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Abstract— Deformable object manipulation presents a unique
set of challenges in robotic manipulation by exhibiting high
degrees of freedom and severe self-occlusion. State representa-
tion for materials that exhibit plastic behavior, like modeling
clay or bread dough, is also difficult because they permanently
deform under stress and are constantly changing shape. In this
work, we investigate each of these challenges using the task of
robotic sculpting with a parallel gripper. We propose a system
that uses point clouds as the state representation and leverages
pre-trained point cloud reconstruction Transformer to learn a
latent dynamics model to predict material deformations given
a grasp action. We design a novel action sampling algorithm
that reasons about geometrical differences between point clouds
to further improve the efficiency of model-based planners.
All data and experiments are conducted entirely in the real
world. Our experiments show the proposed system is able to
successfully capture the dynamics of clay, and is able to create
a variety of simple shapes. Videos and additional figures are
available on our project page at: https://sites.google.
com/andrew.cmu.edu/sculptbot

I. INTRODUCTION

Deformable objects are prevalent in tasks related to cook-
ing [1]–[4], manufacturing [5]–[7], medical procedures [8]–
[12], and more. It is therefore necessary to develop robotic
systems that can effectively handle and manipulate these ob-
jects before being deployed in these environments. However,
due to their mechanical properties, deformable objects per-
manently deform with robot interaction, increasing dynamic
complexity and the difficulty of state estimation. Therefore,
unlike rigid object manipulation, common assumptions to
estimate the pose and shape of an object from a single
viewpoint, even with self-occlusion, cannot be made when
perceiving deformable objects, such as clay, that have no
inherent shape.

There have been numerous works focused on model-
ing and manipulating deformable one-dimensional objects
(DOOs) or deformable linear objects (DLOs) such as rope,
cable, sutures, and wires, [13]–[18] and 2D deformable ob-
jects such as cloth [19]–[25], however systems handling 3D
deformable objects, such as modeling clay, remain relatively
underexplored, with [26], and the follow-up work [27] being
the only known soft body manipulation work conducted
primarily on physical robot hardware. In this work, we focus
on the challenge of predicting how 3D deformable objects,
in this case modeling clay, will deform given a robotic action
through the task of sculpting clay with a parallel gripper. We
propose a novel method leveraging an existing large pre-
trained model for point cloud reconstruction, Point-BERT
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Fig. 1. SculptBot is a pipeline that leverages the pre-trained point cloud
model Point-BERT to learn a latent dynamics model that predicts the next
state point cloud of the clay conditioned on the current point cloud and
grasp action. When combined with planning methods, SculptBot is able to
recreate a variety of 3D shapes. Left shows the robot actively deforming
the clay. Right shows the shape the system created compared to the target
point cloud.

[28], to provide a quality latent embedding of the clay states
without requiring any training on our particular dataset. We
use this embedding to train a latent forward dynamics model
to predict the next state of the clay given the current state
and a grasp action. The key contributions of this work are
as follows:

• We present the first method to our knowledge leveraging
large pre-trained models for deformable object manip-
ulation.

• We propose a novel action sampling algorithm that uses
the geometrical relationships between point clouds to
select candidate actions to achieve the desired deforma-
tions.

• We present a robust system for sculpting clay with a
parallel gripper that is able to successfully replicate
target shapes, including those that require changes in
thickness.

II. RELATED WORKS

Representations of 3D Data: Point clouds [29] are often
used to represent 3D data as they can represent relatively
complex objects with a finite number of elements. 3D data
can also be represented as voxels [30], where a 3D shape is
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discretized into a set of cubes of a specific size. Voxel grids
can then be easily processed using 3D volumetric convolu-
tional neural networks. However, 3D voxel representations
tend to be memory intensive and the voxelization process
can lead to information loss. A more recent alternative
representation are learned signed distance functions (SDF)
[31] which represent the shape with a continuous volumetric
field. Researchers have also developed Neural Radiance
Fields (NeRFs), neural network-based representations that
are able to synthesize novel views of 3D scenes [32], and
follow-up works have extended NeRFs to handle dynamics
scenes [33].

Point Cloud Networks: Point clouds are permutation
invariant, and thus special neural networks needed to be
designed to handle these inputs. PointNet [34] and Point-
Net++ [35] use a shared MLP to learn local features of the
point cloud. Point transformer [36] leverages self attention
to learn the local features of the point cloud. More recently,
numerous works have created novel self supervised learning
methodologies to learn robust encodings of point clouds.
PointMAE [37] extends the concept of image masking for
pretraining into the point cloud domain, where. The follow-
up work of PointM2AE [38] includes hierarchical masking,
motivated by encouraging the model to learn a variety of
higher-level and fine-grained features of the point cloud.
Point-BERT [28] devices a BERT-style pretraining method to
predict the tokens of the masked patches of the point cloud.

Learned Dynamics Models: There have been many
successful works focused on learning dynamics models from
data. In [39], researchers learn particle-based dynamics mod-
els for a variety of materials as an alternative to particle-
based simulators. Similarly, in [40], researchers learn a
graph-based particle dynamics model for fluids. Learned
dynamics models are also prevalent within the domain of
model-based reinforcement learning. In DREAMER [41],
and the follow-up DREAMER-V2 [42], a learned dynamics
model is used to predict the agent’s future success by
leveraging dynamics model rollouts.

Manipulation of Deformable Objects: The task of
manipulating deformable objects has been investigated previ-
ously. In RoboCraft [26], researchers are similarly learning a
dynamics model to deform clay into target shapes. However,
in this work the authors focus their evaluation on a 2D
alphabet test set. We hope to explore a wider variety of more
complex, 3D target shapes in this work. In an extension to
RoboCraft, researchers present RoboCook [27], which uses
a similar dynamics model with a set of diverse tools to
create the 2D alphabet shapes. In [20], researchers train a
latent dynamics model with contrastive learning to handle
2D deformable objects, such as cloth. A similar task of
folding cloth was explored in [43]. In [44], researchers focus
on handling semi-rigid deformable objects, such as silicone
spatulas. Beyond the tasks of handling deformable objects,
research has also focused on building better simulators, such
as SoftGym [45], or PlasticineLab [46], learning material
properties such as elasticity [47], and improving the possi-
bility of sim-to-real transfer with these complex objects [48].

III. METHODOLOGY

Our method primarily consists of three modules - the
vision system, the pre-trained tokenizer from Point-BERT
[28], and the learned latent dynamics model. One of the
key considerations with this work was the choice of rep-
resentation for the 3D shape of the clay. Point clouds
were a natural choice due to the richness of information,
while still minimizing memory usage. The choice of state
representation for the clay directly informed both the vision
system as well as the dynamics model. Point clouds are an
unstructured representation, which requires a special neural
network architecture that can handle this.

A. Vision System

Our vision system consists of 4 Intel RealSense D415
RGB-D cameras (shown in Figure 5). We found that the
standard technique for calculating extrinsics between cam-
eras using a calibration checkerboard pattern resulted in
relatively inaccurate combined point clouds. Instead, we used
an asymmetrical 3D object to calculate the extrinsics between
cameras using global point cloud registration, specifically
RANSAC [49], and fine-tuned them with the Iterative Closest
Point algorithm (ICP) [50]. This significantly improved our
final fused point cloud accuracy, to a fusal with approxi-
mately 0.5 cm error comparable to that of RoboCraft’s vision
module [26].

Once we have a quality 3D point cloud of the environment,
we perform a simple position-based crop to isolate the
elevated stage (shown in Figure 5), and use color-based
cropping in the LAB colorspace to isolate the clay from the
table. We then extract the points closest to the base of the
clay (by indexing points below a z threshold). We use this
base shape outline to crop a plane of points to form the
bottom of the clay. We combine this base plane with the
original cloud to form a fully enclosed point cloud shell.
This processing is based on the assumption that the clay
is always resting on the elevated stage, thus the base of
the clay will be at that z-position. Once we have the clay
shell, we downsample the point cloud to 2048 points. A
full visualization of the point cloud preprocessing pipeline
is shown in Figure 3.

B. Pre-Trained Point-BERT Tokenizer

One of the challenges with manipulating 3D deformable
objects is that models handling 3D representations typi-
cally require a significant amount of data to properly train.
However, when working within the robotic space, collecting
sufficient data can be incredibly time consuming. To address
this challenge, we leverage the tokenizer from Point-BERT,
which is pre-trained on the ShapeNet dataset [51], a collec-
tion of 3D point clouds of 3,135 common categories. We find
in practice that the discrete variational autoencoder (dVAE)
from Point-BERT learned a sufficient latent representation,
that needs no fine-tuning on the clay-specific dataset. A
visualization of the reconstruction quality of our real-world
clay data is shown in Figure 4.



Fig. 2. The entire dynamics prediction pipeline. We first use farthest point sampling and k-nearest neighbors to cluster the original point cloud into 64
clusters. These 64 clusters become a much smaller and sparser point cloud. We then use the pre-trained dVAE from Point-BERT to tokenize each cluster.
The centroid point cloud is passed through a simple physics-based dynamics approximator to predict the next state centroid point cloud given the grasp
action. This predicted next state centroid point cloud is passed to the point token predictor dynamics model along with the state centroid tokenization and
the grasp action. The point token predictor predicts the tokens for each next state centroid, which represent the geometrical structure of the points within
that region of the cloud. These predicted tokens along with the predicted centroid point cloud are then passed through the dVAE decoder to reconstruct
the full dense predicted next state point cloud.

Fig. 3. The full preprocessing pipeline for the point clouds. a) The original point cloud of the scene. b) the scene after position-based cropping to
eliminate the elevated stage. c) The point cloud after color-based thresholding. d) The point cloud after removing statistical outliers and adding in a base
plane. e) The point cloud downsampled to 2048 points.

Point-BERT is originally a pre-training strategy for point
cloud transformers. First, the point clouds are grouped into
local patches, or clusters using farthest-point sampling and
and k-nearest neighbors. Each cluster has a positional em-
bedding to maintain the regional locations for reconstruction.
The points in each local patch are subtracted with the
centroid position to eliminate bias and only represent the
regional point cloud structure. Each cluster is then passed
through a small PointNet [34] to output a discrete point
embedding that describes the general point cloud shape
within that region. These discrete tokens and the positional
embeddings are then passed through the decoder to recon-
struct the original point cloud. In this work, we use the dVAE
tokenizer from Point-BERT and train a dynamics model in
the latent space of the positional and point embeddings.

C. Latent Dynamics Model

Given the latent representation from the dVAE of Point-
BERT consists of two components (positional embedding
of the clusters, and the point tokens for each cluster), we
developed two seperate dynamics modules to propagate the
dynamics of a grasp action. First, we developed a simple
physics approximator that propagates the point cloud based

on the trajectory of the gripper fingertips during the grasp.
Next, based on the next state centroids and the grasp action,
we train a DGCNN [52] token predictor model to predict how
each cluster’s point token changes given the grasp action.
When combined with the pre-trained dVAE to encode the
state point cloud and reconstruct the predicted cloud, the
system predicts the next state of the clay point cloud given
the current state point cloud and the grasp action. The grasp
action is defined as the x,y,z position of the end-effector,
the rotation about the z-axis, and the distance between the
fingertips.

1) Centroid Dynamics: Each cluster is passed through
a physics-based dynamics approximator that propagates the
point clouds based on the grasp action. This dynamics
approximator is very light weight, moving the points that are
inliers in the approximated gripper trajectory mesh based on
the grasp pose. These points are moved normal to the surface
of the gripper the distance between their initial location and
the gripper final position. Additionally, we impose some
distance constraints to the point cloud, ensuring that the
points cannot exceed a pre-specified distance. After we
approximate the point motion due to the grasp, we update
the point cloud to reinforce these distance constraints. While



Fig. 4. The dVAE from Point-BERT provides quality reconstruction of the
real-world clay point clouds without requiring any finetuning on our dataset.
This allows us to train a latent dynamics model predicting the material
deformation in the Point-BERT embedding space.

this dynamics approximator is relatively naive, when paired
with the second stage learned dynamics model we expect it
to account for the simplicity.

2) DGCNN Point Token Dynamics: The token dynamics
model takes the predicted next state positional embeddings
from the centroid dynamics model, the state point token
embeddings and the grasp action as input to predict the
next state point tokens that minimizes the Chamfer distance
between the reconstructed predicted next state and ground
truth point clouds. The Chamfer distance is the sum of
squared distances between the nearest neighbor correspon-
dences between point clouds, and is a common point cloud
reconstruction metric. The predicted next state point tokens
are passed back through the dVAE decoder to reconstruct the
full predicted next state point cloud.

dCD(X,Y ) =
∑
x∈X

min
y∈Y

||x− y||22 +
∑
y∈Y

min
x∈X

||x− y||22 (1)

D. Geometry-Informed Action Sampling

We developed an action sampler that leverages geometric
knowledge of the point clouds to efficiently sample quality
potential actions. The concept of the geometric sampler
would be to identify the regions of the current point cloud
that are most different from the target cloud, and search for
actions that would apply a change to the state in those areas.
Especially as the action space increases in dimensionality, it

Algorithm 1 Geometric Sampler
Input: Pstate ▷ current state point cloud
Input: Ptarget ▷ target shape point cloud
Input:Nclusters ▷ algorithm parameter
Input: EEwidth ▷ hardware parameter
µstate = KMeans(Pstate, Nclusters)
µtarget = KMeans(Ptarget, Nclusters)

δ⃗ = (µtarget − µstate)
dists = |µstate,i − µtarget,i|
Sample pair of centroids with probability p = dists∑

dists

(x, y, z) = µstate +
1
2 δ⃗EEwidth

rz = arctan2(δ⃗y, δ⃗x)
d = 1

2 |µtarget − (x, y, z)|
actions = [x, y, z, rz, d]
Return: actions

Fig. 5. The hardware setup: a) general workspace with 4 Intel RealSense
D415 cameras for 3D scene reconstruction (1-4), and one Intel RealSense
D455 camera for capturing video (5), b) the custom 3D printed fingertips,
c) the elevated stage, d) screw-in anchor for the clay on the elevated stage.

is important to have a more efficient action sampling method
than random parameter selection. The full algorithmic de-
scription of the action sampler is shown in Algorithm 1. We
first utilize k-means [53] to cluster each point cloud into
N regions. We then pair the clusters between the two point
clouds based on those with the smallest Euclidean distance.
The cluster pairs are sampled with a probability proportional
to the distance, and an action is generated to push the cluster
in the state point cloud towards that in the target point cloud.

IV. EXPERIMENTAL SETUP DETAILS

All data collection and experiments were conducted on a
physical 7-axis Franka Emika Panda manipulator equipped
with a two-finger parallel gripper. There are 4 Intel Re-
alSense D415 cameras mounted to the workspace. The clay
sits atop an elevated stage in the center of the workspace,
and is loosely attached to the stage with a small screw to
ensure the clay generally remains on the stage. Details of
the hardware setup are shown in Figure 5. We assume the
clay volume remains consistent throughout data collection,
always initialized to a cylinder 6 cm in diameter and 2.5 cm
in height.



A. Data Collection

We collect two separate datasets to train alternate versions
of the latent dynamics model, 1) a random action dataset, 2)
a human demonstration dataset. The random action dataset
is collected by randomly sampling action parameters and
executing the generated grasps. The point cloud of the clay
is collected before and after each grasp. We consider a grasp
trajectory to be 10 consecutive grasps applied to the clay
before the clay is re-initialized to the starting shape. We
collect a total of 15 trajectories, consisting of approximately
30 minutes of data collection time. To increase the size of our
dataset, we augment the dataset by applying varying rotation
transforms about the z-axis to the point cloud (in intervals
of 6◦) and the grasp action. This augmentation strategy
is sound, as we have the assumption that the clay always
remains fixed on the elevated stage surface. The human
demonstration dataset is collected with kinesthetic teaching
where the human controls the end-effector position, rotation
and the distance between the fingertips. We chose this over
alternative human demonstration collection techniques, such
as [54], because we found kinesthetic teaching produced
more accurate sculptures. The human operator collected 5
trajectories of varying length for creating a cone, cylinder,
line, pyramid, T, and X. The same rotation augmentation
technique is applied to these trajectories. While this is much
more time consuming, we collected this dataset to explore
differences in model performance trained on each dataset.

V. RESULTS

Once we have the trained latent dynamics model, we can
plan action trajectories to reach a variety of target point
clouds. In section V-A we first evaluate the quality of the
learned latent dynamics model. In section V-B we have a
human subject teleoperate the robot to generate a variety of
shape targets to investigate the difficulty of the task with
the robot embodiment. Finally, in section V-C we deploy the
learned dynamics model with model predictive control for
the sculpting task. We particularly evaluate the performance
of the dynamics model trained on the random and human
demonstration datasets, as well as the proposed geometric
sampling strategy compared to random shooting.

A. Evaluation of the Dynamics Model

To evaluate the quality of the next state point cloud
predictions of our dynamics model, we report the Chamfer
Distance (CD) between the predicted next state and ground
truth next state of the combined test sets of the human
demonstration and random action datasets. A visualization
of the predictions for a few states are shown in Figure 6.
The performance of the dynamics models on the entirety
of the dataset are shown below in Table I. The dynamics
model trained on the human demonstration dataset had a
lower mean Chamfer distance and lower variance for the
next state predictions. However, this difference is relatively
small, and may not be great enough to motivate the additional
human effort of collecting the demonstrations.

TABLE I
CHAMFER DISTANCE (CD) FOR THE DYNAMICS MODELS TRAINED ON

THE DIFFERENT DATASETS COLLECTED.

Centroid Next State CD Full Next State CD
Human Demos 0.0450 ± 0.0069 0.0109 ± 0.0024
Random Actions 0.0451 ± 0.0069 0.0113 ± 0.0028

Fig. 6. A visualization of some next state predictions on the test set by
the latent dynamics model trained on the human demonstration dataset. It is
clear the model is able to capture and predict the large geometric changes
caused by various grasp actions. However, some of the details may not
be captured, likely due to the shape reconstruction, as the quality appears
similar to some of the detail lost during reconstruction, shown in Fig 4. This
loss is a side effect of leveraging the pre-trained model from Point-BERT,
and is not sufficient to justify training our own point cloud encoder, as it
would require substantially more data.

B. Human Teleoperation Baseline

The task of deforming a small block of clay with a parallel
gripper is incredibly difficult, as a relatively simple action
results is complicated changes to the clay shape. To better
understand what quality of results we could expect for this
task, we conducted human teleoperation experiments. We
used a simple kinesthetic teaching system where the human
controls the end-effector position, rotation, and the distance
between the fingertips. The results of this experiment are
shown in Figure 7 and are compared to the results of our
dynamics system. Although sculpting with a parallel gripper
can be unintuitive, the human teleoperators were able to
successfully create a range of simple shapes.

C. Hardware Deployment

We deploy the fully trained dynamics model on hardware
for the sculpting task by unrolling trajectories with model
predictive control (MPC). For these experiments, we are
planning one step into the future, and selecting the action
that minimizes the Chamfer distance between the expected



Fig. 7. The shapes a human was able to create when guiding the robot and
its parallel gripper (Left) compared to the shapes the human demonstration
trained dynamics model combined with MPC and geometric sampling was
able to create (Right). Visually, it is clear that our system is not able to
perform better than human oracle, but based on the reconstruction metrics,
it is able to successfully recreate the key structural aspects of the shapes.

next state and the target point cloud. We first compare the
performance of the proposed geometric action sampler as
compared to random shooting (shown in Table II). For these
experiments, we are using the dynamics model trained on
the human demonstration dataset. For the random shooting
action sampling, we randomly sample 2500 actions for MPC,
whereas with the geometric-based sampler we only need
to sample 35 actions. For each comparison, we run the
system 3 times for each target, and report the mean and
standard deviation. The geometric-based sampler produces
sculptures of similar quality compared to random shooting,
while being significantly more sample efficient. Additionally,
the geometric-based sampler achieves these results with on
average fewer grasp actions as compared to random shooting.
Next, we evaluate the performance of the models trained on
the human demonstration and random datasets with MPC
with geometric-based sampling (shown in Table III) on a
variety of target shapes. The model trained with the human
demonstration dataset performs substantially better on a few
of our test shapes, particularly ’X’ and ’triangle’. Our human
demonstration dataset did include examples of humans cre-
ating an ’X’, but not ’triangle’. As the human demonstration
dataset was used to train a single-step dynamics model, this
means that the model trained on this data is able to more
accurately predict the dynamics of the actions that are in
fact useful for creating these shapes. In the future, it would
be interesting to explore a middle-ground dataset collection

TABLE II
COMPARING SCULPTING PERFORMANCE OF THE PROPOSED GEOMETRIC

ACTION SAMPLING AS COMPARED TO RANDOM SHOOTING.

Target Sampler # Grasps CD

X Random 4.2 ± 0.84 0.0024 ± 0.0003
Geometric 3.6 ± 0.89 0.0029 ± 0.0007

T Random 10.7 ± 3.1 0.0069 ± 0.0012
Geometric 6.7 ± 3.5 0.0058 ± 0.002

Square Random 3.7 ± 0.6 0.0044 ± 0.0005
Geometric 4.7 ± 1.5 0.0042 ± 0.0004

Line Random 10.7 ± 3.1 0.00739 ± 0.001
Geometric 5.2 ± 2.5 0.0068 ± 0.0015

Cylinder Random 11.5 ± 2.1 0.0027 ± 0.0003
Geometric 12.7 ± 2.5 0.0041 ± 0.0002

Triangle Random 4.0 ± 2.0 0.0048 ± 0.0009
Geometric 2.3 ± 0.6 0.0031 ± 0.0005

TABLE III
COMPARING SCULPTING PERFORMANCE OF THE DYNAMICS MODELS

TRAINED ON THE RANDOM ACTION DATASET AND THE HUMAN

DEMONSTRATION DATASET WITH THE GEOMETRIC SAMPLER.

Target Dataset # Grasps CD

X Human Demo 3.0 ± 0.0 0.0025 ± 0.0007
Random 3.7 ± 0.6 0.0041 ± 0.0005

T Human Demo 6.7 ± 3.5 0.0058 ± 0.0018
Random 4.0 ± 2.6 0.0060 ± 0.0013

Square Human Demo 4.7 ± 1.5 0.0042 ± 0.0004
Random 3.3 ± 0.6 0.0039 ± 0.0011

Line Human Demo 5.3 ± 2.5 0.0068 ± 0.0015
Random 3.3 ± 0.6 0.0054 ± 0.0007

Cylinder Human Demo 12.7 ± 2.5 0.0041 ± 0.0002
Random 10.5 ± 0.7 0.0051 ± 0.0015

Triangle Human Demo 2.3 ± 0.6 0.0031 ± 0.0005
Random 3.3 ± 1.2 0.0071 ± 0.0015

technique that is more intelligent than random actions, but
not as time consuming as requiring human demonstrators.
A visualization of the quality of some of the shapes the
system is able to create are shown in Figure 7. Our system is
able to reliably generate replications of target sculptures with
reasonable Chamfer distance that capture the key structural
aspects of the target shape.

VI. CONCLUSION

In this work we present SculptBot, a system that leverages
pre-trained point cloud reconstruction models to learn a latent
dynamics model for 3D deformable object manipulation.
Through our experiments, we demonstrate that our model
is able to successfully capture the dynamics of the clay, and
is able to create a variety of simple shape sculptures when
combined with model predictive control and a geometric-
based action sampling algorithm. One of the key limitations
of this work is that a parallel gripper may not be the best
tool for the sculpting task. From our human teleoperation
experiments, the quality of the shapes our human oracle was
able to create are relatively coarse and simplistic. In future
work, we hope to investigate alternative sculpting actions,
first by expanding the types of actions the robot can take,
such as pinch and twist, smooth, etc. Additionally, we hope to
provide the robot with a set of sculpting tools and incorporate
actions for both additive and subtractive clay sculpting.
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