arXiv:2212.02671v1 [cs.RO] 6 Dec 2022

Visibility-Aware Navigation Among Movable Obstacles

Jose Muguira-Iturralde*, Aidan Curtis*, Yilun Du, Leslie Pack Kaelbling, Tomés Lozano-Pérez

Abstract— In this paper, we examine the problem of visibility-
aware robot navigation among movable obstacles (VANAMO).
A variant of the well-known NAMO robotic planning problem,
VANAMO puts additional visibility constraints on robot motion
and object movability. This new problem formulation lifts the
restrictive assumption that the map is fully visible and the ob-
ject positions are fully known. We provide a formal definition of
the VANAMO problem and propose the Look and Manipulate
Backchaining (LAMB) algorithm for solving such problems.
LAMB has a simple vision-based API that makes it more
easily transferable to real-world robot applications and scales to
the large 3D environments. To evaluate LAMB, we construct
a set of tasks that illustrate the complex interplay between
visibility and object movability that can arise in mobile base
manipulation problems in unknown environments. We show
that LAMB outperforms NAMO and visibility-aware motion
planning approaches as well as simple combinations of them
on complex manipulation problems with partial observability.

I. INTRODUCTION

Navigation is an essential ability for mobile robots. Typical
navigation systems use motion planning for obstacle avoid-
ance during navigation. However, the goal is not always
reachable directly and sometimes requires manipulation of
the environment, such as opening doors, grasping obstructing
objects, or pushing obstructing furniture. The problem of
robot navigation that requires manipulation of the environ-
ment is termed NAMO (Navigation Among Movable Obsta-
cles). A large body of work has studied NAMO problems and
presented many algorithms for solving them [1], [2], [3], [4],
[5], [6], [7], [8], [9]. While the NAMO problem in its most
general formulation is NP-hard, several approaches can make
theoretical guarantees under certain practical assumptions
that hold in many real-world tasks.

In addition to movable obstacles, another constraint that
complicates navigation is visibility. For safety and reliability,
a robot may not want to enter regions in the workspace
that it has not observed to be free. For robots with 360°
vision and no movable obstacles, this requirement does not
impose any additional constraints. However, for many robots
with only a single-camera vision and an omnidirectional
base (e.g. Figure [T)), it becomes necessary to reason about
where to look and where to move. Simple heuristics that
force the robot to look at a region before moving into
it fail when the objects being manipulated obstruct the
robot’s vision or when the necessary areas of the workspace
are only visible from certain perspectives. Unfortunately,
reasoning about visibility does not neatly fit into the motion
planning problem formulation due to the path dependence

*The first two authors contributed equally. The authors are at
CSAIL, MIT, USA: {jmuguira, curtisa, yilundu, lpk,
tlp}@mit.edu.

R

Fig. 1. A partial simulated execution of a VANAMO task showing
the unviewed regions (blue), observed static obstacles (red), and observed
movable obstacles (yellow)

of visibility. Like NAMO, visibility-aware motion planning
(VAMP) is NP-hard, but several algorithms work well in
practical problems [10], [11], [12], [13], [14].

Our contributions are as follows. First, we introduce a
class of problems that fuses elements from NAMO and
VAMP problems and formalize this class of problems as
VANAMO (Visibility-Aware Navigation Among Movable
Obstacles). Second, we provide a framework for mobile
manipulation from camera images and implement several
existing NAMO and VAMP solutions as benchmarks. Third,
we propose a new algorithm for VANAMO which combines
backward reasoning about visibility and reachability with
forward motion planning. We demonstrate its ability to work
well in complex 3D environments where the interaction
between visibility and object movability plays a crucial role.
Lastly, we illustrate our approach’s relative effectiveness on
a number of complex simulated mobile manipulation tasks.

II. RELATED WORK

Previous NAMO work typically relies on the concept of
connected configuration regions and focuses planning effort
on keyhole actions that connect previously disconnected
regions of the configuration space. Greedy backtracking
algorithms have been proposed to solve the linear, or LP,
class of problems in which a sequence of independent
single-object keyhole actions can achieve the goal [1], [2],

[4]. Other algorithms have extended to L P} problems that
require sequencing k-object keyhole actions by enforcing
artificial motion constraints in the planner under additional
assumptions on object movability [3], [S], [6].

In many real-world robot scenarios, the environment map
and object locations are not known a priori and have to be
acquired through sensors and exploration. One of the most
commonly used techniques for exploration in navigation
is frontier exploration [15]. Frontier exploration identifies
a boundary between the observed and unobserved space
and then picks a point on that boundary to explore next.
Unfortunately, arbitrary exploration of the unknown space
is inefficient when the robot has a particular navigation
goal. Several methods have been proposed to address this
inefficiency for visibility-aware navigation [10], [11], [12],
[13], [14]. This problem is difficult because visibility is
path-dependent and doesn’t fit into the conventional mo-
tion planning framework. One recently proposed strategy
develops a path-dependent motion planning algorithm that
plans to view necessary regions of the workspace through
subgoal backchaining [10]. While this algorithm applies
strictly to navigation, we took inspiration from this approach
in building our solution.

While the methods described so far have addressed the
problems of NAMO and VAMP separately, they are in-
sufficient for tackling the combined VANAMO problem.
Robots in real-world environments must deal with visibility
and movable object constraints. Several methods have been
proposed to handle environments with both constraints. Some
of these approaches use unrealistic models of vision that
allow the agent to see through objects or assume an a priori
known map with only unknown movable object poses [16],
[17], [18]. Other approaches use realistic observations in
the form of real robot sensor data but only test in simple
environments where one object is obstructing the goal [19].
To our knowledge, we are the first to present an algorithm
capable of handling environments with complex constraints
arising from the interaction between visibility and movable
obstacles.

III. PRELIMINARIES

The VANAMO environment is defined by a tuple
(C,W,0,M,T,qq4, A, f,Obs) where C is the robot’s config-
uration space, WV is the robot’s workspace (typically 3D with
bounds), O is a set of static obstacles, M is a set of movable
objects where each o € O and m € M is a defined by an
object shape with the same dimensionality as V. Z defines
the world state including the initial robot configuration ¢y and
the pose of all static obstacles g, for o € O and movable
obstacles gy for m € M. The navigation goal is denoted
by ¢4. The robot also has an action space .A. The dynamics
function f : C x A — C maps from a robot configuration
g and action a; to a new configuration ¢;4;. Lastly, the
observation function Obs : C — Img(qm,qo) maps a
configuration ¢ to an image projection of the environment
with partial information of the movable and static objects.
If the object shapes in O and M are known in advance,

S=0 S=1 S=2
s\ O
2

= G i
e muitlle mm |le mm
S=3 S=4 S=5
] (] 0o
@ ‘ [

@ D‘ @ [

Fig. 2. A top-down depiction of an example execution for the LaMB

algorithm on the occluding obstacles task. The robot would like to push
the wide box, but cannot because of visibility constraints. It first moves the
small box out of the way (S=0, 1), then looks at the area behind the box
(S=2), and then pushes the box (S=4) so it can reach the goal (S=5).

the observation function would be defined as Obs : C —
P{{(i,q) | i € MUOQO}), where P is the power set.
Our experimental setting uses a holonomic robot acting in
an SE(2) configuration space with the degrees of freedom
corresponding to x, y movement and 6 rotation. The Obs
function is fully defined by the intrinsics of a forward-facing
camera with a fixed pose relative to the robot base. Even with
a holonomic base, explicitly modeling 6 is necessary because
it governs the camera direction for directional visibility. The
robot can interact with the environment through a number
of controllers. The move controller modifies the x, y, and
f dimensions by adding or subtracting to them with fixed
increments. The pick controller creates a rigid attachment
with a movable object if the object is within a distance € of
the robot, the bounding box for the movable object is smaller
than a maximum height and width dimensionality (i.e., it
can be surrounded by the robot arms), and some part of the
object shape is within a certain 6 deviation from the robot’s
orientation (i.e., the robot needs to be facing the object). The
place controller removes a rigid attachment if one exists.
Lastly, the push controller operates on movable objects of
any size that the camera is within e distance of as long as
some part of the object is within a certain 6 deviation from
the robot’s orientation. The push controller displaces the
robot and the movable object by a fixed distance A in the
qo direction. The dynamics of the environment are assumed
to be deterministic, but the algorithm may be executed
in nondeterministic environments as long as replanning is
triggered after major deviations from the expected outcome.

LaMB Depth=0

o VA*(q0,44) DQD X
— ° A
* [6)
VA r(20,49) i poe

VAZ r (0, (/u) e

Push —

‘/(lv (Ipush) ' O

VA% r(40, gpush) | L= e |
o

] =3

()

View

VA* (’ln, qview)

%I:

VA*\(/R,((/(M qview)

VA?‘R((](M qview) @FD

l Place o

VA~ (qpick> Qplace)
l View

VA* (quace~, QView)

° =4

I

: b VA* ((/117 qPick)

l Push

VA* (qvievw (qush) T D.\:R o

l Move @

@
—> VA*((]pushv(/f/) TD ,D e

Fig. 3. An example trace of the LAMB algorithm on the obstructed
visibility task depicted in Figure |2} We denote each nested recursive call
with a darker shade of grey. The start location is marked with a purple circle,
and the goal location is marked with a green circle. VA* 1, r denotes vision-
relaxed motion planning, and VA* g denotes movable object relaxed
motion planning. For clarity, we collapse successive move & manipulate
calls and denote them with solid lines.

IV. METHOD

In this section, we introduce our algorithm for solving
VANAMO problems called Look and Manipulate Backchain-
ing (LAMB). Our algorithm is structured as a two-level
hierarchical search. The lower level search is an A* algo-
rithm that takes an initial configuration, goal configuration,

an attachment (if one exists) and its relative pose, and a set
of obstacles to avoid. The goal is not typically achievable
directly through motion planning, so the higher level search
finds a sequence of navigation and manipulation actions to
remove the constraints preventing goal reachability.

The constraints preventing navigation fall into two cat-
egories. Visibility constraints ensure that the robot never
passes through or moves obstacles into a region that it has not
been viewed. Collision constraints ensure that the robot never
navigates or pushes obstacles through regions containing
obstacles. LAMB performs a high-level search through look
actions (move actions for the purposes of looking) that
remove visibility constraints and manipulation actions that
displace objects and therefore change collision constraints.
Because of interdependence between these configurations,
it is sometimes the case that one visibility or collision
constraint can prevent the robot from removing another
constraint. To handle these complex interactions, our higher-
level search recursively breaks down goals into subgoals that
aim to remove individual constraints.

A. LAMB

The LAMB planner operates in the execution context out-
lined in algorithm [3] Visibility, static occupancy, and movable
occupancy grids are initialized to be empty prior to any
observations. Observations have the form of segmented point
clouds, and the segments are assumed to be labeled according
to their object index. This segmentation includes knowledge
about whether a particular object is movable. Realistically,
this could be done based on material or shape properties, but
in our experiments and simulations, the objects are recog-
nized with ground truth per-pixel object identities from the
simulation. The visibility grid for a configuration, denoted
Vis(g), is computed by casting rays from the camera to the
point specified by the captured depth image and marking
all voxels each ray passes through as viewed. The LAMB
algorithm is then called with the updated grids as well as
the navigation goal and initial state. The first action of the
plan returned from LAMB is executed in the environment,
and the new observation is used to update the grids. This
process repeats until the goal is reached or the process times
out.

Inside of LAMB , we consider three cases: direct planning,
visibility-relaxed planning, and collision-relaxed planning, as
shown in Algorithm [3| Each case uses VA* to determine if
the goal is reachable with various relaxed constraints. VA™ is
a slightly modified version of A* that handles path-dependent
visibility in an efficient manner. Namely, once a path to a
particular state is found, we do not consider any shorter paths
to that state, and we associate each state with the visibility
grid that would be derived from the path that first reaches
that state. This does not necessarily lead to optimal visibility-
based paths but is an effective approximation [10]. Because
the planner cannot predict what will actually be observed
as the robot traverses a path, we cannot actually obtain the
visibility of an imagined configuration. For this reason, we
use optimistic visibility. That is, within VA*, we assume that

Fig. 4. Problem Instance Visualization. A picture of problem instances from each task category (top row) with illustrated depictions of the envioronments
for visual clarity (bottom row). The green dot indicates the goal position, the yellow objects in the botom row indicate movable objects. The large box is

pushable, but not directly graspable.

voxels not known to contain an obstacle are free space. If a
direct path with VA™ is possible, we simply return that path
as the plan.

If no direct path is feasible, LAMB first tries relaxing the
visibility constraints. To do this, we simply plan with VA*
and an empty visibility grid. If a plan is found with these
relaxed constraints, we identify the region that needs to be
viewed by intersecting the swept volume of the path, denoted
SWEPT(path), with the already gained visibility and create a
subgoal for viewing that region. It is often the case that the
necessary region is not viewable from a single perspective.
For this reason, we use a special type of heuristic that drives
progress towards seeing part of the necessary region. We do
so by computing a scalar field, F, in our workspace, which
denotes the shortest distance from any point in the workspace
to our required region. Given this, our new heuristic would
be defined as Hp(q) = min,evis(q) F'(2). We obtain the new
subgoal by running our VA™ algorithm in an obstacle-relaxed
environment. Each subgoal requires an independent plan,
which we obtain using a recursive call to LAMB. This call
needs to be recursive because additional constraints, such as
obstructing movable obstacles, could prevent the reachability
of those necessary viewing positions. In our experiments, the
configuration of the robot is set so that it can always see
its base. This configuration reduces the number of visibility
subgoals needed to complete the task but is not strictly
necessary for our algorithm to work.

If no visibility-relaxed plan is feasible, LAMB computes
a collision-relaxed plan that removes collision constraints
imposed by movable obstacles. To do this, we simply set
the movable occupancy grid to empty and plan a path to the
goal using VA*. If a path is found, the first movable object
collision is detected using the same SWEPT subprocedure
used for computing the visibility subgoal. In this work, we
consider moving only the first obstacle the robot collides with

along a path to the goal. This approach makes the assumption
that we are dealing with LP; NAMO problems [1]. While
this algorithm could easily be extended to consider multiple
obstacles, doing so incurs a substantial computational cost
and is not necessary for our environments. However, we do
consider multiple ways of interacting with that object. For
each object we consider push and pick/place operations
(depending on the size of the object) from multiple grasp
locations. Pushing is a more constrained operation but is
sometimes necessary if the object is too wide for the robot to
wrap its arms around. For each manipulation action consid-
ered there is a gy, and g,,s: robot configuration. Given these
intermediate configurations, we can plan a path to manipulate
the object and then reach the goal through recursive calls
to LAMB . We additionally need to compute the updated
occupancy grid and swept volume. The updated occupancy
grid is necessary for planning after manipulation, and the
swept volume is necessary for planning before manipulation.
The swept volume adds a constraint to the planner that
restricts moving other obstacles into the swept path of the
manipulated object prior to the object’s manipulation. See [3]
for details regarding this approach.

If no plan can be found under these relaxations, then we
terminate the planner and return a failure result. Figure [3|
shows an example trace of this algorithm on one of the more
complex tasks involving multiple recursive calls with both
visibility and collision relaxing.

V. EXPERIMENTS

To demonstrate the importance of visibility reasoning in
NAMO and evaluate our algorithm, we construct a set of 5
task categories, each with unique challenges. The initial state
for each task category can be seen in Figure 4] The goal of
each task category is to navigate to a particular region in
space highlighted in green. Within each task category, we
experiment with random initialization of object positions,

Algorithm 1 EVALUATEPLANNER(O, M, Z, ¢4, A, f,Obs)
qr < qo
GridV « (), GridO « 0, GridM «
while —(¢; = ¢4) do
0 + Obs(q;)
GridV « UPDATEVIS(0), 0)
GridO, Grid M «+ UPDATEOBS(GridO, Grid M, o)
plan < LAMB(qo, g4, f, GridO, Grid M, GridV)

@t < f(qt,plan[0])
trace <— trace & (plan[0], ¢:)

return trace

Algorithm 2 VA*(qo, G,GO,GV,H(q) = ||q — q4l|2)
Q < [[qo]], visited < ()
while |Q| # 0 do
path < Q.pop(0), grase <= Q[0][0]
if gt € G then return path

if qi,s¢ € visited then continue

V < PathVision(path, GO)

Vi~ GvUuVv

N4 < NEIGHBORS(last)

Q + {path & [¢'] | ¢’ € N,, SWEPT([¢)) N V')° = 0}
Q < SORTED(Q, key = Cost(path) + H(qas))
visited < visited U {qiast }

Algorithm 3 LAMB (g, ¢4, GO,GM,GV)

plan + VA*(qo,{gy}, GO UGM, 0,GV)
if plan then
return plan

GS +~ GOUGM
plan < VA*(qo, {gy},GO UGM,) > Visibility-Relaxed
if plan then
Vg < SWEPT(plan) NGV ©
q < Qo
for ¢’ € VA*(q,Vsy,GO,H = Hp)) do
plan « plan & LAMB (qo, ¢, GO, GM, GV)
g4
plan < plan & LAMB(q, ¢4, GO, GM,GV)
if None ¢ plan then
return plan
plan < VA*(qo, {qq},0,GV)
if plan then
Obj < FIRSTCOLLISION(plan, GO)
GS + GO UGM \ {Object}
for gpre, ¢post € SAMPLEMANIP(Obj, GS) do
mid <~ LAMB (gpre, @post; GO, GM\Obj, GV)
GO’ + GO U SWEPT(plan, Obj)
pre < LAMB (qo, gpre, GO’, GM\ODbj, GV)
GO" + UPDATEPOSE(Obj, GO)
post <— LAMB (gpost, g4, GO”, GM\Obj, GV)
if None ¢ pre @ mid @ post then
return pre & mid & post

> Direct

> Collision-Relaxed

return None

robot positions, and goal region locations subject to the
constraints of the task category. Below we describe each of
the task categories and baselines used in our evaluation.

A. Task Categories

Simple Navigation is the simplest task category in which
no obstacles need to be moved for the robot to reach the
navigation goal (Figure [4h). Visibility tasks are inspired
by problems from visibility-aware motion planning litera-
ture [10], [11], [12], [13], [14]. In these tasks, it is impossible
to navigate to the goal directly due to visibility constraints.
(Figure @b) shows an instance wherein the robot can only
move down the hallway sideways, so it must view the
hallway from outside of it before moving through it to
avoid collision with unseen areas of the robot’s workspace.
Movable Obstacles tasks are standard NAMO problems
with movable obstacles that are fully visible from the initial
state. These tasks typically require no additional visibility
reasoning (Figure k). Obstructed Visibility tasks have
visibility constraints similar to the visibility task, but they
require observations from perspectives that cannot be reached
without moving one or more obstacles (Figure E}e). Occlud-
ing Obstacles tasks involve movable objects that mostly or
fully obstruct the robot’s vision during interaction. Solutions
to these tasks often require viewing certain regions before
interacting with an object. Figure fd shows an instance
and Figure shows an example plan on that instance.
Lastly, Obstructed Affordances tasks require manipulation
of obstacles from configurations unreachable without manip-
ulating other obstacles. Figure df shows an example instance
where the box object needs to be pushed but cannot be
pushed directly because it would block the goal. It also
cannot immediately be pushed from the bottom because of
visibility constraints at the top of the box. The robot must
move the obstructing chair and then push the box from the
bottom or top.

B. Baselines

We compared LAMB to four search baselines with vis-
ibility constraints. The VA-Star baseline performs an VA*
search in the discretized configuration space with a distance-
to-goal heuristic. An additional constraint was added to the
VA™ search that limited actions to those that did not travel
through unviewed regions. The A* baseline was only able
to succeed on the simple navigation task where the heuristic
was a useful metric. When direction navigation to the goal
was impossible, VA* would default to an exhaustive search
until timeout.

The Fully Observable NAMO baseline is a solution
to fully observable NAMO problems [5]. This baseline
first finds a relaxed path to the goal through movable
obstacles. It then considers transfer paths for each obstacle
in reverse order of collision starting from the goal. For
each movable object the planner considers, it adds artificial
collision constraints for motion on the next obstacle it tries
to move. This search process is performed in a depth-first
manner where infeasible motion constraints are terminal

Simple Navigation Visibility = Movable Obstacles ~ Obstructed Visibility =~ Occluding Obstacles ~ Obstructed Affordance
VA* 5/5 0/5 0/5 0/5 0/5 0/5
NAMO 5/5 0/5 4/5 0/5 0/5 0/5
FO-NAMO 5/5 0/5 5/5 0/5 0/5 0/5
VAMP 5/5 5/5 0/5 0/5 0/5 0/5
LaMB 5/5 5/5 5/5 5/5 5/5 5/5

TABLE I
EXPERIMENTAL RESULTS

search nodes. Because of the backward planning from the
goal, it is impossible to enforce visibility constraints, so this
baseline assumes all unviewed space is free. Our experiments
show that this baseline works when obstacles obstruct all
paths to the goal but fails when visibility constraints limit
obstacle motion.

The Constrained-NAMO baseline is inspired by related
work in visual NAMO [18]. This algorithm enumerates
through all known visible objects, tests if moving that object
will result in a shorter path to the goal, and moves the
object if so. Similar to the VA* baseline, visibility constraints
are placed on the low-level configuration-space search. Our
results show that this baseline fails when directly moving
obstacles is impossible due to visibility or obstruction.

The VAMP baseline is a state-of-the-art algorithm for
visibility-aware motion planning [10]. Similar to FO-NAMO
and LAMB , VAMP performs back chaining from the goal by
creating intermediate subgoals based on failure from relaxed
goal planning. Instead of subgoals involving movable obsta-
cle manipulation, VAMP first tries to plan directly to the goal
while relaxing vision constraints. It then identifies the regions
of the workspace that were traversed through but not viewed
and sets viewing those regions as a subgoal. Because VAMP
does not consider setting object manipulation subgoals, it
only succeeds on simple navigation and visibility tasks.

Our results show that LAMB is the only algorithm capable
of solving the last three tasks that each require some reason-
ing about the interplay between visibility and manipulation.

C. Results

Each task was run with five different seeds on each
algorithm. The total success rate out of those five runs is
reported in Table[ll As expected, the VA* baseline was only
capable of solving simple navigation tasks. VA*, unlike other
motion planning algorithms, is not probabilistically complete
due to visibility-based path dependence. This probabilistic
incompleteness leads to definite failure when the necessary
visibility constraints are not resolved via the shortest path
to a configuration. Like other motion planning algorithms,
VA* slows down exponentially with the increasing configu-
ration space dimensions that come with additional movable
obstacles, leading to a timeout on the NAMO problems. The
Fully Observable and Constrained NAMO baselines mostly
succeeded at the simple navigation and movable obstacles
tasks. However, the Fully Observable baseline sometimes
fails on the NAMO task because it attempts to place movable
objects in unseen regions or navigate through unseen regions

while holding an object. These two baselines failed at all
other tasks because they did not consider visibility as a
potential subgoal. The VAMP baseline succeeded at all tasks
where visibility was the only constraint (simple navigation
and visibility constrained) but failed when placed in an
environment where moving obstacles was necessary. LAMB
succeeded on all seeds for each task.

D. Experimental Setup

We set up our simulated experiments in PyBullet [20].
Our robot model was a Kinova dual-arm MOVO with a
head-mounted Kinect camera. All algorithms used PyBullet’s
built-in inverse kinematics module to determine joint posi-
tions for the base and arm configurations during manipulation
and navigation. The perceptual input to each planning algo-
rithm is the RGB, Depth, and ground truth segmentation data
provided by the head-mounted camera. The image returned
is 512 x 512 with a horizontal and vertical field of view
of 90°. An example of our simulated setup can be seen in
Figure |1} The visibility and occupancy grids are maintained
in simple list structures, are updated with vectorized NumPy
operations, and have a fixed resolution of 0.1 meters. All
experiments were run on 6 Intel Core 17-10750H CPUs with
16GB of ram for a maximum of 2 hours before timeout. Our
code is made publicly available to ensure reproducibility. []_-]

VI. CONCLUSION

In this paper, we present a new problem formulation,
VANAMO, that describes a class of problems for navi-
gation with movable obstacles and partial visibility. We
also proposed an algorithm, LAMB, that solves VANAMO
problems. We demonstrate LAMB on a number of complex
navigation tasks that involve reasoning about visibility, object
movability, and the interplay between them. Our simulated
results demonstrate that LAMB outperforms other baselines
that do not set both navigation and manipulation subgoals.
While the simplicity of the API for this algorithm lends
itself to real-world use, many challenges will need to be
tackled before deploying this system on a real robot. Reliable
robot localization, object segmentation, movability detection,
manipulation dynamics prediction, and fault tolerance will all
need to be considered when deploying on a robot system.
We look forward to tackling these in future work, and we
hope our open-source benchmarks and algorithms will prove
useful to other researchers attempting to build mobile-base
manipulation systems that operate in unknown environments.

Uhttps://github.com/aidan-curtis/movo_manipulation

[1]
[2]

[3]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

J. J. Kuffner and M. Stilman, “Navigation among movable obstacles,”
2007.

M. Stilman and J. Kuffner, “Navigation among movable obstacles:
real-time reasoning in complex environments,” in 4th IEEE/RAS
International Conference on Humanoid Robots, 2004., vol. 1, 2004,
pp- 322-341 Vol. 1.

M. Stilman and J. J. Kuffner, “Planning among movable obstacles with
artificial constraints,” The International Journal of Robotics Research,
vol. 27, pp. 1295 — 1307, 2006.

M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manip-
ulation planning among movable obstacles,” in Proceedings 2007
IEEE International Conference on Robotics and Automation, 2007,
pp. 3327-3332.

S. K. Moghaddam and E. Masehian, “Planning robot navigation among
movable obstacles (namo) through a recursive approach,” Journal of
Intelligent & Robotic Systems, vol. 83, pp. 603-634, 2016.

D. Nieuwenhuisen, A. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
WAFR, 2006.

M. Levihn, J. Scholz, and M. Stilman, “Hierarchical decision theoretic
planning for navigation among movable obstacles,” in WAFR, 2012.
K. Ellis, H. Zhang, D. Stoyanov, and D. Kanoulas, “Navigation
among movable obstacles with object localization using photorealistic
simulation,” 07 2022.

J. Scholz, N. Jindal, M. Levihn, C. Isbell, and H. Christensen, “Nav-
igation among movable obstacles with learned dynamic constraints,”
10 2016, pp. 3706-3713.

G. Goretkin, L. P. Kaelbling, and T. Lozano-Pérez, “Look before you
sweep: Visibility-aware motion planning,” 2019.

L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual
exploration and coverage with a micro aerial vehicle in unknown
environments,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), 2015, pp. 1071-1078.

C. Dornhege and A. Kleiner, “A frontier-void-based approach for au-
tonomous exploration in 3d,” in 2011 IEEE International Symposium
on Safety, Security, and Rescue Robotics, 2011, pp. 351-356.

A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon “next-best-view” planner for 3d exploration,” in
2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 1462-1468.

M. Lauri and R. Ritala, “Planning for robotic exploration based on
forward simulation,” Robotics and Autonomous Systems, vol. 83, 02
2015.

B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. 'Towards New
Computational Principles for Robotics and Automation’, 1997, pp.
146-151.

Z. Meng, H. Sun, K. B. H. Teo, and M. H. Ang, “Active path
clearing navigation through environment reconfiguration in presence
of movable obstacles,” in 2018 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), 2018, pp. 156-163.

M. Levihn, M. Stilman, and H. Christensen, “Locally optimal navi-
gation among movable obstacles in unknown environments,” in 2014
IEEE-RAS International Conference on Humanoid Robots, 2014, pp.
86-91.

H.-N. Wu, M. Levihn, and M. Stilman, “Navigation among movable
obstacles in unknown environments,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 1433-1438.
Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba, “Work-
ing with movable obstacles using on-line environment perception
reconstruction using active sensing and color range sensor,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2010, pp. 1696-1701.

E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

	I Introduction
	II Related work
	III Preliminaries
	IV Method
	IV-A LaMB

	V Experiments
	V-A Task Categories
	V-B Baselines
	V-C Results
	V-D Experimental Setup

	VI Conclusion
	References

