gripped at keypoint K1 by a robot. S1: The belt
wraps the first pulley P1 and it stretched. S2: The belt rotates around the
first pulley and is assembled onto the second pulley P2.

However, this kind of approach requires extensive effort in
parameter tuning and engineering work and lacks generality,
since the goals of the subtasks need to be redefined as
the scenario changes. We partially address this problem
by reducing the number of subtasks to two. Following a
logic similar to a human’s approach, the first subtask, S1,
corresponds to wrap the belt around the first pulley, and the
second subtask, S2, corresponds to wrap the second pulley
keeping the belt taut to maintain the wrap around the first
pulley, see Figure 3. In a qualitative description, in S1, the
belt has to avoid the outer surface of the first pulley P1 and K2
has to get into the groove creating a contact force, while K1
is stretched until the belt is taut. In S2, the belt is assembled
on the second pulley P2 by rotation around the first pulley.
During the rotation, the belt should remain taut in order to
remain in the groove of the first pulley. Finally, the belt has
to hook the internal groove of P2 and K1 has to reach the
bottom of the second pulley to accomplish the task.

Given the proposed 3D keypoint representation of the
belt drive unit, we can formulate a trajectory optimization
problem, that uses complementarity constraints to model the
contacts and the deformation of the belt, to solve each of
the two subtasks. The two optimized trajectories are then
executed sequentially in order to accomplish the task, the
final condition of S1 corresponds to the initial condition of S2.

IV. TRAJECTORY OPTIMIZATION FOR THE BELT DRIVE
UNIT ASSEMBLY

We approach the belt drive unit assembly as a trajectory
optimization problem formulated as an MPCC. The com-
plexity of this problem is given by the presence of hybrid
nonlinear dynamics due to contacts that may happen between
the pulleys and the belt, the elastic properties of the belt,
the obstacle avoidance constraints, and the long planning
horizon. A trajectory optimization problem is solved for each
of the two subtasks described in Sec. III-A of the form

min
q,q̇,u,λ

L(q, q̇,u,λ ) (1a)

s.t. H(q)q̈+C(q, q̇)+G(q) = B(q)u+λ (1b)
g(q, q̇,u,λ )≤ 0 (1c)

q≤ q≤ q, q̇≤ q̇≤ q̇, u≤ u≤ u, λ ≤ λ ≤ λ (1d)
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Fig. 4. Force analysis at the two keypoints. Fu is the control input force.
λ0 is the elastic force. λ1 is the contact normal force. g is the gravity force.

where L(q, q̇,u,λ ) is the cost function, q ∈ R9 are the gen-
eralized coordinates described in Sec. III, q̇ and q̈ are its first
and second order time derivatives, u∈R6 is the control input
and λ are the external forces acting on the belt. Eq. (1b) is the
forward dynamics, where H(q),C(q, q̇),G(q) are the inertial
matrix, the Coriolis terms, and the gravitational forces,
respectively. B(q) is input mapping. The general nonlinear
constraints (1c) include the complementarity constraints and
collision avoidance. Eq. (1d) represents the lower and upper
bounds of the optimization variables.

We solve (1) as a nonlinear program and use a direct
approach which in general has better numerical properties
than shooting methods, and we can exploit the sparsity
structure of the problem. We directly optimize the feasible
general coordinates and its first-time derivative, the control
inputs, and the external forces. The discretization of the
forward dynamics is obtained by the trapezoidal rule. The
formulation of the contact and elastic forces as complemen-
tarity constraints fits naturally well in this formulation. In
practice, for numerical advantages, we use a relaxed version
of the complementarity constraints as described in [33].

In the following, the dynamical constraints and the cost
function for MPCC (1) are described for the two subtasks.

A. Dynamics Constraints
The system is composed of the two keypoints, K1 and

K2, and the virtual elastic cable, C . It is modeled similarly
to a mechanical mass-spring-damper second-order system,
with an actuator acting on K1 and subject to the gravity
and the external forces given by the elastic force λ0 and the
normal force λ1 experienced during contacts. Figure 4 shows
a schematic example of the forces that act on the system at
the end of subtask S1. The system dynamics are defined as

ẋ = Ax+Bu+G+ f (x,λ ) (2)

where x = [q>, q̇>]> ∈ R18 is the system state and λ =
[λ>0 ,λ>1 ]> is the vector of the external forces. The state
transition matrix

A =


09×9 I9×9

03×9 − kd
m1

I3×3
kd
m1

I3×3 03×3

03×9
kd
m2

I3×3 − kd
m2

I3×3 03×3

03×9 03×9

 ∈ R18×18



represents the effect of the mass-spring-damper system with
kd the damping coefficient and m1, m2 are the masses of the
keypoints K1 and K2, respectively. The input matrix

B =


09×6

I3×3
m1

03×3

03×6

03×3
I3×3
M1

 ∈ R18×6

maps the 6-dimensional end-effector force/torque input u to
the linear and angular acceleration of the “grasped” keypoint
K1. M1 is the moment of inertia of K1. The gravitational
acceleration is applied to the two keypoints through the
vector G =

[
01×11,−g, 01×2,−g, 01×3

]> ∈ R18×1.
The contribution of the external forces is now given by

the sum of the elastic and normal force f (x,λ ) = λ0 +λ1.
The elastic force is defined as

λ0 =
[
03×9,− I3×3

m1
,

I3×3
m2

, 03×3

]>
ΠK1,p λ̄0 ∈ R18×1

where λ̄0 ∈ R is the magnitude of the elastic force and is
the variable optimized, ΠK1,p =

[(Kx
1−px),(Ky

1−py),(Kz
1−pz)]>

||K1−p|| is
the projection operator of the elastic force into the 3 axis.
The point p is K2 in S1 and O1 in S2 for simplicity of
computation. O1 is the position of the first pulley’s center.
The normal force due to the contacts between the pulley and
the keypoint K2 is defined as

λ1 =
[
03×12,− I3×3

m2
, 03×3

]>
ΠO1,K2 λ̄1 ∈ R18×1

where λ̄1 ∈R is the magnitude of the normal force and is the
variable optimized and ΠO1,K2 =

[(ox
1−Kx

2),(o
y
1−Ky

2),(o
z
1−Kz

2)]
>

||o1−K2||
is

the projection operator of the normal force into the 3-axis.

B. Complementarity Constraints

In order to model the hybrid dynamics due to elastic force
and contact force, we use complementarity constraints

0≤ g(·) ⊥ h(·)≥ 0 (3)

Complementary constraints are a way to model constraints
that are combinatorial in nature and impose the positivity
and orthogonality of the variables.

Elastic force constraint. The first complementarity con-
straint is formulated as

λ2 =
λ̄0

kp
+L− l(x)≥ 0 (4a)

λ̄0 ≥ 0 (4b)

λ̄0λ2 = 0 (4c)

where L and kp are respectively the length at configuration
ρ0 and the stiffness coefficient of the virtual elastic cable, C .
The length of C at each temporal instant is l(x) = ||K1−K2||
in S1, and l(x) = ||K1−O1||+ r1 in S2, where r1 denotes the
radius of P1. The pulley center O1 is chosen because it is a
fixed known point while the pulley is rotating. From eq. (4a)
the elasticity of the belt is defined as proportional to the
length L− l(x) and depends on the stiffness coefficient kp.

λ2 is an algebraic variable. If the cable is stretched, then
L < l(x), λ̄0 > 0, and λ2 = 0. If the cable is slack, then
L > l(x), λ̄0 = 0, and λ2 > 0.

Contact force constraint. The second complementarity
constraint is formulated as

λ3 =
√
||K2−Oe||2 + ε2 ≥ ε (5a)

λ̄1 ≥ 0 (5b)

λ̄1λ3 = 0 (5c)

where Oe is the contact point on the edge of P1. ε denotes a
small number to relax the complementarity constraint [33].
λ3 is the algebraic variable describes whether the belt con-
tacts the pulley. If the belt contacts the pulley, then λ3 = ε ,
and contact force λ̄1 ≥ 0. If there is no contact, then λ3 > ε ,
and contact force λ̄1 = 0.

C. Obstacle avoidance

This constraint imposes that the keypoints cannot pen-
etrate into the pulleys. Each pulley is approximated
with an ellipsoid, since there is a known analytical ex-
pression of the distance function between a point and
an ellipsoid. The obstacle avoidance constraints between
a keypoint Ki and a pulley Pj can be denoted as

distance(Ki,Pj) =
√

(Ki−O j)>S(Ki−O j)− 1 ≥ 0, where
S = diag{1/a2,1/b2,1/c2} is a diagonal matrix, a,b,c are
half the length of the principal axes. O j denotes the center
of pulley Pj.

D. Physics Limitation

The belt might break if stretched over a certain limit, this
condition is approximated by constraining the length of the
virtual cable C , l(x)≤ Lmax. Moreover, Lmax is assumed large
enough for the loop to go around two pulleys.

E. Cost Function

We use a common quadratic cost function that penalizes
the difference to the goal state xgoal and the control in-
put u(k):

J(x,u,λ ) =
N

∑
k=0

(x(k)− xgoal)>Q(x(k)− xgoal)+

u(k)T Ru(k)+w(λ̄0(k)− λ̄
desired
0 )2

(6)

where the weights Q and R are diagonal matrices and w is
a scalar. Moreover, the term w(λ̄0(k)− λ̄ desired

0 )2 adds a soft
constraint in the elastic force. A positive λ̄ desired

0 encourages
a solution with the belt in tension. This constraint is used
in subtask S2 to maintain the belt taut. Instead, in S1 we set
w = 0.

V. EXPERIMENTAL RESULTS

In this section, we present the results of the proposed
method both in simulation using the physic engine Mu-
JoCo [34] and in a real system with a 6-DoF manipulator.
We use the Ipopt [35] solver in a python wrapper.



A. Simulations

1) Simulation Setup: The belt drive unit is represented
in a simulated environment in MuJoCo as shown in the
top left corner of Fig. 5. The environment includes two
pulleys and one belt. The radius of the pulleys are of 30[mm]
for P1 and 15[mm] for P2. The belt is composed of 41
linked objects called capsules in MuJoCo. Any two adjacent
capsules are connected by two hinge joints and one prismatic
joint. The physical properties of the simulated belt are tuned
to resemble the belt of the real belt drive unit. The belt is
held by a parallel gripper attached to a 6 DOF Fanuc LR-
Mate 200iD. The purpose of the manipulator is to actuate
the end-effector in order to track the optimal trajectory, but
in simulation could be removed.

(1)

(4)(3)

(2)

Fig. 5. Snapshots of 4 different simulation scenarios at the goal position of
subtask S2. The relative positions of the two pulleys vary in each scenario.

2) Trajectory Optimization in Different Scenarios: In or-
der to verify the generality of the approach to different known
geometries, we consider 4 different scenarios, where the
position of P1 is fixed and the position of the smaller pulley
P2 varies, see Figure 5 and Table I. Each pulley is modeled
as three adjacent cylinders, and the two outer cylinders have
larger radius than the inner one. The belts’ lengths, Pbelt , are
chosen in each scenario based on the distance between two
pulleys. The mass of the keypoints is m1 = m2 = 0.042[kg].
The moment of inertia of K1 is M1 = 10−7[kgm2]. The belt’s
stiffness and damping coefficient are kp = 63.34[N/m] and
kd = 4.65[Ns/m], respectively.

In the trajectory optimization formulation described in
Section IV, the goal for subtask S1 is set vertically
above the pulley P1 for keypoint K1, and right un-
der the pulley P1 for keypoint K2, respectively, e.g.,
qgoal

1 = [0.10,0.55,0.53,0.10,0.23,0.34,0,0,0]T and both
with zero velocity. In this substask there is a change of
mode in the dynamics from no contact to contact between
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Time (s)
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 (
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)
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Fig. 6. Trajectory of keypoint K1 in a successful assembly for scenario
Figure 5(3). The dashed line is the reference trajectory obtained from
MPCC. The solid line is the measured trajectory.

the belt and the environment and the deformation of the belt
for reaching the desired target.

In the second subtask S2, the goal, qgoal
2 , is set only for

K1 in both the Cartesian coordinates and angular orientation,
according to the position of the pulley, P2. A qualitative
representation of the goal position is shown in Figure 5 for
each of the scenarios. The desired [Kroll

1 ,K pitch
1 ,Kyaw

1 ]> is
[−π/2,0,π/2]>. The twist of the virtual cable C approxi-
mates the twist of the belt which leads to the assemble onto
the groove of the pulley P2. Based on qgoal

2 and kp it is
possible to compute the target elastic force as λ̄ desired

0 , which
encourages the belt to be stretched during rotation.

We perform 10 experiments for each scenario. In each
experiment, the goal positions of the “grasped” keypoint K1
are sampled from the normal distributions N (µ1, Σ) in S1
and N (µ2, Σ) in S2. Where, µ1, µ2 ∈R3 are the components
[Kx

1 ,K
y
1 ,K

z
1]
> in a pre-selected successful qgoal

1 and qgoal
2

and Σ = diag{0.005,0.005,0.005}. The lower and upper
constraints of position, velocity, tilt angle, and force are
±1m, ±0.5m/s, ±π , and ±50N, respectively.

3) Results: The simulation results are shown in Table I.
We initialize the trajectory with all states x(k) = x(0), where
k = 0,1, ..,N. The solver finds a feasible trajectory for both
subtasks given any sampled goals. The optimal trajectory
obtained for K1 is then tracked by the end-effector, and the
assembly is completed successfully in 34/40 experiments.
The failure cases happen when the goal is sampled away
from qgoal

1 or qgoal
2 because the belt fails to wrap around the

pulley. The purpose of these experiments is to show that the
engineering effort in finding the goal position for the subtask
is reduced as it is not required to provide one specific point.
But also the trade-off of having only two keypoints, more
keypoints would make a more accurate model but also a more
complex optimization problem. We use an Intel 12 Cores i7-
9850H CPU @ 2.60GHz. The average computational time
for one trajectory with 600 time steps is 36.138± 5.747[s].
The computational time highly depends on the number of



TABLE I
SIMULATION RESULTS IN 4 SCENARIOS. IN EACH SCENARIO THE POSITION OF THE PULLEY CENTER O2 VARIES.

Pbelt O1 (center of P1) O2 (center of P2) Feasible trajectory Successful assembly
Scenario 1 0.4m [0.100, 0.550, 0.340] [0.100, 0.680, 0.340] 10/10 10/10
Scenario 2 0.4m [0.100, 0.550, 0.340] [0.100, 0.642, 0.432] 10/10 8/10
Scenario 3 0.4m [0.100, 0.550, 0.340] [0.100, 0.645, 0.275] 10/10 7/10
Scenario 4 0.6m [0.100, 0.550, 0.340] [0.100, 0.780, 0.340] 10/10 9/10

XY
Z

(a) (b) (c)

(d)(e)(f)

Fig. 7. Snapshots of the experiment.
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Fig. 8. Forces and positions of the end-effector in a successful experiment.
The red circle and square represent the end of subtask S1, S2, respectively.

time steps selected. Figure 6 shows one full successful
assembly trajectory for scenario Figure 5(3).

B. Real-World Experiments

1) Experimental Setup: As shown in Figure 1, the ex-
periment environment includes a 6 DOF FANUC LR-Mate
200iD, an ATI Mini45 F/T sensor, and a 3D printed belt
drive unit of the same dimensions in the assembly challenge
[6] fixed on a vise. The belt is the same as in the challenge
with length 0.40[m] and is gripped by a parallel jaw gripper.
We assume no slip between the belt and the robot gripper.
The pose of the pulleys is known exactly.

2) Results: Figure 7 provides the snapshots of the main
phases during the execution of a successful experiment. Fig-
ure 8 shows the trajectory of the gripper tip that corresponds
to K1 and the measured forces at the robot’s wrist along the

trajectory. In the beginning, (Figure 7a), the belt approaches
the pulley and position X increases and the forces are zero.
The position Z goes down at 5.57[s] to avoid the outer
cylinder of the first pulley. At 6.29[s], position X stops
increasing because the pulley is reached (Figure 7b). Then
the Z position increases as the belt is lifted and contacts the
pulley at 7.82[s] with a corresponding increase in force along
the negative direction in Z. At 10.50[s], the system accom-
plishes S1 (Figure 7c). After that, the belt is rotated around
O1 (the Z position decreases, and Y position increases) while
being stretched (Figure 7d). In this phase, the measured net
force is closed to the desired elastic force λ̄ desired

0 . The target
orientations are [Kroll

1 ,K pitch
1 ,Kyaw

1 ]> = [−π/2,0,π/4]>. The
belt is twisted so that it hooks the second pulley without
jamming. Finally, the goal of subtask S2 is reached at 29.00[s]
(Figure 7e) and the gripper releases the belt (Figure 7f).

The experiment has been repeated multiple times but given
the robot’s accuracy the results were similar to each other.

VI. CONCLUSION

In this paper, we propose a trajectory optimization for-
mulation to assemble the belt drive unit. We propose a 3D
keypoints representation to model the elastic belt, which
simplifies the complexity of the trajectory optimization prob-
lem. The problem is formulated as an MPCC with comple-
mentarity constraints to model the hybrid dynamics due to
contact and elastic forces. Simulations results show that the
proposed approach can find feasible trajectories for the belt
drive unit assembly with known but variable geometry. To the
best of our knowledge, this is the first work that formalizes
the trajectory optimization problem for the belt drive unit
assembly, and the solution works in the real system. Several
future works are possible. The current method is based on
the execution of an open-loop trajectory which could fail
under uncertainties in the position of the pulleys or of the
belt. Adding a feedback controller is fundamental for a
more robust and reliable solution. Moreover, in order to
improve the generality of the problem, we are interested in
an autonomous selection of the 3D keypoints for a given
task. Our formulation of a trajectory optimization problem
for deformable objects using complementarity constraints is
not limited to belt drive unit assembly. The proposed method
might be applied to a wider range of tasks such as cable
routing and wire harness.
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