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Immersive Demonstrations are the Key to Imitation Learning

Kelin Lif, Digby Chappellf, and Nicolas Rojas

Abstract— Achieving successful robotic manipulation is an
essential step towards robots being widely used in industry
and home settings. Recently, many learning-based methods have
been proposed to tackle this challenge, with imitation learning
showing great promise. However, imperfect demonstrations and
a lack of feedback from teleoperation systems may lead to
poor or even unsafe results. In this work we explore the effect
of demonstrator force feedback on imitation learning, using
a feedback glove and a robot arm to render fingertip-level
and palm-level forces, respectively. 10 participants recorded 5
demonstrations of a pick-and-place task with 3 grippers, under
conditions with no force feedback, fingertip force feedback,
and fingertip and palm force feedback. Results show that force
feedback significantly reduces demonstrator fingertip and palm
forces, leads to a lower variation in demonstrator forces, and
recorded trajectories that a quicker to execute. Using behavioral
cloning, we find that agents trained to imitate these trajectories
mirror these benefits, even though agents have no force data
shown to them during training. We conclude that immersive
demonstrations, achieved with force feedback, may be the key
to unlocking safer, quicker to execute dexterous manipulation
policies.

I. INTRODUCTION

Robotic manipulation is one of the most important capa-
bilities that robotic hands must have in order to be used for
household tasks. The traditional method to endow robots with
manipulation skills is by hard coding motions and grasps,
which requires different programs for different tasks and
environments. In recent years, Artificial Intelligence (AI)
is becoming more popular in robotic manipulation [1]-[6].
Using these techniques, the robot can learn a manipulation
policy from experiences collected either by itself or from
demonstrations. The learned policy enables the robot to
choose an action at each timestep after perceiving the current
state of its environment [7], and if the robot has been exposed
to a sufficiently large sample of states and actions, then the
learnt policy will be robust and accurate. Imitation learning,
also known as Learning from Demonstration (LfD) is one of
the most popular AI methods to achieve this.

Naturally, quality of the demonstration shown to the robot
greatly affects the results of imitation learning [8]. Imperfect
demonstrations will result in an imperfect imitation policy,
and therefore it is essential to have a high quality demon-
stration collection process. Broadly speaking, there are two
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Fig. 1. Summary diagram of the immersive demonstration platform used
in this work, which utilizes a robot arm and a haptic feedback glove, shown
in (a) to provide sensory feedback from simulated Franka Emika (b), RUTH
(c), and MANO (d) gripper/hand.

categories of demonstration collection techniques: indirect
demonstration and direct demonstration [9]. For indirect
demonstration, the expert does not interact with the robot;
instead, the expert’s own trajectory of state and actions are
recorded with a visual or wearable system, and are retargeted
to the robot. For direct demonstration, robot is guided by
the expert to carry out the task, allowing the robot to learn
from its own motion data directly. While direct demonstra-
tion methods minimize issues with retargeting motion data,
they inherently prevent the demonstrator from performing
a truly expert demonstration. Further to this, many indirect
demonstration frameworks use virtual reality platforms to
enable precise monitoring of the state of the environment
and the demonstrator [10], [11]. However, the absence of
many sensory feedback mechanisms (e.g. contact force,
fingertip tactile) in such systems means that demonstrations
are imperfect [12], and this may negatively impact imitation
learning results. Thus, improving demonstration platforms
with sensory feedback mechanisms may be a fruitful avenue
of research for improving imitation learning.

In this paper, we explore the effect of demonstrator sensory
feedback on imitation learning. By utilizing a haptic feed-
back glove and a robot arm, we are able to render fingertip
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and palm-level force feedback to the demonstrator, allowing
the demonstrator to feel interactions during manipulation
tasks. We use this system, summarized in Fig. |1} to collect
expert demonstrations for a pick and place manipulation
task using three simulated grippers: the 1 degree-of-freedom
(DoF) Franka Emika Hand [13], the 3 DoF RUTH gripper
[14], and the 20 DoF MANO hand [15]. Experimental results
indicate that demonstration collected with fingertip feedback
significantly reduces the gripper force that the trained policy
uses, while maintaining a high task success rate. Further-
more, with palm-level force feedback, the force applied to
each gripper to control their pose is greatly reduced.

This paper is organized as follows. In Section [[] related
works about robotic manipulation and the methods proposed
to address it are reviewed. We show how we formulate
the fingertip force and palm force from the simulation
environment in Section The imitation learning we adopt
in this paper is also explained in this section. We introduce
the experimental setup we use for this paper in Section
Experimental results and some discussions are done in
Section Finally, we conclude this paper and raise the
future plans to improve the current work in Section

II. RELATED WORK
A. Robotic Manipulation

Robotic manipulation, including grasping, relocation, and
reorientation, is a crucial capability for robotics [16]. A
large amount of research on the subject has been performed,
with works roughly falling into the categories of robot arm
manipulations and dexterous manipulations. Both traditional
control methods and learning methods have been widely
employed for robot arm manipulations. For example, tradi-
tional control methods were applied to robot arm systems
performing machining task [17] and coffee machine tasks
[2]. Dexterous manipulation skills, on the other hand, are
typically achieved with learning-based methods, such as deep
learning to grasp complex objects [18], or learning from
human demonstration to perform unscrewing tasks [3], door
opening [19], and in-hand manipulation [4].

B. Al Methods for Robotic Manipulation

In recent years, researchers have focused on applying
machine learning methods to robotic manipulation problems.
One of the most popular methods is reinforcement learning
(RL). With a well formulated reward function, RL can
automatically learn a policy which maps states to actions
[20], allowing it to be widely applied to robotic manipulation
tasks. Many works have focused on learning policies directly
from large dimension inputs, often taking RGB images as ob-
servations and robot behaviors as actions [21], [22]. An open-
source framework named SURREAL [23] was proposed to
accelerate the deep reinforcement learning, which shows high
scalability and strong results in the applications. RL has been
successfully used to train a dexterous robotic hand to carry
out tasks, such as valve rotation and box flipping [19], but
for many tasks, it is too difficult to define a suitable reward
function. Furthermore, for high dimension state and action

space problems such as robotic manipulation, it is inefficient
to learn from scratch, rather than utilizing prior knowledge to
accelerate learning. Therefore, improving methods that can
learn a policy from an expert’s demonstration is an appealing
topic of research for robotic manipulation.

Imitation learning is a promising paradigm that can learn a
policy from demonstrations which are provided by an expert.
Incorporating imitation learning into robotic manipulation
has gained popularity in recent years, and has proven to
be particularly useful. For example, in [4], a model-free
framework was proposed for in-hand object reorientation,
which learnt a policy from a pre-trained robotic expert
and can deal with unforeseen objects. An alternative way
to imitate experts’ behaviors is learn from visual sensing
[6], [24], where raw video demonstrations can be taken for
imitation and used to create a reward function for RL. In
[6], a method that can learn a novel robot manipulation task
from a single human demonstration was proposed, which
makes visual imitation learning more efficient. However, it is
sometimes difficult to map from visual data to robot motion,
for example in the presence of occlusion and noise, and
visual data may also not be able to infer certain inputs such
as force or tactile data. A more direct way of collecting
demonstrations is to learn from an expert robot motion
directly. Teleoperation [2], [5] and virtual reality (VR) [1]
are two promising ways to achieve this.

C. Demonstration Acquisition for Imitation Learning

Demonstration acquisition is a crucial step in imitation
learning; imperfect demonstrations will lead to an unsuccess-
ful learning result. Methods for collecting demonstrations for
imitation learning broadly fall into two categories: indirect
demonstrations and direct demonstrations [9].

When performing indirect demonstrations, the expert does
not need to contact the robot; the demonstration is inferred,
mapped, or retargeted to the robot after it is collected. Most
indirect demonstrations are carried out by visual systems,
showing great results using unlabelled videos for pouring
tasks [24], assembly tasks [25], and target reaching [6].
Another method of performing indirect demonstration is
to record demonstrator motion using alternative systems
such as wearable devices, such as data gloves. In [3], a
human expert demonstrated an unscrewing bottle cap task
while wearing a dataglove, recording contact force as well
as motion data. Although indirect demonstrations are easy
to perform, a post-demonstration mapping or learning is
required for demonstrations to be used by a robot, and this
mapping cannot be guaranteed to align well with the joint
capabilities of the robot.

Direct demonstrations, on the other hand, directly control
the robot to perform the specific task. In many works,
this involves guiding the robot externally via kinesthetic
teaching [26], [27], however it is not clear exactly how
well these demonstrations truly reflect those of an expert.
Alternatively, teleoperation systems can be used, allowing
the direct, non-contact control of the robot in an intuitive
way. Generally, systems using remote teleoperation have
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Fig. 2. Overview of the behavioral cloning process, here shown with the Franka Emika gripper.

shown promising results on a range of manipulation tasks [2],
[5]. A more immersive, intuitive method of teleoperation is
virtual telepresence, allowing the demonstrator to obtain a
first person view of the robot being operated using a virtual
reality headset. This has been successfully applied in the case
of [1], where virtual telepresence demonstrations were used
with deep imitation learning to allow a robot to complete
reorientation and grasping tasks. A similar demonstration
method also using virtual reality is to use a simulated robot
within the virtual environment. This is appealing because it
allows every detail of the simulated environment to be col-
lected as part of the demonstration, such as contact forces and
joint forces, which are otherwise difficult to monitor [27].
However, in many teleoperation platforms, particularly those
which use virtual telepresence [1], virtual reality [10], [11],
[28], and simulation, haptic feedback is not rendered to the
demonstrator, meaning the teleoperated demonstrations are
imperfect and, in some cases, potentially unsafe.

III. METHODS

A. Fingertip Force Feedback

As mentioned in Section[[I-C} haptic feedback is important
for a human expert to perform high-quality demonstrations.
Although rich contact information is available from sim-
ulation, rendering this to the demonstrator is limited by
existing feedback technology. In this work, we use a force
feedback glove, which applies resistive forces in the flexion
direction at the tip of each finger. In order to approximate
numerous contacts as a single force on the fingertip, we
consider the average joint torques applied to the joints of
the demonstrator’s finger. The flexion joint torques 7; ; at
joint 7 of finger ¢ caused by applying a fingertip force f; at
a distance d from the distal joint of the finger are equal to:

Ti,1 = dfz‘, (D
T2 = l; 2c08(g;, 3) fi + Ti, 1, (2)
Ti 3 = l1cos(qi, 2 + Gi,3) fi + Ti, 2, 3)

where [; ; is the length of the subsequent phalanx of joint j,
and g; ; is the joint angle of joint j. The fingertip force
is then computed to minimize the squared error between

the average torque, 7;, of the demonstrator’s finger and the
simulated finger or gripper %i(s)

“4)

win |17 — 7[5

B. Palm Force Feedback

Although fingertip force feedback allows the demonstrator
to feel in-hand forces, the vast majority of feedback gloves
only apply forces relative to the palm of the user; the glove
itself is fixed to the rear of the palm. In this work we consider
how to extend force feedback applied to the demonstrator to
also render the external forces acting on the hand. This is
particularly important when interacting with static objects
(e.g. a desk) in the environment, or when feeling the weight
of objects. Using a similar method to [29], the base link of
the simulated hand or gripper can be controlled with a 6-DoF
proportional-derivative (PD) controller:

F=Kp:(x—Tref) — Kaa,
T = Kd,r(w - wref>7

(&)
(6)

where « and w are the position and angular velocity of the
base link, respectively, and @,.; and w,.y are the position
and angular velocity of the real world hand tracker, respec-
tively. The resultant wrench applied by the PD controller
at the simulated base link can then be rendered as the
wrench applied by the end effector of a robot arm to the
demonstrator’s hand in order to allow the demonstrator to
‘feel’ the external, out-of-hand forces applied to them.

C. Imitation Learning

With collected demonstrations, we train a policy using
imitation learning. In this work, a simple Behavioral Cloning
(BC) baseline is adopted to imitate the demonstrator’s be-
havior, summarized in Fig. 2] We use three fully connected
layers to map the observed robot states to demonstrated
actions. All networks were trained by minimizing the mean
square error between the demonstration action and the
agent’s action:

—a;)?, 7

where N represents the dimension of the action space. *a;
is the 74, agent’s action respective to a specific observed
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Fig. 3. Force feedback in the immersive virtual teleoperation system. Palm
pose (position and orientation) and finger joint positions are captured using
a SenseGlove and mapped to desired positions for the simulated grippers.
Joint forces from the simulation are mapped back to fingertip forces to
apply with the SenseGlove and an end-effector wrench to apply with a
Franka Emika robot arm to the palm.

state s. And “a; is the ground truth demonstration action.
In this work, we use a simple representation where the
agent can only perceive its own controllable internal state,
corresponding to the position of each degree of freedom. The
dimensions of the action space and state space are 7, 9 and
26 for Franka Emika Hand, RUTH hand and MANO hand,
respectively (6 DoF palm pose + gripper DoF). Before the
demonstrations are fed into the networks, all the data are
normalized using min-max normalization:
/ T — Tmin

= — ®)

Tmax — Tmin

where z’ is normalized and =z is original demonstration data.

IV. EXPERIMENTAL SETUP

To implement the force feedback methods described previ-
ously, a SenseGlove force feedback glove is used to provide
resistive forces to the demonstrator’s fingertips, and a Franka
Emika robot arm to provide palm force feedback, both shown
in Fig. ] Resistive forces are translated to a pulse-width
modulation (PWM) signal to send to the force feedback
glove. The duty cycle percentage of the signal is computed
by empirically fitting a quadratic to measured force outputs
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Fig. 4. Box plots of demonstration (a) fingertip forces and (b) palm forces
for no force feedback (NFF), fingertip force feedback (FFF), and fingertip
and palm force feedback (FPFF). Results of student’s t-test, *p < 0.001,
*tp < 0.01, #*p < 0.05.

from each resistive tendon:

% duty cycle i = \/(fi —b)/a 9)

where @ = 1.72 x 1073, and b = 2.57. The palm force
feedback wrench, calculated using Eq. (3) and Eq. (€), is
applied by the end effector of the robot arm to the back of
the demonstrator’s hand by robot arm.

The reference position [x,y, 2].s and reference orienta-
tion [a, b, ¢, w],cs of the palm are measured by a VR tracker,
which is fixed relative to the palm of the demonstrator.
Reference joint positions of the human hand g are measured
using the SenseGlove’s proprietary inverse kinematics solver.
For the MANO hand, the human hand joint positions are
directly mapped to the reference joint positions of the MANO
hand and feedback forces directly mapped to the human
hand. For the RUTH hand, the flexion joint angles of the most
proximal joints of the thumb, index, and middle fingers of
the human hand are mapped to the three controllable degrees
of freedom of the RUTH hand, with fingertip force feedback
from the three fingers of the RUTH hand also being applied
to these fingers. For the Franka Emika gripper, the most
proximal joint of the index finger is used as a reference for
the single controllable degree of freedom, and force feedback
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Dashed lines indicate mean fingertip force from demonstrations.

rendered to the index finger. Participants were able to view
the simulated environment from a fixed perspective on a
screen placed at head height approximately 1.5 m in front
of them. This increases task difficulty; without being able
to alter the viewpoint of the camera, it is possible for the
simulated gripper to occlude the object being grasped.

To quantify the effect of force feedback on imitation learn-
ing, we consider three conditions: no force feedback (NFF),
fingertip force feedback (FFF), and fingertip and palm force
feedback (FPFF). In this work, we collect demonstration for a
simple pick and place task, defined as grasping a rubber duck
and placing it into a tray. Participants are asked to repeatedly
perform this task until 5 successful attempts are recorded
for each condition, for each gripper. 10 participants were
recruited to this study, giving 50 demonstration trajectories
for each of the 9 learning tasks (450 total demonstrations).
This study was issued a favorable opinion by the Imperial
College London Science Engineering Technology Research
Ethics Committee (SETREC), study number 20IC6125, in-
formed consent was obtained from each participant.

V. RESULTS AND DISCUSSION

The fingertip forces and palm forces applied by each
demonstrator to the simulated environment with each com-
bination of gripper and feedback condition is shown in
Fig. @] As seen, fingertip force is significantly reduced (p <
0.001) in all conditions where fingertip force feedback is
rendered to the demonstrator. Interestingly, without fingertip
feedback some participants applied a greater fingertip force
with the RUTH gripper than is possible with an average
human hand [30], whereas with fingertip force feedback
all participants are well within expected ranges for human
grasping. This indicates that the demonstrator is able to
modulate their grasping force according to this feedback,
only applying a grasp force that they perceive to be necessary
for the task. Without fingertip force feedback, there are no
sensory cues to indicate that a successful grasp has been
made or that the demonstrator’s grasp force is sufficient for a
successful pick and place action. Palm force follows a similar
trend, with statistical significance (p < 0.001) observed
between conditions without palm force feedback (NFF and

500 1000 1500 2000 2500 3000 3500 4000 0
Training Epoch

(b) RUTH

Mean fingertip force during the training of imitation learning agents. Rolling window of 100 epochs is used, =1 standard deviation is shaded.

500 1000 1500 2000 2500 3000 3500 4000
Training Epoch

(c) MANO

FFF) and conditions with palm force feedback (FPFF), with
the exception of FFF and FPFF for the MANO hand. Results
indicate that demonstrations under the FFF condition with the
MANO hand also exhibit a reduced palm force compared
to NFF (p < 0.05). The main source of palm force is,
qualitatively, due to normal reaction force from the desk in
simulation. This could explain the reduction in palm force
between NFF and FFF for the MANO hand; the fingertip
force feedback may have transmitted some aspects of palm
force. This is because the open-hand position of the MANO
hand leaves fingertips approximately parallel to the surface
of the desk, so fingertip force feedback can reflect palm
force feedback. This is in contrast to the Franka Emika and
RUTH grippers, where the gripper fingers are approximately
perpendicular to the desk, and therefore will not transmit
normal forces from desk contact.

Fig. 5| shows the mean fingertip force applied by imitation
learning agents during training. As expected, all agents
converge approximately to the mean fingertip force applied
by their respective demonstrations, however NFF exhibits a
much larger variance in fingertip force than other conditions.
This is reflective of the large variance exhibited in each set of
NFF demonstrations, with large interquartile ranges seen in
Fig.[A(a)] The palm force applied by imitation learning agents
during training are shown in Fig.[6] Surprisingly, these do not
converge to their respective demonstration means, however,
all conditions—with the exception of the RUTH hand under
the FFF condition—fall approximately within the demonstra-
tion interquartile ranges seen in Fig. 4(b)] indicating that the
learnt trajectories are somewhat similar to their respective
demonstrations. Importantly, conditions without palm force
feedback converge to dramatically higher force values than
conditions with palm force feedback, showing that exposing
the demonstrator to force feedback allows an agent to learn a
trajectory that exerts less force on its environment. In general,
these fingertip and palm force results show that rendering
force feedback to a demonstrator will produce safer, more
stable agents after imitation learning, even though force is
not inherently shown to the agent during training.

Beyond examining fingertip and palm force, we also
inspect the average execution time of demonstration tra-
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TABLE I
SUMMARY OF AVERAGE TRAJECTORY EXECUTION TIMES.

Average Execution Time (s)
Gripper Demonstration Trained Agent
NFF FFF | FPFF | NFF FFF FPFF
Franka Emika | 20.52 | 18.47 | 17.73 | 27.40 | 14.30 | 11.37
RUTH 1553 | 11.94 | 12.69 | 18.19 | 11.75 | 16.60
MANO 20.67 | 1937 | 14.56 | 18.77 | 18.74 | 11.97

jectories and learnt trajectories. Summarized in Table [Il
it can be seen that trajectories demonstrated and trained
under conditions with feedback have a faster execution time.
This is expected; feedback allows the demonstrator to more
accurately infer when a successful grasp has been made,
allowing them to proceed with the pick-and-place task with
minimal delays. Learnt trajectories are generally reflective
of demonstration trajectories, in that faster demonstration
trajectories correspond to faster learnt trajectories, however
some discrepancies exist between demonstration and trained
agent execution time. This is particularly true for FPFF
results of the trained agent, which are considerably different
to the average demonstration execution time. This highlights
an interesting consequence of training an agent to complete
a task on a wide range of demonstrations recorded from
multiple experts; the average demonstration may not nec-
essarily relate to the trajectory that is easiest to imitate.
The average execution times of the Franka Emika gripper
demonstration trajectories show far less improvement with
feedback than the other grippers/hands. This may be because
the 1 DoF gripper has only two fingers, meaning a more
precise motion must be used to achieve a successful grasp,
limiting how quickly demonstrators were able to perform
the motion. Demonstration execution times for the RUTH
hand, however, are much faster, due to the three-fingered
nature of the gripper making grasping much more robust and
easy to achieve with coarser motions. Finally, the MANO
hand shows a dramatic improvement of both demonstration
and trained agent execution time when fingertip and palm
force feedback are utilized. This may be due to participants
behaving more consistently under the FPFF condition, due
to a higher level of immersion being achieved.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have explored the effect of two modes
of force feedback on imitation learning. By utilizing a force
feedback glove and a robot arm, we rendered fingertip-level
and palm-level force feedback to human demonstrators, then
used this immersive platform to collect demonstration tra-
jectories of a pick-and-place task from multiple participants
using three different grippers. Three feedback conditions
were tested: no force feedback, fingertip force feedback, and
fingertip and palm force feedback. Demonstration trajectories
showed that demonstrations recorded with fingertip feedback
applied significantly lower fingertip force to the simulated
object, and demonstrations recorded with palm feedback ex-
hibited significantly reduced palm force. These benefits were
shown to translate to trained agents; the learnt trajectories
resulted in far less force being applied to the grasped object
and environment, indicating that force feedback may be the
key to quality imitation learning where safety and force limits
are critical. Furthermore, it was observed that feedback led to
both demonstration and learnt trajectories that were quicker
to execute, indicating that feedback may also be useful where
real-time applications are desired. In summary, immersive
demonstrations achieved via force feedback unlock safer,
more execution-efficient imitation learning.

In future, a more complex range of tasks will be inves-
tigated with more complex environment state information,
particularly those where feedback is vital for task completion
(for example, when vision is significantly occluded). The re-
lationship between demonstration quality and psychological
embodiment will also be explored; virtual reality headset
vs a fixed view camera, visual and auditory qualities of
the simulated environment, and anthropomorphic vs non-
anthropomorphic gripper design all contribute considerably
to how immersive the experience is, which will in turn impact
the ability of the expert to produce a quality demonstration.
Finally, how well the trained agent can be transferred to a real
robot will be studied to begin to attempt to realize dexterous
manipulation via imitation learning in real world settings.
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