
Waverider: Leveraging Hierarchical, Multi-Resolution Maps
for Efficient and Reactive Obstacle Avoidance

Victor Reijgwart*, Michael Pantic*, Roland Siegwart, Lionel Ott

Abstract— Fast and reliable obstacle avoidance is an im-
portant task for mobile robots. In this work, we propose an
efficient reactive system that provides high-quality obstacle
avoidance while running at hundreds of hertz with minimal
resource usage. Our approach combines wavemap, a hierarchi-
cal volumetric map representation, with a novel hierarchical
and parallelizable obstacle avoidance algorithm formulated
through Riemannian Motion Policies (RMP). Leveraging multi-
resolution obstacle avoidance policies, the proposed navigation
system facilitates precise, low-latency (36ms), and extremely
efficient obstacle avoidance with a very large perceptive radius
(30m). We perform extensive statistical evaluations on indoor
and outdoor maps, verifying that the proposed system com-
pares favorably to fixed-resolution RMP variants and CHOMP.
Finally, the RMP formulation allows the seamless fusion of
obstacle avoidance with additional objectives, such as goal-
seeking, to obtain a fully-fledged navigation system that is
versatile and robust. We deploy the system on a Micro Aerial
Vehicle and show how it navigates through an indoor obstacle
course. Our complete implementation, called waverider, is made
available as open source1.

I. INTRODUCTION

Reactive, precise, and reliable obstacle avoidance is vital
for mobile robots to safely and efficiently navigate through
changing or partially unknown environments. Since obstacle
avoidance is an always-on process, it must use minimal com-
putational resources and seamlessly integrate with the robot’s
other tasks. Existing approaches range from simple reactive
methods using 1D distance sensors to optimization-based
systems requiring complete 3D maps and vary in complexity,
reaction time, and obstacle resolution. While collision avoid-
ance systems that operate directly on raw sensor data may
exhibit exceptionally low latency, they can only guarantee
safety with respect to consistently observed obstacles within
the Field of View (e.g. [1]). One way to introduce memory
without losing generality is to use volumetric maps. They can
model obstacles of arbitrary shape and explicitly distinguish
free and unobserved space. Volumetric maps are well suited
to ensure safety even in unknown environments. However,
fixed-resolution volumetric mapping frameworks tend to
suffer from excessive memory overheads and latency. These
can be overcome by using hierarchical volumetric represen-
tations such as octomap [2], UFOMap [3], supereight [4],
or wavemap [5]. While several works investigated the use

* The authors contributed equally.
All authors are with the Autonomous Systems Lab, ETH

Zürich, Switzerland [victorr | mpantic | rsiegwart |
lioott]@ethz.ch.

This work has received funding from the EU’s Horizon 2020 programme
(grant No 871542), and from Armasuisse (grant No 8003537412).

1https://github.com/ethz-asl/waverider

Fig. 1. Example trajectories comparing our multi-resolution collision
avoidance method (red) to equivalent RMP-based formulations that consider
all obstacles at the highest resolution within a radius of 1m (green) and 3m
(blue). The fixed-resolution RMP trajectories are jerkier and more prone to
get stuck (top-left). CHOMP (brown) yields smooth, albeit overly cautious
trajectories and occasionally cuts through obstacles (top-right, bottom-left).

of hierarchical maps for global path planning, most col-
lision avoidance systems still process all obstacles at the
highest resolution. Yet, intuitively, one would expect that
distant obstacles could be considered at a lower resolution
than nearby ones without significantly affecting the robot’s
behavior. We use Riemannian Motion Policys (RMPs) [6]
to formulate a navigation algorithm that is inherently multi-
scale and hierarchical. RMPs are purely reactive in nature,
and as such, can be formulated extremely efficiently and
executed with low latency at controller frequency. Other
sampling- or optimization-based methods often need pre- and
post-processing steps such as the generation of an Euclid-
ian Signed Distance Field (ESDF) or trajectory smoothing.
Conversely, RMPs are formulated as second-order dynamical
systems and directly output accelerations, which typically
leads to gradual changes and smooth paths. RMPs have some
similarities to the well-known potential fields [7], but are a
much more expressive framework due to the inclusion of the
Riemannian metric that modulates each policy’s strength and
directionality. In this work, we develop a reactive and safe
obstacle avoidance method using RMPs [6] that is tailored to
hierarchical volumetric map representations. We numerically

ar
X

iv
:2

40
5.

13
61

7v
1

 [
cs

.R
O

]
 2

2
M

ay
 2

02
4

https://github.com/ethz-asl/waverider

analyze the effects of obstacle resolution on the policy’s
approximation error as a function of the distance between
the robot and the policy. Based on this analysis, we derive
a function that computes the ideal resolution for querying
the map at a given distance from the robot – allowing us
to balance computational effort and accuracy. Using this
function, we develop an algorithm that efficiently generates
multi-resolution avoidance policies from a hierarchical map.
The contributions of this paper are:
• An efficient hierarchical obstacle policy generation al-

gorithm;
• Numerical analysis of the approximation error induced

by hierarchical navigation policies;
The correctness of the numerical analysis is statistically
validated through a large number of experiments in simu-
lation. Extensive comparisons with baselines and CHOMP
[8] demonstrate the favorable run-time and efficiency of our
method. Finally, we demonstrate real-world applicability by
deploying our system onboard an MAV running at 200Hz.

II. RELATED WORK

A core decision in any obstacle avoidance system is the
environment representation. State-of-the-art systems combine
a volumetric map such as a truncated signed distance field
[9, 10] or an octree-based occupancy map [2–5] with ei-
ther a search-based method such as A*[11], a sampling-
based approach such as RRT [12], or an optimizer such as
CHOMP [8, 13]. All of these methods are comparably slow,
as the mapping-planning cycle has multiple performance
bottlenecks, and the sampling or optimization steps often
rely on post-processed maps. Recently, end-to-end learning-
based methods were shown to be effective for collision
avoidance [14]. However, their data-driven nature still comes
with a lack of generalizability across different environments,
sensors, and robot dynamics. Reactive approaches that oper-
ate directly on volumetric maps or even raw LiDAR data
exist [15], but these methods have considerable memory
and computing requirements due to their dense data repre-
sentation. Although hierarchical volumetric maps have re-
ceived considerable attention from the planning community,
most works focused on global planning [16–18]. Multi-
resolution anytime planners [19] have been proposed that
bridge the gap to local planning. However, their global
context makes achieving the update rates required for low-
latency reactive collision avoidance challenging in 3D. Nils
et al. [20] propose a full planning pipeline that leverages
multi-resolution for efficient orientation-aware planning in
environments with very narrow openings. However, their
evaluations are performed on pre-computed static maps
without perception in the loop, which makes it difficult to
judge the system’s latency in a reactive collision avoidance
setting. Closest to our work is the hierarchical collision
avoidance system presented by Goel et al. [21] that adapts
the map resolution based on the motion primitives considered
by the planner. The method is used in a teleoperation
setting and shows promising results in simulated and real
environments. However, a significant part of the system’s

efficiency results from using a bespoke, purely local map
representation whose resolution is set by the planner, which
is harder to reuse for additional tasks, including global
planning. In comparison, our system achieves comparable
efficiency levels using generic hierarchical occupancy maps.
This is explained by the efficiency of RMPs, and the fact
that our method does not rely on expensive ESDFs. One final
benefit of our proposed architecture, compared to both [20,
21], is its high degree of modularity. Formulating obstacle
avoidance as a motion policy makes it easy to combine with
other policies representing additional objectives such as goal-
seeking, visual servoing, or aerial manipulation.

III. METHOD

In the following sections, we describe our approach to
efficiently extract multi-resolution obstacle avoidance poli-
cies from hierarchical maps and how they integrate with
high-level task policies. Figure 2 shows the main parts of
the system, consisting of: 1) a volumetric, hierarchical map
representation (Section III-A), 2) an algorithm for obstacle
extraction (Section III-B), 3) an RMP-based reactive naviga-
tion system (Section III-D). For each obstacle cell extracted
in 2) an individual obstacle avoidance policy is generated
(Section III-C), and combined with all other policies through
the RMP framework.

A. Hierarchical map

The proposed method is compatible with any hierarchi-
cal occupancy mapping framework, e.g. [2–4]. We chose
to use wavemap [5], as it simultaneously achieves state-
of-the-art accuracy, memory, and computational efficiency.
In a similar fashion to other methods, wavemap leverages
octrees to achieve this efficiency. However, instead of storing
absolute occupancy values, each node stores Haar wavelet
coefficients. Using wavelets achieves significant compression
and, more importantly, guarantees that all resolution levels
are implicitly synchronized and always up to date. An
efficient coarse-to-fine measurement integration algorithm
allows wavemap to integrate depth measurements with low
latency, even on computationally constrained platforms.

B. Obstacle cell extraction

As will be substantiated in Section IV, reducing the reso-
lution of obstacles as the distance to the robot increases does
not introduce significant approximation errors. By represent-
ing obstacles at the appropriate resolution, it is therefore
possible to efficiently consider fine nearby obstacles and the
broader spatial context simultaneously. In this section, we
present a hierarchical algorithm that efficiently gathers multi-
resolution obstacles by traversing the map in a coarse-to-fine
manner. The algorithm (Algorithm 1) starts at the lowest
resolution level (root node) of the map and recursively visits
each node’s higher-resolution children. The algorithm stops
expanding a node when that node either has no children
or its distance d to the robot exceeds dmax(λ). We use
dmax(λ) = 3λ/3 − 0.25 where λ corresponds to the node’s

IMU

Pointclouds Wavemap
Odometry

Hierarchical
map

Hierarchical
extraction Multi-res

obstacles

Collision
avoidance
policies

Goal
seeking
policies

Control

Fig. 2. Block diagram of the proposed navigation system. External components are highlighted in yellow, tightly integrated components in blue, and new
components introduced in this paper in green.

Algorithm 1: Hierarchical obstacle extractor
Input: Hierarchical occupancy map M,

Robot position p
Output: Set of multi-resolution obstacles O

1 Function RecursiveExtractor(V,p) is
2 d← ||Vcenter − p||2
3 if dmax(Vλ) < d then
4 if IsOcc(V) or HasOccChild(V) then
5 O.insert(V)
6 end
7 return
8 end
9 if not HasOccChild(V) then

10 return
11 end
12 for Vchild ∈ V do
13 RecursiveExtractor(Vchild,p)
14 end
15 end

// Initialize and start recursion
16 Vroot ← GetOctreeRoot(M)
17 O ← RecursiveExtractor(Vroot,p)

Fig. 3. Comparison of an environment represented using fixed-resolution
(left) and hierarchical obstacle cells (right). Our approach uses hierarchical
cells, whose resolution (light brown to dark green) is high close to the robot
(red) and decreases with distance.

height in the octree2. Once such a terminal node is found,
an obstacle cell is created if the node or any of its children
is occupied. Figure 4 visualizes dmax(λ) and the resulting
maximum distance up to which obstacles are included.

C. Collision avoidance policy generation

For each obstacle cell returned by the previously described
algorithm, an individual obstacle-avoidance policy P [6]
is created. In the following, we give a short summary of
the most important aspects of motion planning using RMP,
however for more details and complete formulas of helper
functions we refer to the original text [6]. A policy P
consists of an acceleration function ẍ = f(x, ẋ) ∈ R3

and a Riemannian metric A(x, ẋ) ∈ R3×3, where x ∈ R3

refers to the robot’s current position. The function f drives
the robot according to the policy, while the Riemannian
metric A defines a (possibly directional or isotropic) weight
of the policy in comparison to other policies. Following

2A height of 0 corresponds to the highest resolution/smallest voxel size.

[6], multiple policies {P0, . . . ,PN} can be summed into an
equivalent policy PC using

Pc = (fc,Ac) =

(∑
i

Ai

)+∑
i

Aifi,
∑
i

Ai

 . (1)

We use the obstacle avoidance repulsor from [6] as a policy
template for each found obstacle cell. It is formulated as
a combinationof a pure repulsor frep, a velocity-dependent
damper fdamp, and a metric (weight) that becomes 0 if the
robot’s velocity does not point towards the obstacle. The
repulsor is defined as

frep (x, r, d) = ηrep exp

(
− d

υrep

)
r , (2)

where d is the distance to the obstacle, r is the unit vector
pointing from the obstacle to the robot, and ηrep and υrep
are tuning parameters to set the repulsor strength (ηrep) and
scaling (υrep). Similarly, the damper is defined as

fdamp (ẋ, r, d) = ηdamp

/(
d

υdamp
+ ϵ

)
·Pobs (ẋ, r) ,

(3)
again with ηdamp as a strength parameter and υdamp as a
scaling parameter. ϵ is a sufficiently small constant to ensure
numerical stability. Pobs (ẋ, r) projects the robot velocity
onto the direction vector pointing from the obstacle to the
robot and captures how much the robot moves towards the
obstacle. Finally, the full obstacle avoidance policy is defined
as the tuple Pobs = (fobs,Aobs):

fobs (x, ẋ, r, d) = frep (x, r, d)− fdamp (ẋ, r, d) (4)

Aobs (x, ẋ, r, d) = wr (d,) · s (fobs) s (fobs)T . (5)

s (·) is a soft-normalization function. Please refer to [6]
for the detailed formulations of Pobs (eq. 68) and s (eq.
24). wr scales the policy response based on a distance
parameter r, which influences the policy’s maximum active
range according to wr (d) =

1
r2 d

2 − 2
rd+1. For each of the

thousands of found obstacle cells such a policy is created. All
cells at the same scale level λ are then summed according to
eq. (1), and all resulting combined policies of all scales are
then again summed using eq. (1). The scale level λ is used
to set the RMP’s parameters as follows: υdamp = 0.45λ,
υrep = 0.75λ, and r = 1.5λ. Modulating υdamp, υrep, and
r, allows setting the sphere of influence of policies, and for
example determines the traversability of narrow corridors. By
using the tuning proposed above, coarse obstacles naturally
have a larger sphere of influence. The distance and size of the

0 1 2 3 4 5 6

Scale Level λ

2

4

6

8
d
m
a
x
(λ

)
[m

]

0 1 2 3 4 5 6

Scale Level λ

102

103

104

105

V
o
x
el

s
[c

o
u

n
t]

Fig. 4. Left: Perceptive radius defined by dmax(λ) as used in the obstacle
filter (red). Limited, fixed-resolution comparison variants used in V-A are
marked with a blue resp. green cross. Right: Worst-case counts of voxels to
visit. Even with small perceptive radii, the fixed-resolution variants need to
potentially iterate over significantly more voxels to provide the same quality
of obstacle avoidance (log-scale).

obstacle cell are used to scale the policy’s Riemannian met-
ric, which can be interpreted as a multi-dimensional weight
and modulates the policy’s strength and activation radius.
The Riemannian metric ensures that the relative direction to
the obstacle cell is taken into account such that there is only
a repulsion component if the robot’s velocity points towards
this obstacle. In Figure 3, examples of obstacle cells are
shown for both uniform and hierarchical cell generation.

D. Navigation system integration

We use the simple goal-attractor policy described in [6]
to combine the previously described summation of obstacle
avoidance policies with goal-seeking behavior. The goal-
attractor policy is defined as:

fa(x, ẋ) = αas (xa − x)− βaẋ

Aa(x, ẋ) = I3×3
, (6)

where αa, βa > 0 are tuning parameters, and xa is the
desired goal location. In each iteration, all policies are evalu-
ated, summed up, and the resulting acceleration executed on
the robot. For simulation experiments, the policies are run
as fast as possible, whereas during field tests the policies are
evaluated at the robot’s control frequency (200Hz). Note that
it is straightforward to replace or combine the goal-seeking
policy with other policies addressing tasks such as visual
servoing, terrain following, manipulation, or assisted manual
control, as has been shown e.g. in [22].

IV. HIERARCHICAL POLICY APPROXIMATION ERROR

Naturally, one wonders what the impact of incorporating
distant obstacles at a reduced resolution is. In this section,
we study the influence of replacing a sum of obstacle
avoidance policies with a single policy at the center of such
a block. In the obstacle cell extraction algorithm, the octree
is traversed to a deeper or shallower level depending on the
distance to the robot. This implies that at larger distances,
fewer policies at slightly different locations contribute to the
overall navigation result instead of a sum of many individual
policies. In the following, we show what relative changes in
policy outputs and quality these abstractions entail, using
the toy example in Figure 5 for the analysis. We conduct a
numerical analysis to simulate the relative changes between

Fig. 5. Example of obstacles that can be either modeled by a single, large
policy (PF) or multiple small, high-resolution policies (P i

f). The distance
d represents the distance from the robot to the center of the obstacle block.

101

100

10−1

10−2

10−3

10−4

‖A
f
‖ F

a)

0

2

4

6

A
n

g
.

er
r

[d
eg

]

b)

Fig

R16

All

0 2 4 6 8 10

Obstacle distance [m]

0.8

0.9

1.0

1.1

R
el

.
M

a
g
n

it
u

d
e

c)

0 2 4 6 8 10

Obstacle distance [m]

0.8

0.9

1.0

1.1
d)

32

16

1

N
u

m
P

o
li

ci
es

Fig. 6. a) Plot of the typical absolute policy strength (log-plot) w.r.t.
obstacle distance. Subfigure b) and c) visualize the angular and relative
magnitude error of approximating the high-resolution policies with a single
coarse approximation. ‘Fig’ shows this for the exact configuration seen in
fig. 5, ‘R16’ for a random selection of 16 occupied voxels at high resolution
(thus the covariance), and ‘All’ for a fully occupied volume. d) Illustration
of the approximation error for a hierarchical policy, where a full-resolution
policy is used below 2.5m distance and a single summary policy at larger
distances. The spike in the approximation error’s magnitude at a distance
of 10m is unimportant, as the absolute strength at this distance nears 0.

the single simplified policy PF and the granular, high-
resolution set of policies

∑
P i
f in both policy strength and

directionality for three scenarios: 1) the toy example in
Figure 5 (labeled “Fig” in Figure 6), 2) a random sampling
of 16 occupied voxels, respectively their resulting policies
(“R16”), and 3) a completely occupied block resulting in
64 policies (“All”). The same 4 × 4 × 4 block with 10 cm
voxels is used in all scenarios. As is visible in Figure 6, the
induced errors are negligible both in angular error as well
as relative strength (magnitude) of the resulting policies. As
to be expected, errors are higher when the distance to the
voxels is smaller. The combination of multiple policies at
different scales provides the best compromise; it minimizes
the number of policies needed while also providing low
approximation error over the entire distance.

V. EXPERIMENTS

We perform a comprehensive set of experiments to eval-
uate the navigation success rates, computational efficiency,
and real-world applicability of the proposed system. To
provide context, we include comparisons with CHOMP [8].
CHOMP generates complete trajectories and requires an
Euclidean Distance Field (EDF), which is time-consuming to

Fig. 7. Qualitative visualization of the map scenarios used for statistical
evaluation. Left shows a perspective rendering of the math scenario, right
is a top-down rendering of the mine scenario. The red lines are example
trajectories from our proposed navigation algorithm. Trajectories stuck in
local minima are marked in dark red.

generate (≈ 30 s for the maps used). By contrast, an RMP-
based navigation framework is inherently reactive and only
needs obstacle information which is readily available in the
volumetric map.

A. Statistical evaluation and comparison

Despite the purely reactive nature of the proposed system,
we are interested in its capability and performance in finding
moderately complex trajectories in realistic maps. To this
end, we perform an in-depth randomized evaluation on maps
generated from the Newer College LiDAR dataset [23] with
a min voxel size of 10 cm. We use subsections of two maps –
mine and math, visualized in Figure 7 – in which we sam-
ple random start and end points and let each navigation algo-
rithm find a smooth, collision-free trajectory. We evaluate a
total of four algorithms; a) the proposed hierarchical system
as described in section III, b) an implementation of CHOMP
[8], c) a non-hierarchical variant of our system that only uses
the highest resolution voxels, up to a maximum distance of
1m, and d) 3m, respectively. The non-hierarchical variants
serve to illustrate the effects of the reduced perceptive radius,
which is limited due to significantly increased compute
costs inherent to single-resolution approaches at small voxel
sizes. All reactive, RMP-based variants are used in an end-
to-end fashion, meaning that the policies are repeatedly
updated and integrated until the robot is at a stand-still,
either at the goal or in a local minima. Obstacle cells are
updated from the map whenever the displacement since
the last update exceeds 0.05m. CHOMP is configured to
run with N = 500 trajectory points until it converges
(ϵrel < 1e−5) or a maximum iteration count (100) is reached.
To demonstrate the relative performance of the proposed
system, we provide a detailed look at planning success
rate, planning time, and distances to obstacles. Figure 8
shows the relative amount of successfully found trajectories,
i.e. that reach the goal location and do not get stuck. All
algorithms perform similarly well and solve about 75% of
all tasks, which is rather good considering that they are all
local and not global planners. Due to their different nature,
the reactive algorithms get (safely) stuck in local minima,
whereas the optimization-based CHOMP method may simply
not converge to a solution that is collision free. Figure 9
provides detailed statistics of the measured run-times of the
different algorithms. Noteworthy is the drastic increase in

0 100 200 300 400 500

N

CHOMP

fixed 1m

fixed 3m

waverider

CHOMP

fixed 1m

fixed 3m

waverider

m
at

h
m

in
e

successful stuck

Fig. 8. Success rates for all algorithms on both maps with 500 randomized
trials each. CHOMP runs that did not terminate within the allocated time
budget are labeled as stuck.

102 103 104

Time [ms]

waverider

fixed 1m

fixed 3m

CHOMP

CHMP+E

Fig. 9. Timing distributions for rest-to-rest trajectories on map math.
Green parts only include successful trajectories, red parts only stuck ones.
CHOMP clearly shows increased calculation time for failing trajectories as it
runs more solver iterations. Note the log scale and the drastically increased
run-time for the fixed-resolution variant. For context, CHMP+E visualizes
the cost of a trajectory, including the necessary collision distance (EDF)
pre-processing for a map for CHOMP.

run-time with larger perceptive radii, which makes the use
of large amounts of occupancy information intractable when
a fixed-resolution representation is used. A major difference
between our proposed method and CHOMP is its pure
reactive nature. While we compare full rest-to-rest trajectory
run-times in Figure 9, in practice only a single iteration
is calculated at every controller iteration. Effectively, this
provides full obstacle avoidance navigation at a marginal
compute cost – approximately 100 µs per step on average –
and a few milliseconds per step involving obstacle updates.
Conversely, CHOMP only provides results after full conver-
gence. To provide insights into trajectory safety, we evaluate
the distance to the closest occupied obstacle for each step
along each evaluated trajectory from the randomized tests.
The resulting distributions are visualized as histograms in
Figure 10. The proposed hierarchical approach shows a safe
distribution with no parts of the trajectories getting close
to obstacles. The two fixed-resolution algorithms frequently
travel much closer to obstacles due to their limited perceptive
fields, whereas CHOMP may output unsafe states in case
of non-convergence. Finally, Figure 1 shows a visualization
of trajectories generated in four example scenarios. These
examples show that both fixed-resolution variants produce
poor and unsteady trajectories due to their limited perceptive
range. Combining all the presented results, the proposed
multi-resolution, purely reactive, hierarchical algorithm pro-

D
en

si
ty

waverider fixed 1m

0.0 0.5 1.0 1.5 2.0

Obstacle Distance [m]

D
en

si
ty

fixed 3m

0.0 0.5 1.0 1.5 2.0

Obstacle Distance [m]

CHOMP

Fig. 10. Histogramms of distance to obstacles over 50 000 random
trajectory traces from each algorithm. The EDF used in the evaluation is
truncated at 2m, with everything above that value being considered far
away from obstacles.

vides an attractive compromise of run-time, success rate, and
trajectory quality at marginal compute cost.

B. Computational efficiency

We benchmark the computational efficiency of the pro-
posed navigation system on a NVidia Jetson Orin AGX
computer, using data from a Livox Mid-360 LiDAR. The
navigation algorithm only uses the computer’s 12-core ARM
Cortex-A78AE CPU. Figure 11 visualizes the latency and
policy processing times on a dataset that traverses indoor
offices before transitioning to a terrace, including a large
30m radius open space. Together, the mapping and planning
use 2.4 CPU threads (average) and 355MB of RAM (peak).
The LiDAR delivers new data every 100ms and integrating
these observations takes 29ms (average), while selecting
and executing the obstacle avoidance policies takes 6.9ms
(average). All together, the mapping and planning steps are
completed almost instantaneously after the LiDAR data is
received.

C. Platform tests

The proposed navigation pipeline (Figure 2) is deployed
on an Micro Aerial Vehicle (MAV) with a Livox Mid-360
LiDAR for odometry [24] and mapping. We run the aerial
robot through an indoor obstacle course without a prior map,
such that all data used for navigation must be gathered and
processed on the fly. The operator sets a desired goal location
prior to the flight, which the robot then autonomously tries
to reach using the proposed reactive navigation algorithm.
Figure 12 visualizes a typical path taken by the aerial robot to
avoid an obstacle and fly towards a (potentially unreachable)
goal position. Upon setting a desired goal position, the goal-
seeking policy starts to drive the robot. After about 130ms,
the first scan is received, the map is populated and the
obstacle avoidance policies become active. As can be seen
from Figure 12, the robot avoids the obstacles with sufficient
distance. During the full run, the robot never got closer than
0.75m to an obstacle and kept an average closest-obstacle
distance of 1.16m± 0.32m.

0

100

200

E
x
ec

u
ti

o
n

T
im

e
[m

s]

Scan Map Policy

0 50 100 150

Timestamp [s]

0k

5k

10k

N
u

m
P

ol
ic

ie
s

Hierarchical Obstacle avoidance

Fig. 11. Top: Stackplot of data latency (LiDAR) and processing latency
(Map/Policy). Bottom: Visualization of the number of policies at different
levels, where yellow is the finest resolution and dark green is the coarsest,
in similar fashion to Figure 3. The system is on the outdoor terrace between
55 s− 130 s. Especially after the robot reenters the building, it is in close
proximity to many obstacles, leading to more policies at a higher resolution.

0.0 0.5 1.0 1.5
Obstacle Distance [m]

D
en
si
ty

Start

Goal

Fig. 12. Left: Rendering of an executed flight path (black) and the map
that was created during a traversal of a cluttered region with the specified
goal location. Right: Obstacle distance histogram for the same flight. The
MAV successfully cleared all obstacles with sufficient margin. Note: For
operational reasons, the tuning for the field test was more conservative
(stronger) than for the map-based evaluation.

VI. CONCLUSION

In this paper, we presented a novel method for multi-
resolution, reactive obstacle avoidance in generic 3D en-
vironments. A key insight is the efficient use of multi-
resolution, hierarchical obstacle information. This follows
the intuition that geometry further away does not need
to be incorporated at the same resolution as nearby ob-
stacles. As demonstrated through numerical analysis and
ablations, the proposed approach enables locally precise
and safe collision avoidance while keeping a very large
perceptive radius. Multi-resolution obstacles can efficiently
be extracted by directly exploiting the hierarchical structure
present in hierarchical volumetric mapping frameworks such
as wavemap [5]. The proposed system achieves planning
success rates comparable to CHOMP while reducing the
planning time by 50× and requiring no pre-processing or
post-processing steps, such as EDF generation and trajectory
tracking control. Finally, the system is deployed on a real
MAV negotiating an indoor obstacle course while only using
minimal computational resources.

REFERENCES

[1] H. Oleynikova, D. Honegger, and M. Pollefeys, “Re-
active avoidance using embedded stereo vision for
mav flight,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2015,
pp. 50–56.

[2] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss,
and W. Burgard, “Octomap: An efficient probabilis-
tic 3d mapping framework based on octrees,” Au-
tonomous Robots, 2013.

[3] D. Duberg and P. Jensfelt, “Ufomap: An efficient
probabilistic 3d mapping framework that embraces
the unknown,” IEEE Robotics and Automation Letters,
2020.

[4] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J.
Kelly, and S. Leutenegger, “Efficient octree-based
volumetric SLAM supporting signed-distance and oc-
cupancy mapping,” IEEE Robotics and Automation
Letters, 2018.

[5] V. Reijgwart, C. Cadena, R. Siegwart, and L. Ott,
“Efficient volumetric mapping of multi-scale environ-
ments using wavelet-based compression,” in Robotics:
Science and Systems, 2023.

[6] N. D. Ratliff, J. Issac, D. Kappler, S. Birch-
field, and D. Fox, “Riemannian Motion Policies,”
arXiv:1801.02854 [cs], 2018.

[7] O. Khatib, “Real-time obstacle avoidance for ma-
nipulators and mobile robots,” in Autonomous robot
vehicles, Springer, 1986, pp. 396–404.

[8] M. Zucker et al., “Chomp: Covariant hamiltonian op-
timization for motion planning,” International Journal
of Robotics Research, 2013.

[9] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J.
Nieto, “Voxblox: Incremental 3d euclidean signed dis-
tance fields for on-board mav planning,” in IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2017.

[10] L. Han, F. Gao, B. Zhou, and S. Shen, “Fiesta: Fast
incremental euclidean distance fields for online motion
planning of aerial robots,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2019.

[11] K. Mohta et al., “Fast, autonomous flight in gps-
denied and cluttered environments,” Journal of Field
Robotics, 2018.

[12] S. Karaman and E. Frazzoli, “Sampling-based algo-
rithms for optimal motion planning,” International
Journal of Robotics Research, 2011.

[13] H. Oleynikova et al., “An open-source system for
vision-based micro-aerial vehicle mapping, planning,
and flight in cluttered environments,” Journal of Field
Robotics, 2020.

[14] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller,
V. Koltun, and D. Scaramuzza, “Learning high-speed
flight in the wild,” Science Robotics, vol. 6, no. 59,
eabg5810, 2021.

[15] M. Pantic et al., “Obstacle avoidance using raycasting
and riemannian motion policies at khz rates for mavs,”
in IEEE International Conference on Robotics &
Automation, 2023.

[16] S. Kambhampati and L. Davis, “Multiresolution
path planning for mobile robots,” IEEE Journal on
Robotics and Automation, vol. 2, no. 3, pp. 135–145,
1986. DOI: 10.1109/JRA.1986.1087051.

[17] W. Du, F. Islam, and M. Likhachev, “Multi-resolution
A*,” ArXiv, vol. abs/2004.06684, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:
215754159.

[18] N. Funk, J. Tarrio, S. Papatheodorou, M. Popović, P. F.
Alcantarilla, and S. Leutenegger, “Multi-resolution
3d mapping with explicit free space representation
for fast and accurate mobile robot motion planning,”
IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 3553–3560, 2021. DOI: 10 . 1109 / LRA . 2021 .
3061989.

[19] D. M. Saxena, T. Kusnur, and M. Likhachev,
“AMRA*: Anytime multi-resolution multi-heuristic
A*,” in 2022 International Conference on Robotics
and Automation (ICRA), 2022, pp. 3371–3377. DOI:
10.1109/ICRA46639.2022.9812359.

[20] N. Funk, J. Tarrio, S. Papatheodorou, P. F. Alcantarilla,
and S. Leutenegger, “Orientation-aware hierarchical,
adaptive-resolution A* algorithm for UAV trajectory
planning,” IEEE Robotics and Automation Letters,
vol. 8, no. 10, pp. 6723–6730, 2023. DOI: 10.1109/
LRA.2023.3308490.

[21] K. Goel, Y. G. Daoud, N. Michael, and W. Tabib,
“Hierarchical collision avoidance for adaptive-speed
multirotor teleoperation,” in 2022 IEEE International
Symposium on Safety, Security, and Rescue Robotics
(SSRR), 2022, pp. 20–27. DOI: 10.1109/SSRR56537.
2022.10018782.

[22] M. Mattamala, N. Chebrolu, and M. Fallon, “An
efficient locally reactive controller for safe navigation
in visual teach and repeat missions,” IEEE Robotics
and Automation Letters, vol. 7, no. 2, pp. 2353–2360,
2022. DOI: 10.1109/LRA.2022.3143196.

[23] L. Zhang, M. Camurri, D. Wisth, and M. Fallon,
“Multi-camera lidar inertial extension to the newer
college dataset,” arXiv preprint arXiv:2112.08854,
2021.

[24] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2:
Fast direct lidar-inertial odometry,” IEEE Transactions
on Robotics, 2022.

https://doi.org/10.1109/JRA.1986.1087051
https://api.semanticscholar.org/CorpusID:215754159
https://api.semanticscholar.org/CorpusID:215754159
https://doi.org/10.1109/LRA.2021.3061989
https://doi.org/10.1109/LRA.2021.3061989
https://doi.org/10.1109/ICRA46639.2022.9812359
https://doi.org/10.1109/LRA.2023.3308490
https://doi.org/10.1109/LRA.2023.3308490
https://doi.org/10.1109/SSRR56537.2022.10018782
https://doi.org/10.1109/SSRR56537.2022.10018782
https://doi.org/10.1109/LRA.2022.3143196
https://arxiv.org/pdf/2112.08854
https://arxiv.org/pdf/2112.08854

	Introduction
	Related Work
	Method
	Hierarchical map
	Obstacle cell extraction
	Collision avoidance policy generation
	Navigation system integration

	Hierarchical Policy Approximation Error
	Experiments
	Statistical evaluation and comparison
	Computational efficiency
	Platform tests

	Conclusion

