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Abstract— We introduce MORPH, a method for -co-
optimization of hardware design parameters and control policies
in simulation using reinforcement learning. Like most co-
optimization methods, MORPH relies on a model of the
hardware being optimized, usually simulated based on the
laws of physics. However, such a model is often difficult to
integrate into an effective optimization routine. To address
this, we introduce a proxy hardware model, which is always
differentiable and enables efficient co-optimization alongside
a long-horizon control policy using RL. MORPH is designed
to ensure that the optimized hardware proxy remains as close
as possible to its realistic counterpart, while still enabling task
completion. We demonstrate our approach on simulated 2D
reaching and 3D multi-fingered manipulation tasks.

[. INTRODUCTION

Design optimization and automation techniques generally
aim to alleviate some of the time-consuming process of
hardware design, usually by iterating over a large parameter
space in simulation in order to find optimal (or good enough)
design parameters before the hardware is ever constructed.
Within this broad category, co-design or co-optimization
methods use simulation in order to simultaneously optimize
both hardware parameters and aspects of the software that
will run on the hardware (e.g. a controller or a policy) to
ensure suitability for a specific task.

Creating a simulated model for the hardware being opti-
mized is a crucial component of design automation. In the
case of co-design, the importance of this step only grows,
since the simulated hardware model must not only be faithful
to its real counterpart, but also lend itself to optimization
techniques capable of simultaneously handling the controller
or policy component of the co-optimization.

Given the recent success of reinforcement learning (RL)
methods in optimizing effective control policies for complex
behaviors, it is only natural for the field to apply RL
techniques to the co-design problem as well. The core idea
of this approach is to compute policy gradients for both the
design parameters and control policy parameters. For example,
one way to achieve this is by treating a design, or a change of
the design, as actions, and co-learn design actions and control
actions [1]. However, this results in extending the action space
in ways that can increase the difficulty of exploration. Another
approach is to integrate the design parameters and their effect

Zhanpeng He is with the Department of Computer Science, Columbia
University, New York, USA. zhanpeng@cs.columbia.edu

Matei  Ciocarlie is with the Department of Mechani-
cal Engineering, Columbia  University, New York, USA.
matei.ciocarlie@columbia.edu

Obstacles

VA VAN
AN

Goal @ ® g

Grasp an object
and press button

AN
—l/i/

- X% 4@

Fig. 1: MORPH co-learns hardware design parameters and control
policies, exemplified here on a 2D reaching task (top row) and a 3D
manipulation task (bottom row). (A) shows each task. (B) shows
the initial design of the robots. (C) visualizes the optimized designs
resulting from MORPH. (D) shows the robot executing the control
policy that has been co-optimized alongside the design parameters.

with the control policy via differentiable physics [2]. However,
this integration relies on the existence of a differentiable
modeling of a task, which may not be available.

In this paper, we propose to address these challenges
by considering the cumulative effect of hardware design
parameters on the behavior of the robot itself, rather than
approaching them just as values to be optimized. With this
in mind, we differentiate between two components:

o A physics-based hardware model, dubbed Hw-Phy. This
is a traditional model, designed to mimic the behavior
of real hardware as accurately as possible, and typically
implemented by simulating some aspects of the laws of
physics. Its parameters include the design parameters
that are the goal of the optimization. Depending on the
underlying method used, Hw-Phy may or may not be
differentiable.

o A neural network-based hardware model proxy, dubbed
Hw-NN. The job of Hw-NN is to help with the
co-optimization problem. Specifically, our method en-
sures that, during the optimization, Hw-NN remains
as close as possible to Hw-Phy. However, owing to
its implementation as a neural network, Hw-NN is
always differentiable, which allows its integration into an
efficient co-optimization routine, one that also optimizes
a software control policy.

In the proposed framework, we use RL to co-optimize
a control policy alongside the Hw-NN model, under the
constraints that Hw-NN needs to mimic a real robot’s
behaviors as encapsulated by Hw-Phy. The advantage is that
we no longer require a differentiable physics simulation in
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Fig. 2: Approach overview. MORPH is an iterative training framework for design-control co-optimization: (A) We first co-optimize both
a control policy and a neural-network proxy of the hardware model (Hw-NN) with an RL loss and a constraint loss computed using the
more realistic, physics-based hardware model (Hw-Phy); (B) Using the updated Hw-NN, we construct a dataset D of tuples of states,
actions, and task actions; (C) Using D, we search for the design parameters that match Hw-Phy to the Hw-NN proxy.

our co-optimization pipeline, but our policy still receives
information about how the design parameters affect robot
behavior during training. The result is an iterative training
procedure: 1. Using Hw-Phy as a constraint, we optimize
the control policy along with Hw-NN to maximize the task
performance; 2. With the improved policy, we search for
design parameters that match Hw-Phy with the current version
of Hw-NN. Conceptually, the first training phase aims to find a
combination of hardware and control policy that can complete
the tasks. The second training phase aims to ensure that the
optimized hardware is still realistic, given real-world physical
constraints.

We dub our method Model Optimization via Reinforcement
and a Proxy for Hardware, or MORPH. By separating task
learning and design derivation into two phases, MORPH
enables the use of a non-differentiable Hw-Phy model,
and can combine the ability of RL to reason about long-
horizon behaviors with the use of gradient-free algorithms for
parameter search. We summarize our overall contributions as
follows:

« We propose a novel method that co-optimizes both the
design and policy of a robot directly in parameter space
with RL without the assumption of the differentiability
of the hardware model.

o We propose a technique that mitigates the optimization
difficulty of improving the robot’s task performance
while imposing realistic constraints on the hardware
model.

II. RELATED WORK

Considerable research has investigated co-optimizing the
design and control of a robot [3-9]. One approach to this
is using gradient-free optimization methods and treating the
evaluation of a design as a black box. For instance, Nygaard
et al. [10] apply evolutionary algorithms on a quadrupedal
robot to optimize its leg lengths and control parameters
in the real world. Deimal et al. [11] apply particle filter

optimization method to optimize the shape of a soft robotic
hand and grasping poses in simulation. Liao et al. [12] propose
a Bayesian optimization method to tune the design of a
microrobot efficiently to a walking task. Xu et al. apply
graph heuristic search [6] with RoboGrammar [13], which
is a set of graph grammar for robot design, for terrestrial
robot design. However, gradient-free optimization methods
suffer from long-horizon reasoning and can not be used for
evaluating a robot with complex tasks. Our work aims to
optimize the control and hardware of robots for long-horizon
tasks. Therefore, we use RL for joint optimization.

Recently, RL has been considered for design and control
co-optimization [14—16]. Chen et al. [2] propose to model
the robot as a computational graph differentiably and co-
optimize its parameters and a control policy using RL. Wang
et al. suggest Neural Graph Evolution (NGE) [17], which
models the structure of an agent as a graph neural network
(GNN), optimizes the morphology of an agent by changing
its graph structure, and learns to control by adapting the
parameters of the GNN. Luck et al. [18] propose to learn
a latent space that represents the design space and train a
design-conditioned policy. Transform2Act [1] considers a
transform stage when actions can modify a robot’s kinematic
structure and morphology, then a control stage when the
design is frozen and the policy only computes control actions.
MORPH directly optimizes design in the parameter space of
a policy without assuming the differentiability of the robot
by separating task optimization and design parameter search
into two steps.

In this work, we observe the existence of optimization
difficulty caused by gradient interference introduced from the
mismatch between RL improvement and learning realistic
hardware. This is similar to the observed optimization
difficulty in multi-task learning literature [19, 20] if we
treat task improvement and being realistic as two tasks.
Previous works have explored mitigating the conflicts for
multi-task learning. For example, Senor and Koltun [21]



scale the gradients introduced by different tasks to reduce
the scale difference among gradients. GradNorm [22] uses
gradient normalization to facilitate multi-task learning. Our
work is inspired by PCGrad [23], which uses cosine similarity
between gradients to measure the conflicts and project a
gradient to the normal plane of another when conflicting. In
this work, we treat the task learning and hardware constraints
as a dual-task learning problem and project the task learning
gradients to the normal of hardware constraint gradients.

III. METHOD
A. Preliminaries

We formulate our co-optimization problem as a Markov
Decision Process (MDP). An MDP can be represented by a
tuple (S, A, F,R), where S is state space, A is the action
space, R(s,a) is the reward function, and F,(s'|s,a) is
the state transition model, where s,s’ € S, and a € A.
The transition function is parameterized by some design
parameters ¢, which determine the behaviors of the robot.
The goal of solving this MDP is finding both a control
policy mg(als) and design parameters ¢ that optimize the
expected returns: E[Z;‘F:U R(st,a:)] where T is the length
of an episode.

The key idea of MORPH is modeling the cumulative effect
of the hardware design parameters ¢ on the real robot and
task performance. Consider the case where ¢ comprises
the kinematic parameters of the robot (e.g. link lengths,
mounting locations, geometry, etc.). Hardware essentially
converts policy actions (joint angles) into task-related actions
(end-effector movements). In this example, a physics-based
hardware model simply consists of the forward kinematics
function. In general, we refer to such a physics-based
hardware model as Hw-Phy. We model its effects using a
function k() that, given a state, converts from policy actions
a to task-related actions z: h = hy(z|s, a).

However, instead of directly integrating Hw-Phy and its
parameters into our optimization routine, we use a neural
network-based proxy that we refer to as Hw-NN. As a proxy
for Hw-Phy, HW-NN takes similar inputs and produces similar
output, thus we model its behavior as the function A"" =
hy"(z|s,a). The key difference is that Hw-NN is always
differentiable (as it is modeled as a neural network) and
provides additional flexibility compared to Hw-Phy.

Both hy() and A" () are parameterized, but the nature
of these parameters is vastly different. The parameters ¢ of
h() have physical meaning and correspond directly to the
design parameters we wish to determine. In contrast, the
parameters ¢ of h™"() are just the weights and biases of a
neural network, with no physical correspondent.

By using a Hw-NN, we now can co-optimize the parameters
of h™" with the control policy parameters. The goal of
the optimization is to improve task performance, which is
evaluated by expected returns, and approximate h using h™".
However, only optimizing 2™ and a policy 7 does not satisfy
our goal of extracting a design that we can build in the real
world since the parameters of A™" are not interpretable by

humans. Hence, we propose to search explicit parameters ¢
that mimic the Hw-NN with good task performance.

Therefore, the resulting training pipeline is an iterative
process (see Fig. 2): We first co-optimize both the control
policy and the Hw-NN to task performance, under the
constraints that the Hw-NN remains close to the current
version of Hw-Phy; Then, we search for the hardware design
parameters that allow Hw-Phy to match the current version
of the Hw-NN.

B. Hardware as constraints

The first step of our framework is to co-optimize both the
control policy and the Hw-NN to improve task performance
under hardware constraints. By using a Hw-NN A", we now
can extend our policy to consider the effect of the design
parameters: T¢°™b = mo(als)hy"(z]a, s). The optimization
goal of ™" is a constrained optimization problem:

T
max B e (> R(st, 21)]
0.9 t=0
subject to D[h(z|s,a),h""(2z|s,a)] <€

Here, D is a divergence function, which measures the
divergence between the Hw-NN A"™" and the Hw-Phy h.
€ is some chosen small constants.

In practice, instead of directly performing constrained
policy optimization, our work optimizes both <™ via an
unconstrained objective that uses the divergence between
Hw-NN and Hw-Phy as a regularization term:

T
IIQI%)XEW,hnn [tz:; R(st,z:) — aD[h(z|s,a), h""(z|s, a)]]
ey

where « is a constant.

Since the divergence between h and h™" is intractable,
we measure it via a sampling-based method. Essentially, we
collect state-action pairs (s, a) and feed them to both models.
Then, we use the distances between outputs from both models
as an estimate of the divergence between the two models.
Note that in this process, only the parameters of = and h™"
are optimized. We use actor-critic RL in this step.

C. Deriving design parameters

Our ultimate goal is to derive design parameters from our
optimization process to build a robot. However, in the policy
learning step, A™" is a neural network whose parameters
are uninterpretable by humans. Although this learning step
indeed produces some policies that can achieve high task
performance, its product cannot be used to build a real robot.

Hence, the second step of our co-optimization framework
is to search for design parameters that match the performance
of the updated Hw-NN:

m{%n D[h¢(z|s,a),h$”(z|s,a)] 2)

Similar to the policy optimization step, we use a sampling-
based method to estimate the divergence between h and h"".



Here, we do not have any restriction on the differentiability
of the Hw-Phy h. If h is differentiable, we can apply gradient-
based optimization methods, e.g. stochastic gradient descent,
for design parameter searching. If h is non-differentiable,
we can use a non-differentiable optimization method, e.g.
evolutionary algorithms.

Without the need to reason long-horizon behaviors, evo-
lutionary algorithms can search in the design space to find
parameters that match the optimized Hw-NN well. In this
work, we use Covariance Matrix Adaptation - Evolution
Strategy (CMA-ES) [24] for design parameter derivations.

Overall, MORPH is an iterative process that first improves
both control and Hw-NN to task performance. Then, based on
the adapted version of the Hw-NN, MORPH extracts design
parameters that mimic the behaviors of Hw-Phy.

Algorithm 1 MORPH

1: while returns have not converged do
2:  Sample H trajectories using the current control policy
7 and Hw-NN hZ" with an MDP
3:  Optimize parameters of the control policy my and Hw-
NN hy™ with objective E.q. 1
4:  for every K steps do
5: With updated Hw-NN g, compute updated outputs
z using the current policy and construct a dataset
D= [(803 ao, ZO)v (817 ai, Zl)a 8] (Sm.a A Zm)]

6: Optimize Hw-Phy h using data D with E.q. 2
7:  end for
8: end while

D. Objective mismatch between task learning and hardware
constraints

While MORPH by itself provides a method to co-optimize
the design and control, its final objectives can be seen as
a multi-task learning objective: the first part improves its
task performance and the second part constrains the Hw-
NN to be close to Hw-Phy. These two objectives do not
necessarily agree on how to adapt the parameters. In practice,
the mismatch between these two objectives can result in
detrimental gradient interference that makes optimization
challenging (detailed discussion in Section V-B).

Hence, in this work, we adopt PCGrad [23] and project
the RL gradients to the normal plane of the design constraint
gradient direction if they conflict. Similar to PCGrad, we
measure the conflict between two gradient directions by their
cosine similarity S, — if two gradients conflict with each
other, the cosine similarity of the two directions is negative:
_ Gtask * Ghw

| ‘gtask| | : ‘ |ghw ‘ |
Here, g44sx and gp,, represent gradients introduced by the
RL loss and the divergence between h and h™" accordingly.

If the cosine similarity is negative, we project task gradients
Jtask to the normal plane of hardware gradients gp,,:

Sc (gtask ) ghw)

Ytask " Ghw

Ihw
l|gnuwl|

Gtask = Gtask —
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Fig. 3: Optimizing a reaching robot. (A) and (C) show the
optimized reacher by MORPH and Transform2Act respectively.
(B) and (D) visualize the co-optimized control policies for MORPH
and Transform2Act respectively. Both methods are able to optimize
the link lengths to complete the reaching task.
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Fig. 4: Button pressing tasks. (A) pen-pressing task where the
button is located at one end of a long object. (B) pen-pressing as
performed by a person. (C) mouse-clicking task where the button
is located at a corner of the object. (D) mouse-clicking task as
performed by a person.

This projection prioritizes the learning of the hardware proxy
model. This is crucial for hardware-policy co-optimization
since policy gradients can be misleading if Ah"™" does not
model the effect of actions and design parameters well.

IV. EXPERIMENTS

MORPH aims to find robust hardware design parameters
and control policies that can solve complex robotic problems.
Therefore, we test our algorithm on problems with the
following characteristics: 1. Only a small part of the design
space allows the robot to complete the task; 2. The final goal
of our tasks is hard to explore in the task environment. We
evaluate MORPH with task performances using Hw-Phy and
compare it against the performance of unoptimized hardware.

One of the key characteristics of our method is that
MORPH optimizes both the design and policy in parameter
space. To evaluate its performance, we compare our method
with three baselines:

o Transform2Act [1]: This approach treats design as
actions and uses Proximal Policy Optimization (PPO)
to find good design and control parameters.

« CMA-ES with RL inner-loop: This approach uses
CMA-ES for searching hardware parameters and trains
a policy for control. The negative best return achieved
by the RL policy is used as a cost for CMA-ES.

o« RL-NoHWOpt: This approach trains an RL agent using
the initial design parameters and do not optimize the
hardware parameters of the robot.

A. Optimizing a reaching Robot

We first test our method on a 2D reaching task. Here,
we require a 5-link reaching robot to navigate a zig-zag-
shaped tunnel and touch a goal location with the end-effector.



(A) Ours (B) Task execution (C) Transform2Act (D) Task execution

Fig. 5: Optimized hand with pen-pressing. (A) shows the
optimized robotic hand using MORPH. (B) shows the optimized
hand completing the pen-pressing task. (C) shows an optimized
hand using Transform2Act. (D) shows the Transform2Act agent
executing its control policy and failing to press the button.

The design optimization goal is finding the appropriate link
length for each length so the robot can reach the goal with
minimal collisions. Overly long links can make moving in
the constrained space without collision difficult, and overly
short links may decrease the possibility of exploring the goal.
The optimization range of the link lengths is [0.05, 5] and
the initial design of the robot has a link length of 3.

To optimize link lengths, it is sufficient to choose forward
kinematics as the Hw-Phy, which converts joint space actions
and current joint states to the end-effector space: h =
h(ae.c.|ajoint, S), Where ajoin: is the output from 7 and
represents the change of joint positions. The state space
contains joint positions and end-effector positions. This
problem space is difficult to explore since the desired behavior
requires navigating tunnel. Hence, we use a reward function
that encourages exploring inside the tunnel:

R= Hpe.e. - pgoal” + BO”ye.e. - ytunnelH
+ Blrcollide + ﬂZ”ngoal

Here, pe... and pyoq; and the Cartesian coordinate of the end-
effector and goal accordingly. ye... and Ysynner rEpresent the
y coordinate of the e.e. and the center of the tunnel. 7.,7;de
is a collision penalty. 4., rewards the agent touch the goal
location with its e.e.. By, 81, B2 are constants.

B. Optimizing robotic hands with manipulation tasks

In this experiment, we use MORPH to optimize the
kinematics of robotic hands for complete object manipulation
tasks. As shown in Fig. 4, the robot needs to grasp the
object and press a button on the object in hand. This task is
challenging for several reasons: 1. The agent needs to find a
design that produces a stable grasp so it can press the button
without dropping the object; 2. The goal of pressing a button
in hand can only be discovered after a stable grasp of the
object.

We optimize the angle of the finger placement and the
link length of the finger links. Each finger has two movable
links and palm movement is constrained to the z-axis. In this
case, the robot can not complete the button-pressing task by
adjusting its grasp pose. Hence, the optimization algorithm
needs to find a suitable finger placement to complete the task.
In this task, the optimization range of finger placement angles
is [—m, ] and the range of link lengths is [0.02,0.4]. In this
experiment, we assume that two links of a finger share the
same link length.

(D) Task execution

(A) Ours (B) Task execution (C) Transform2Act

Fig. 6: Optimized hand with mouse-clicking. (A) and (C) show
the optimized robotic hand using MORPH and Transform2Act
respectively. (B) shows the MORPH hand completing the mouse-
clicking task. (D) shows the Transform2Act agent failing to lift the
computer mouse with short fingers.
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Fig. 7: Average returns vs. environment steps for the reaching
task. Here, GP represents gradient projection.

Unlike the reaching task, it is unclear how to define a
task-related action space for a contact-rich task. Hence, for
the button-pressing tasks, we use the full transition function
h = F(s'|s,a) as the Hw-Phy. In practice, we use the physics
simulator Mujoco [25] as the transition function. The state
space of this task contains joint positions of the hand joints,
the location of the robotic hand, and the pose of the object.
The reward function for this task is:

R = ||pobj - pgoal” + ﬂOrcontact + Blzobj + ﬁZTgoal

Here, pop; and pgoq are the location of the object and the
goal accordingly. 7contact 18 1 if the distal link of any finger
makes contact with the button. z,,; represents the height of
the object. 7404; is a reward bonus only supplied when the
robot presses a button with one of its distal links and the
object is in-hand. Sy, 81, B2 are constants.

We test our algorithm to learn hardware parameters to
manipulate two buttoned objects: 1. Pen-pressing: In this
task, the button is located on one end of a long box object.
This is similar to pressing a push button on a pen. 2. Mouse-
clicking: In this task, the button is located on the corner of
a computer mouse. The mouse geometry is more complex
and requires more fingers in contact to form a stable grasp.
As shown in Fig. 4, both objects are designed to be used by
human hands with different grasp poses.

V. RESULTS
A. Task performance

Our results show that MORPH can learn control policies
and designs that achieve good task performance for the
reaching task. As shown in Fig. 3, the robot shortens the
lengths of the third and fourth links to decrease collisions
when navigating in the tunnel. The final optimized link
lengths are {2.51,2.10,0.66,1.01,2.3}. On the other hand,
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Fig. 8: Average returns (in log scale) vs environment steps for
the button pressing tasks. (A) pen-pressing; (B) mouse-clicking.

RL-NoHWOpt cannot discover the goal since it collides
with the tunnel walls. This indicates that the original design
is not suitable for learning this task. As shown in Fig. 7,
Transform2Act also achieves similar task performance as
MORPH. It successfully finds hardware parameters that allow
it to discover the goal and finally converge to a hardware
design that can complete the task. Finally, CMA-ES with RL
inner-loop fails to find good design parameters to achieve the
goal in a similar timescale.

For the pen-pressing task, MORPH discovers behaviors
that use only two fingers to grasp the object and elongate one
finger to press the button (Fig. 5). It also shortens the unused
finger to avoid any contact that results in unstable grasps. The
final optimized link lengths are {0.11,0.24,0.33,0.30} and
the final finger placement differences from the initial design
are {0.16,—0.06,0.32,0.07} radians. As shown in Fig. 8,
MORPH outperforms all the baselines in the pen-pressing
task. Both RL-NoHWOpt and CMA-ES with RL inner-loop
fail to learn to grasp the object stably. Transform2Act learns a
design that can grasp the object. However, it fails to discover
the final goal of pressing the button.

Finally, for the mouse-clicking task, MORPH is able
to elongate a robot’s links to establish a stable grasp
of the computer mouse and click the button. The op-
timized link lengths are {0.17,0.24,0.27,0.3,0.28} and
the optimized finger placement angle differences are
{0.78,0.32,—0.7,0.54, —0.01} radians. For the baselines,
all of them fail to achieve a stable grasp. RL-NoHWOpt
has difficulty grasping the object using short fingers. Both
CMA-ES with RL inner-loop and Transform2Act fail to find
appropriate link lengths and finger positions that lift the object
stably.

Our results for co-optimization demonstrate that MORPH
is able to optimize robots that learn different tasks. Crucially,
MORPH efficiently explores the design space and is able
to discover hardware design parameters that allow for rich
explorations in the task environment. Compared to the
baselines, which can only learn part of the manipulation
task, MORPH can discover the final goal from a delayed
task-completion reward signal.

B. Discussion

As shown in Figs. 7 and 8, MORPH fails to learn the task
without using gradient projection, which implies that gradient
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Fig. 9: Training details for mouse-clicking. (A) shows cosine
similarity between hardware constraint gradients and RL gradients.
(B) plots constraint loss of Hw-NN and search costs for Hw-Phy.

projection is crucial to learning hardware and a control
policy with high task performance. To further investigate
this, we visualize the cosine similarity between the RL
gradients and hardware proxy learning gradients in Fig. 9.
The cosine similarity is negative for approx. 64% of the
training steps, meaning that the learning progress for both
task improvement and hardware approximation can often be
hindered by gradient interference. Hence, gradient projection
is a critical component.

Our training framework relies on the Hw-NN to learn
a policy from the cumulative effect of design parameters.
If the Hw-NN is inaccurate, the control policy may never
be learned since the policy gradients can be misleading.
Hence, it is important that the Hw-NN is close to the Hw-
Phy (i.e. minimizing D[h¢(2|s, a), hy"(z|s, a)]). Since our
framework is iterative, this minimization is achieved from
two directions: the Hw-NN mimics the behaviors of an Hw-
Phy, and vice versa. As shown in Fig. 9, both Hw-NN’s loss
and Hw-Phy’s search costs are high at the beginning of the
training. While a high initial loss for Hw-NN is expected, the
search cost is also high because, in this stage, the hardware
proxy model is close to random and it is hard to find realistic
parameters that allow Hw-Phy to match it. However, both the
loss and the cost decrease during training, and finally both
models converge to to each other.

VI. CONCLUSION AND FUTURE DIRECTIONS

We introduced MORPH, a method to co-optimize hardware
design parameters and control policies. MORPH uses a
hardware proxy model, Hw-NN, that learns the cumulative
effect of hardware design parameters on the robot itself.
With Hw-NN, our method does not require a differentiable
physics model to compute gradients of the design parameters.
Our results show that MORPH can learn hardware design
parameters and control policies that enable hard-exploration
manipulation tasks.

A key limitation of our approach is that it currently does
not learn the morphology of the robot, which is assumed
as given. However, we envision that MORPH can achieve
this by using a graph neural network (GNN) to model the
robot, and optimizing the graph structure in order to optimize
the robot’s morphology. Another direction will be applying
MORPH to optimize a robot design for multiple tasks, such
as a robotic hand capable of diverse manipulation skills.
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