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Abstract— We formulate grasp learning as a neural field and
present Neural Grasp Distance Fields (NGDF). Here, the input
is a 6D pose of a robot end effector and output is a distance
to a continuous manifold of valid grasps for an object. In
contrast to current approaches that predict a set of discrete
candidate grasps, the distance-based NGDF representation is
easily interpreted as a cost, and minimizing this cost produces
a successful grasp pose. This grasp distance cost can be
incorporated directly into a trajectory optimizer for joint
optimization with other costs such as trajectory smoothness
and collision avoidance. During optimization, as the various
costs are balanced and minimized, the grasp target is allowed
to smoothly vary, as the learned grasp field is continuous.
We evaluate NGDF on joint grasp and motion planning in
simulation and the real world, outperforming baselines by 63%
execution success while generalizing to unseen query poses
and unseen object shapes. Project page: https://sites.
google.com/view/neural-grasp-distance-fields.

I. INTRODUCTION

We present Neural Grasp Distance Fields (NGDF), which
model the continuous manifold of valid grasp poses as the
level set of a neural implicit function. Given a 6D query pose,
NGDF predicts the unsigned distance between the query and
the closest valid grasp on the manifold (see Fig. 1).

Neural implicit fields have driven recent advancements in
novel view synthesis [1] and 3D reconstruction [2], [3], [4],
[5]. These approaches represent distributions as continuous
functions that take a query as input and predict its relation-
ship to the learned distribution. In 3D shape reconstruction,
for instance, neural implicit fields are used to represent the
surface of a shape: 3D points are used as queries, and the
output is the distance to the surface, or occupancy at the
query point. Unlike explicit methods, neural implicit fields
can encode complex topological distributions and are not
limited by resolution.

With NGDF, formulating grasp learning as a neural field
allows us to interpret the implicit function as a cost such
that a query pose can be optimized to result in a grasp pose.
Prior grasp estimation methods largely output a discrete set
of candidate grasps [6], [7], [8], [9], [10], from which one
grasp must be selected to perform downstream planning.
Instead, we incorporate the grasp distance cost directly into
a gradient-based optimizer [11] to jointly optimize the grasp
and reaching motion from an initial trajectory. During each
optimization iteration, NGDF estimates the distance between
the final gripper pose of the trajectory and the grasp level set.
This “grasp distance” is minimized as a cost, along with other
trajectory costs such as smoothness and collision avoidance.
The gradient of the grasp cost for updating the trajectory
is computed through fully differentiable operations. This

(a) Discrete Grasp Set (b) Continuous Grasp Manifold with NGDF

Fig. 1: (a) Existing grasp estimation methods produce discrete grasp
sets which do not represent the true continuous manifold of possible
grasps. (b) Our work, Neural Grasp Distance Fields (NGDF), learns
a continuous grasp manifold: given a query pose q and an object
shape embedding z, NGDF outputs the distance d between q and
the closest grasp. This distance can be leveraged as a cost for
optimization, facilitating joint grasp and motion planning.

optimization results in a smooth, collision-free trajectory that
reaches a valid grasp pose.

In experiments, we find that NGDF learns the level set of
valid grasp poses, outperforms baselines by 63% execution
success on simulated reaching and grasping, and generalizes
to unseen object shapes and poses in the real world. The
key contributions of the paper are:

• Neural Grasp Distance Fields (NGDF), a neural implicit
function that predicts the distance between a query
pose and the closest grasp, representing the manifold
of grasps as a continuous level set.

• A gradient-based optimization algorithm that incorpo-
rates NGDF for joint reach and grasp planning.

II. RELATED WORK

While grasping and motion planning are well-studied
topics in robotics, prior works often propose different system
designs with different assumptions, making comparison and
contextualization difficult. We summarize the most important
design decisions for 6-DOF grasp and motion planning and
trace the decisions in representative methods (see Fig. 2).

A. 6-DOF Grasp Estimation

6-DOF grasp estimation is a well-studied task [17], [18]
that aims to predict successful grasps in SE(3) for target
objects; we focus here on recent, data-driven methods. State-
of-the-art methods take point clouds as input and output a
discrete set of grasps, representing only a subset of the true
continuous grasp set [7], [6], [8], [9], [10]. Outputting a finer
discretization comes with a cost of a greater computational

ar
X

iv
:2

21
1.

02
64

7v
3 

 [
cs

.R
O

] 
 2

8 
D

ec
 2

02
3

https://sites.google.com/view/neural-grasp-distance-fields
https://sites.google.com/view/neural-grasp-distance-fields


Perception Grasp Estimation Grasp Selection Motion Planning

Object Pose
(Known Shape)

Point Cloud
(Unknown Shape)

Discrete Set, Known

Discrete Set, Predicted
[6], [7], [8], [9], [10]

Continuous Set, Known

Continuous Set, Predicted

Min. Distance

Max Score

Adaptive Cost

Sampling
[12], [13]

Optimization
[11], [14]

E
xecution

OMG [15]

CBiRRT [16]

B1

NGDF (Ours)

Fig. 2: Columns illustrate design decisions within grasp and motion planning pipelines. The left-most column highlights representative
pipelines like OMG-Planner [15], CBiRRT [16], and baseline B1 from Table II which uses a SOTA grasp estimator [6]. The respective
design choices for these methods are traced through the columns. We identify learned continuous representations as an under-explored
option for grasp estimation, and propose NGDF as a solution that does not require a heuristic grasp selection step since the grasp pose
is jointly optimized with motion planning.

complexity for both grasp estimation as well as grasp selec-
tion: a final grasp must be chosen from the predicted set.
Because these methods only predict discrete grasp sets, they
necessitate a multi-stage approach, which can be brittle if any
of the stages (grasp estimation, selection, or motion planning)
fails. Our single-stage approach models grasps as the level set
of a continuous implicit function to jointly optimize grasping
and motion planning.

B. Joint Grasp Selection and Motion Planning

Following the multi-stage paradigm above, several works
assume a grasp set is provided by an upstream method, and
address the downstream task of planning a reaching trajec-
tory. Berenson et al. [16] model grasp sets as a continuous
range of poses called Task Space Regions, and use sampling-
based planning to satisfy the constraint. GOMP [19], uses
sequential quadratic programming on discrete grasp sets for
fast bin picking. Goal-set CHOMP [20] incorporates hard
constraints like goal sets into trajectory optimization. The
methods above do not address the problem of switching
between grasps during planning; OMG-Planner [15] there-
fore proposes online learning to estimate goal costs and
switch to the minimum cost grasp at every optimization iter-
ation. OMG-Planner used ground-truth grasp sets per object,
though their method can use estimated grasp sets as well. Our
approach does not assume grasps are provided and does not
require explicit grasp selection; instead, NGDF estimates and
updates the grasp pose during trajectory optimization itself.

Other works propose closed-loop methods for 6-DOF
grasping. Wang et al. [21] learn a latent space of trajectories
for closed-loop grasping. Song et al. [22] learn a closed-
loop policy from human demonstrations. Temporal Grasp-
Net [23] updates a discrete grasp set over time by querying
a grasp evaluator. In this work, we introduce a novel implicit
representation for the grasp manifold. We focus on open-
loop planning and leave closed-loop planning with NGDF
as future work.

C. Implicit Neural Representations

Recent advances in vision and graphics research have used
implicit neural representations to achieve impressive results

on novel view synthesis [1] and 3D reconstruction [3], [5],
[2], [4]. Karunratakul et al. [24] learn an implicit represen-
tation for human grasp poses. Inspired by these works, we
learn an implicit neural function to predict distances between
query gripper poses and grasp poses, and use this function
to optimize grasp trajectories.

The robotics community has also explored neural implicit
functions for a variety of manipulation tasks [25], [26], [27],
[28], [29], [30], [31]. GIGA [32] proposed using neural
implicit functions to model both 3D shape and grasp quality.
However, GIGA predicts a single grasp parameterization per
3D location, and requires a sampling procedure to select
the final pose from the implicit set. Our approach predicts
grasp distance, allowing multiple grasp orientations per 3D
location, and uses optimization to minimize grasp distance
and achieve the grasp pose.

Concurrent works have proposed continuous representa-
tions for dexterous hands [33] and multiple grippers [34].
Urain et al. [35] represents grasps as diffusion fields, framing
joint grasp and motion planning as an inverse diffusion
process. In this paper, we use an implicit function to represent
grasp distance, and use gradient-based trajectory optimiza-
tion for joint grasp and motion planning.

III. BACKGROUND

Neural Implicit Functions. Neural implicit functions
(NIFs) are neural networks that take a query q ∈ Rd and
optionally a context embedding z ∈ Z to output a scalar
value that represents a relationship to an underlying distri-
bution: f(q, z) : Rd × Z 7→ R. In the domain of 3D shape
reconstruction, the context z is a latent shape embedding,
the query q is a 3D point, and the scalar output is either
distance to the closest surface [2], [4], or occupancy [3],
[5]. The shape surface is represented by the zero level
set in distance-based methods, or the decision boundary in
occupancy-based methods. Unlike explicit functions, NIFs
are not limited by resolution as they predict a value at any
query point, and also better represent underlying distributions
that are disjoint [28]. Our approach leverages both properties
in learning a manifold of grasps.
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Fig. 3: We use NGDF as a goal cost function on the final state of a trajectory during gradient-based optimization. Given the current robot
joint configuration and a point cloud of an object or scene, the current gripper pose and a shape embedding are computed as inputs for
NGDF. Then, NGDF predicts the distance of the current gripper pose to the closest grasp (Sec. IV-A). The predicted distance is used as
the cost and the gradient with respect to the joint configuration is computed with backpropagation. This cost (with gradient) is used with
other costs like smoothness and collision avoidance to update the trajectory (Sec. IV-B).

Gradient-based Trajectory Optimization. A mapping
from time t to robot joint configuration p is defined as a
trajectory ξ : [0, T ] → p. Trajectory optimization aims to
find the optimal trajectory given an objective functional U :

ξ∗ = argminξ U [ξ], s.t. ξ(0) = ps, ξ(T ) = pg (1)

for a given start ps and goal pg configuration. In manipu-
lation, the objective U contains cost terms for smoothness
and collision avoidance. CHOMP [11] solves for ξ∗ with
functional gradient descent:

ξt+1 = ξt − ηA−1∇̄U(ξt) (2)

where A is an acceleration metric that helps propagate
updates over the entire trajectory.

IV. METHOD

In this work, we represent a set of poses M ⊂ SE(3)
as the level set of a neural implicit function. This implicit
function takes a query pose q as input and estimates its
distance to the learned level set. Sec. IV-A describes how
Neural Grasp Distance Fields (NGDF) leverage this insight
to learn the level set of valid grasp poses. Sec. IV-B explains
how to incorporate NGDF into a trajectory optimization
framework to jointly reason over smooth and collision-free
reaching trajectories that end at a valid grasp pose. Fig. 3
provides an overview of our method.

A. Neural Grasp Distance Fields

Given a query pose q ∈ SE(3) and a shape embedding z ∈
Z , NGDF defines an implicit function: NGDF(q, z) = d,
where d is the distance from q to the closest valid grasp g ∈
M ⊂ SE(3) for an object in a scene. Valid grasps are poses
where a gripper can stably grasp an object by closing its
fingers. For the distance metric d we combine translation and
orientation distances into a single “control points” metric [7]:

di = ∥T (q; ci)− T (g; ci)∥1 , i = 0, . . . , N (3)

where T (·; ci) is the transformation of a predefined set of
points {ci} on the gripper. Since q and g belong to SE(3),
the distance could be defined based on the manifold geodesic
distance between those poses, however we find that the

control points based distance metric balances the translation
and rotation costs better in practice. NGDF estimates the
distance for each control point c0...N separately: d(q,g) =[
d0, . . . , dN

]T
. During training, the estimated distances d̂

are supervised with L1 loss: L = ∥d̂− d∥1.

B. Optimization of Grasping Trajectories using NGDF

For a given query pose, NGDF outputs the distance to
the closest grasp pose. We now show how to enable joint
optimization for reaching and grasping with NGDF. We
incorporate NGDF as a goal cost estimator within a gradient-
based trajectory optimizer that already has cost terms for
smoothness and collision avoidance.

In this work, we combine NGDF with CHOMP [11]
(described in Sec. III), though NGDF can be used in
any gradient-based trajectory optimization algorithm. Since
CHOMP specifies a fixed goal pg , we modify CHOMP
to include pg as a variable in the optimization following
Dragan et al. [20]. We then add our grasp cost Fgrasp as the
variable goal cost to the objective functional U :

U [ξ] = λ1Fgrasp[ξ]+ λ2Fsmooth[ξ] + λ3Fobs[ξ] (4)

where λi are cost weights.
Grasp Distance as a Goal Cost. We now define Fgrasp

and derive its functional gradient ∇̄Fgrasp for gradient-
based optimization. For a trajectory (during any iteration of
optimization), we calculate the gripper pose from the final
joint configuration using forward kinematics: qT = FK(ξT).
We then use NGDF to estimate the distance of this gripper
pose to a valid grasp: NGDF(qT , z) = d̂. The norm of this
distance becomes our grasp cost: Fgrasp[ξ] = ∥d̂∥1. We can
compute the gradient of the grasp cost with respect to the
joint configuration ξT through backpropagation:

∂Fgrasp

∂ξT
=

∂Fgrasp

∂qT

∂qT

∂FK

∂FK

∂ξT
(5)

Since the grasp cost only applies to the final config-
uration in a trajectory, the functional gradient ∇̄Fgrasp

contains all zeros except for the last row: ∇̄Fgrasp =

[0,0, . . . ,
∂Fgrasp

∂ξT
]T .



Joint Optimization of Trajectory Costs. Similar to the
objective functional (Eq. 4), the objective functional gradient
∇̄U is a weighted sum of gradients: ∇̄U [ξ] = λ1∇̄Fgrasp +
λ2∇̄Fsmooth + λ3∇̄Fobs. At every optimization iteration,
we compute the costs and functional gradients as described
above, then update the trajectory according to the A-metric
update rule (Eq. 2). Since our objective cost has terms for
minimizing distance to a valid grasp, maintaining smooth-
ness, and avoiding collisions, our algorithm jointly optimizes
all three to produce reaching and grasping trajectories.

C. Implementation Details

Dataset. Training NGDF requires a dataset of point
clouds, valid grasp poses, and query poses. We use the
ACRONYM [36] dataset, which contains object meshes and
successful grasp poses collected in NVIDIA FleX [37]. For
grasp poses, our evaluations in Sec. V are run in PyBul-
let [38], so we relabel the successful grasp poses based on
their success in PyBullet with the same linear and rotational
shaking parameters used in ACRONYM. In addition, we
filter the positive grasp set to only include grasps where the
normals at the mesh and finger contact points are opposed
to each other (-0.98 cosine similarity). Our results in Sec. V-
B show that this filtering improves grasp performance. To
collect query poses for the dataset, we sample 1 million
random SE(3) poses within a 0.5 m radius of the object mesh
centroid. While it is possible that some of the sampled poses
could be positive grasps, we assume they are few in number
and do not run additional grasp evaluation to filter them. For
each sampled pose, we use distance to the closest grasp in
the valid grasp set (see Sec. IV-A) as our supervision.

Architecture. An input point cloud is converted into the
shape embedding z using a VN-OccNet [39] encoder pre-
trained on 3D reconstruction [29]. The input to NGDF is a
concatenation of this shape embedding z with the input query
q’s position and quaternion. The NGDF network is based
on DeepSDF [2] and consists of 8 MLP layers, 512 units
each, and ReLU activations on the hidden layers. A softplus
activation on the output layer ensures positive outputs.

Training Procedure. We freeze the weights of the pre-
trained point encoder during training and only train the
NGDF network. Each training sample consists of a partial
point cloud, a query pose, and the closest valid grasp. Similar
to NDF [29], the partial point cloud is merged together
from 4 camera views and downsampled to 1500 points using
farthest point sampling. Random rotation augmentations are
applied to each sample with 70% probability. Finding the
ground truth closest grasp pose is computationally expensive
and requires multiple simulated grasp attempts per query
pose. Therefore, our supervision is pseudo-ground truth, as
the closest grasp pose comes from a large but discrete set
of grasps [36]. We find that this discrete grasp set is dense
enough to train NGDF, while still representing unseen valid
grasp poses at or near the zero level set (Sec. V-A).

Trajectory Optimization. CHOMP [11] uses a fixed or
decaying step size for functional gradient updates, which
is sufficient for trajectories with fixed start and goal joint

Fig. 4: Grasp Level Set Evaluation. Left: Final predicted pose
(magenta) and its closest grasp pose (green) in the training dataset.
Right: Gripper path (teal) as it is optimized from initial to final
pose. Object meshes shown for visual clarity; our method takes
point clouds as input.

configurations. However, with our modification of CHOMP
in Sec. IV-B to allow a variable goal configuration, we
found that such simple step size strategies resulted in poor
convergence. We address this issue by using Adam [40] to
adaptively update the step size (“CHOMP-Adam”). We use
differentiable SE(3) operations [41] and a differentiable robot
model [42] to backpropagate gradients from the output of
NGDF to the robot joint configuration (Eq. 5).

V. EXPERIMENTS

We first evaluate how well NGDFs represent valid grasp
manifolds as their zero level sets (Sec. V-A). Then we
perform a full system evaluation with NGDFs on a “reach-
ing and grasping” task (Sec. V-B), where an NGDF is
used within a gradient-based trajectory optimizer as a goal
cost function. We evaluate generalization on grasping intra-
category unseen objects (Sec. V-C), and demonstrate grasp-
ing on a real robot system (Sec. V-D).

A. NGDF Level Set Evaluation

First, we investigate whether the learned level set of an
NGDF represents successful grasps. Our evaluation proce-
dure considers driving an initial query pose to the learned
level set. We use the distance output from NGDF as a loss,
and update the query pose with Adam [40] using backprop-
agated gradients. Note that this evaluation optimizes just the
gripper pose; full-arm trajectory optimization is considered
in the next subsection. We evaluate NGDF on three objects:
Bottle, Bowl, and Mug. For this evaluation, we train a single
NGDF model for each object, and evaluate models trained
with and without the dataset filtering procedure described
in Sec. IV-C. We run the optimization for 3k steps with a
learning rate of 1e-4. Since we represent poses as positions
and quaternions, we normalize the quaternion after each
gradient update to ensure valid rotations.



TABLE I: NGDF Grasp Level Set Results

Train Set Error (m) ↓ Grasp Success ↑
Bottle-NoFilter 0.023± 0.01 0.480
Bottle 0.029± 0.01 0.880

Bowl-NoFilter 0.036± 0.02 0.540
Bowl 0.033± 0.01 0.760

Mug-NoFilter 0.038± 0.01 0.680
Mug 0.035± 0.01 0.860

Results are averaged over 50 unseen query poses per object,
sampled from within a 0.5 m radius of the object centroid.

The quantitative results on grasp level set optimization are
shown in Table I. We use two metrics for this evaluation.
The “Train Set Error” metric is the minimum control points
distance (Eq. 3) between the optimized gripper pose and the
closest grasp pose in the discrete training set. Since NGDF
should learn a continuous level set and interpolate between
grasps in the training set, we expect NGDF not to achieve
zero error on this metric, but it provides a good surrogate for
comparing models. The “Grasp Success” metric measures the
grasp quality of the optimized gripper poses. For each pose,
we load the target object in PyBullet [38] and attempt a grasp
at the specified pose. The robot gripper is always initialized
to the same position; the object is transformed relative to
the gripper. Linear and rotational shaking are applied after
gripping the object [36], and the grasp is successful if the
object is still gripped after the shaking.

Our results show that while NGDFs trained on filtered
and unfiltered data have similar Train Set Error, the Grasp
Success for filtered data models is much higher. These
results also indicate that NGDFs have learned continuous
level sets, since the mean distance predicted by NGDF after
optimization is less than 1e-5, much lower than the minimum
distance to the training set of grasps. Fig. 4 shows examples
of the optimization path and achieved gripper pose.

B. Simulated Reaching and Grasping Evaluation

Next, we evaluate our method on a full reaching and
grasping task, which requires planning a smooth, collision-
free grasping trajectory for the full robot arm starting from
an initial robot joint configuration. This evaluates the full
pipeline as opposed to just the stand-alone gripper pose in
the previous subsection. The task is considered successful if
the robot executes the trajectory, closes its fingers to grasp
the object, and lifts the object without losing it. We place
Bottle, Bowl, and Mug objects in simulation in 30 random
orientations each (see Appendix Fig. S2 in [43], left-most
column), thus 90 trials in total. Our results indicate that
even in a seemingly simple setting, randomly oriented objects
present an overall challenging benchmark.

For this evaluation, we train a separate NGDF (similar
to NeRF approaches [1], [26]) for each object, though
our method can be extended to generalize across objects
like other shape-conditioned implicit approaches [2]. We
also evaluate intra-category (known class, unseen shape)
generalization in the next subsection. We run 500 iterations
of CHOMP-Adam (see Sec. IV-C) with a learning rate of

3e-3. The grasp cost is weighted heavily relative to the
collision and smoothness costs. The trajectory is initialized
using inverse kinematics so the gripper pose of the final joint
configuration is within 0.3 m of the center of the object point
cloud; the rest of the initial trajectory is interpolated between
the start and end joint configurations.

The results are shown in Table II. We compare against
oracle methods that provide upper-bound task performance,
and against baselines that predict discrete grasps. Oracle
methods assume perfect object pose estimation and known
discrete grasp set. All discrete grasp methods run inverse
kinematics over all discrete grasp goals and discard infeasible
grasps. For planning, methods use goal-set CHOMP [20] or
CHOMP [11], depending on whether the goal is fixed or
can vary. “O1” selects the goal with minimum distance to
the initial joint configuration, and keeps it fixed throughout
planning. “OMG” [15] adaptively learns a cost for each
grasp and selects the grasp with minimum cost at every
optimization iteration (Variable Goal).

The baselines that predict discrete grasps use Contact-
Graspnet [6] as the grasp estimator. We use weights (pro-
vided by the authors) that are trained on millions of grasps
and shapes. “B1” selects the grasp goal with the maximum
score estimated by Contact-GraspNet and keeps it fixed
during planning. “B2” selects the grasp goal with minimum
distance to the initial joints and keeps it fixed during plan-
ning. “B3” allows varying grasps during planning using the
minimum distance metric. “B4” uses the same adaptive cost
from OMG [6] to select grasp goals during planning.

Our results show that while oracle methods perform well,
methods that don’t assume known object pose and use
predicted grasps have much lower Execution Success. Of the
predicted grasp methods, NGDF performs best. Surprisingly,
the B3 and B4 variable goal variants do not outperform fixed
goal variants B1 and B2. Failure cases for all methods are
largely due to collisions between the gripper fingers and the
object, which are a relatively small obstacle cost and may
be difficult for the planner to balance with the other costs.
Appendix Fig. S2 in [43] contains qualitative NGDF results,
and App. A contains additional ablation experiments.
C. Intra-Category Generalization

To evaluate whether our method can generalize to shapes
in the same object category, we train an NGDF model on
7 shapes in the “Bottle” category from ACRONYM [36].
Training samples are generated from the meshes using the
same data collection procedure described in Sec. IV-C. We
evaluate performance on a held-out Bottle instance, the same
instance used in the previous evaluations. The intra-category
model achieves 0.63 execution success on 30 Bottle trials
for the reaching and grasping evaluation, which is compa-
rable with the single-object NGDF results from Table II,
demonstrating intra-category generalization without loss of
performance.
D. Real Robot Reaching and Grasping Evaluation

Finally, we test our method’s reaching and grasping per-
formance on a real robot system. At the start of each trial,



TABLE II: Reaching and Grasping Results

Method Perception Grasp Estimation Grasp Selection Goal Execution Success ↑
O1 (Oracle) Known Object Pose Known Discrete Grasps Min. Distance Fixed 0.96

OMG [15] (Oracle) Known Object Pose Known Discrete Grasps Adaptive Cost Variable 0.99

B1 Unknown Object Pose Predicted Discrete Grasps [6] Max Score Fixed 0.37
B2 Unknown Object Pose Predicted Discrete Grasps [6] Min. Distance Fixed 0.39
B3 Unknown Object Pose Predicted Discrete Grasps [6] Min. Distance Variable 0.38
B4 Unknown Object Pose Predicted Discrete Grasps [6] Adaptive Cost Variable 0.31

NGDF (Ours) Unknown Object Pose Predicted Continuous Grasps N/A Variable 0.61

Middle columns correspond to design decisions found in Fig. 2; color-coded methods also correspond to those shown in the same figure.

Fig. 5: Real System Evaluation. (a) Visualizing the plan and
imperfect object point cloud; (b) executing the plan on hardware
(cameras highlighted with red boxes); (c) lifting the object. (d) The
nine objects used for testing. (e) Additional successful grasps.

an object is placed in a random stable pose. A partial point
cloud of the scene is obtained from four Azure Kinect depth
sensors (Fig. 5b), similar to NDF [29]. The object point cloud
is segmented via plane fitting, then passed as input to NGDF
models from Sec. V-A, which are trained on one instance
per category in simulation. The cloud is also converted to
a signed distance field to enable computing collision costs
with CHOMP [11]. The optimized trajectory is executed
on a Franka Panda robot with impedance control, and the
trial is considered successful if the object is grasped and
lifted without being dropped (Fig. 5c). 9 test objects were
evaluated, 3 from each shape category (Fig. 5d). 3 grasp
attempts were performed per object for a total of 27 trials.
See App. C in [43] for additional details.

Our overall grasp success rate was 81%, with success per
category being 7/9 Bottles, 9/9 Bowls, and 6/9 Mugs. Our
system successfully grasped every object, despite many of
them being outside of its training distribution in terms of
size and shape. The method also demonstrated robustness
to noisy perception and execution with impedance control.
Failure cases were due to slight collisions between the fingers
and objects, similar to what we observed in simulation.

VI. DISCUSSION

Neural implicit functions have been widely explored for
3D vision tasks such as shape reconstruction. NGDF extends
this concept to grasp estimation, using 6D poses as queries
on grasp manifolds. Our work differs from existing work on

3D reconstruction, not only due to the higher dimensionality
of our problem, but also because of the challenge in acquiring
ground truth labels. The ground truth grasp distance between
an arbitrary query pose and the corresponding closest grasp
is expensive to compute. Instead, we train on large-scale
discrete grasp sets [36] as near-ground truth supervision. Our
experiments in Sec. V-A show that NGDF is able to learn
the continuous grasp manifold as the level set of the neural
field from this discrete supervision.

NGDF decouples the problem of learning a grasp manifold
representation from the problem of finding a good grasp
pose. For the latter, we formulate the distance output of
NGDF as a cost to be minimized. For the full robot motion
planning regime, we jointly optimize the grasp cost with
smoothness and collision costs. We outperform baselines
in Sec. V-B that represent what a practitioner would imple-
ment for a reaching and grasping task. While the performance
of oracle methods indicate room for improvement, our results
show that joint optimization with NGDF is a promising
direction for manipulation. We also demonstrate scalability
with intra-category generalization results in Sec. V-C, and
deploy our method on real hardware in Sec. V-D.

In terms of limitations, NGDF is trained on a gripper-
specific dataset; NGDF for other grippers may require dif-
ferent datasets. The method also depends on upstream object
segmentation. Further, the cost weights are fixed during
optimization in the reach and grasp planning task; learning to
adjust the weights each iteration could improve performance.

VII. CONCLUSION

We propose Neural Grasp Distance Fields (NGDF), which
represent the continuous manifold of grasps as the zero-level
set of a neural field. We formulate the estimated distance as
a cost for a gradient-based trajectory optimizer to jointly
optimize with other trajectory costs such as smoothness and
collision avoidance to perform reach and grasp planning. Our
results show that NGDF outperforms existing methods, while
generalizing to unseen poses and unseen objects.
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APPENDIX

A. Ablations for Neural Grasp Distance Fields

We perform ablation experiments for our trajectory op-
timizer (Table S1). We compare using Adam [40] vs. a
fixed step size (“No-Adam”) for functional gradient descent.
Unlike our method, CHOMP [11] originally uses a fixed
or decaying step size, in the setting where the start and
end trajectory configurations are not optimized (Sec. IV-B).
In our setting, the end configuration is variable to allow
optimization of the grasp pose. No-Adam converges slowly
when the trajectory is far from a valid grasp pose, and
overshoots when near the level set. We also evaluated using
a decaying step size; while this mitigated the overshooting
issue, convergence was still much slower, and the decay rate
required tuning.

“No-Initial-IK” initializes the configuration at every
timestep in the trajectory to the starting joint configuration,
instead of using IK to initialize the trajectory as described
in Sec. V-B. We observe worse performance with No-Initial-
IK as the initial trajectory is farther from the desired grasp
trajectory, making it harder to plan.

TABLE S1: Optimizer Ablation Results

Grasp Execution ↑
NGDF, No-Adam 0.18
NGDF, No-Initial-IK 0.44
NGDF (Ours) 0.61

No-Adam uses CHOMP [11] with a fixed step size instead of
Adam [40] optimization for the functional gradient update. No-
Initial-IK initializes the trajectory so all steps in the plan start at
the initial joint configuration. NGDF uses Adam and initializes the
endpoint of the trajectory using inverse kinematics to achieve the
best performance. 90 trials were performed as in Table II.

B. Simulation Experiment Details

1) Camera Position in Simulation: Fig. S1 shows the
position of the four cameras in simulation.

Fig. S1: Camera poses in simulation visualized as axes. The
negative z axis (in blue) is the camera optical axis and points toward
the robot workspace.

2) Qualitative Results: Fig. S2 visualizes successful grasp
trajectories in simulation for the reaching and grasping task
from Sec. V-A.

Fig. S2: Successful grasp trajectories (left-to-right) planned by our
method for the bowl (top) and mug (bottom).

C. Real System Experiment Details

This section provides system implementation details for
our real world experiments in Sec. V-D. Our system consists
of a 7-DOF Franka Panda robot and four Azure Kinect
cameras (Fig. 5b), a similar setup to NDF [29].

1) Calibration: The Azure Kinect cameras were extrinsi-
cally calibrated using ColoredICP [44]. For camera intrinsics,
the factory calibration was used. Robot-camera extrinsic cal-
ibration was performed using Tsai-Lenz [45]. The calibrated
cameras produce a combined scene point cloud in the robot
base frame.

2) Point Cloud Processing: To segment the object point
cloud from the scene point cloud, we fit a table plane using
RANSAC and remove points belonging to the plane. Outlier
removal and DBScan [46] are used to refine the object point
cloud. Our planner requires a signed distance field (SDF) of
the object for collision avoidance, so we construct a mesh
from the object point cloud, then compute the SDF from the
mesh using the tools provided in Wang et al. [15].

Even with four cameras, careful calibration, and point
cloud processing, we recover partial point clouds with inac-
curacies and noise (see Fig. S3). Despite these deficiencies,
our method achieves a high success rate on real objects in
various configurations (Sec. V-D), demonstrating robustness
to perceptual errors.

3) Control: The output of the planner is a joint angle
trajectory consisting of 30 timesteps. In order to execute the
trajectory on the Franka Panda, the total duration of trajectory
execution is set to 5 seconds, and the trajectory is interpolated
using cubic spline interpolation to provide joint angles at
1 Hz. Impedance control [47] is then used to execute the
high-frequency trajectory.

D. Experimental Setup

Several of the test objects could be grasped via multiple
stable pose configurations. For example, a mug can be
grasped while upright, on its side, or upside down. For
objects with multiple graspable pose configurations, the
configuration was randomly sampled for each trial. The 9 test
objects (see Fig. 5d) had graspable stable pose configurations
shown in Table S2.



(a) Bottle (b) Reconstructed Bottle Mesh, View 1 (c) Reconstructed Bottle Mesh, View 2

(d) Bowl (e) Reconstructed Bowl Mesh, View 1 (f) Reconstructed Bowl Mesh, View 2

(g) Mug (h) Reconstructed Mug Mesh, View 1 (i) Reconstructed Mug Mesh, View 2

Fig. S3: Meshes reconstructed during system evaluations. The first column shows the placement of the objects in each trial, along with
a close-up image of the object itself. The second column shows the meshes reconstructed from the four depth cameras according to the
procedure in Sec. C.2, posed roughly as they appear in the first column. The third column shows the back of each mesh. Note that these
meshes and images are magnified for visual clarity and are not consistently scaled. Even with outlier removal and other mesh processing
techniques, we observe inaccuracies in the reconstruction; however, our method is robust to these inaccuracies as demonstrated by our
results in Sec. V-D.

TABLE S2: Real Object Pose Configurations

Sampled Pose Configurations

Bottle 1 (Protein Drink) Upright, Sideways
Bottle 2 (Mustard Bottle) Upright
Bottle 3 (Coconut Water) Upright, Sideways
Bowl 1 (YCB Bowl) Upright
Bowl 2 (White Bowl) Upright
Bowl 3 (Square Bowl) Upright
Mug 1 (Black Mug) Upright, Sideways, Upside Down
Mug 2 (YCB Mug) Upright, Sideways, Upside Down
Mug 3 (Large Mug) Upright, Sideways, Upside Down

The sampled pose configurations for objects in the real system
evaluation. Objects are numbered left to right according to Fig. 5d.
Some stable poses did not permit grasping and were omitted; for
example, the mustard bottle cannot be grasped lying sideways as it
is too wide.
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