
An Ontology-based Approach to Model-Driven Software Product Lines

Nuno Ferreira
Dep. Sistemas de Informação

Universidade do Minho
nuno.ferreira@dsi.uminho.pt

Ricardo J. Machado
Dep. Sistemas de Informação

Universidade do Minho
rmac@dsi.uminho.pt

Dragan Gaševi!
Athabasca University
dgasevic@acm.org

Software development in highly variable domains constrained
by tight regulations and with many business concepts involved
results in hard to deliver and maintain applications, due to the
complexity of dealing with the large number of concepts
provided by the different parties and system involved in the
process. One way to tackle these problems is thru combining
software product lines and model-driven software development
supported by ontologies. Software product lines and model-
driven approaches would promote reuse on the software
artifacts and, if supported by an ontological layer, those
artifacts would be domain-validated. We intend to create a new
conceptual framework for software development with domain
validated models in highly variable domains. To define such a
framework we will propose a model that relates several
dimensions and areas of software development thru time and
abstraction levels. This model would guarantee to the software
house traceability of components, domain validated artifacts,
easy to maintain and reusable components, due to the relations
and mappings we propose to establish in the conceptual
framework, between the software artifacts and the ontology.

Software Engineering Process; Software Design

I. INTRODUCTION
Highly variable business domains (like insurance) faces

many and specific problems, that derives from the weight of
legacy technologies in the information system, thru the way
the contact with the outside world is made, passing by
domain-specific variability. Applications are traditionally
built in a straightforward way, many times having no relation
whatsoever between them. When dealing with legacy
systems that problem emerges even more, due to the time
elapsed between the requirements specification for each
developed module and the present. Usually, each application
has its own configuration, store its own data and is guided by
its own business rules [1].

One of the major costs in software is its maintenance, as
it becomes more complex and expensive thru time. In highly
dynamic domains, where a great maintenance effort is
needed to keep the software up-to-date, the overall cost rises
and the time-to-market is critical, there is a need to improve
the development process and manage the variability and
reusability. One of the key challenges is to understand and
identify the relations and representations of software artifacts
and resources involved in the maintenance [2], even tough all
the efforts done to create a well established and defined
development process, the traceability is often lost. This is
mainly due to the fact that the software artifacts involved in
the development process are often written using different

programming or modeling languages and the process nor the
tools involved support traceability links between artifacts
and development phases [2].

To address the previously exposed problems, the current
proposal is to deliver a conceptual framework to the software
development based on models in a product line scenario
supported by ontologies. Combining software product lines
with a model-driven approach, a highly-customizable,
reusable and generative software development environment
can be achieved. The desired solution is the integration of
ontologies for the purpose of more effective model-driven
development in insurance product lines.

In software engineering, the conceptual model underlying
the different business domains (like banking, insurance,
industry, and others) need to be explicitly defined by
ontologies. Why use ontologies? An ontology provides a
vocabulary [3], for referring to the terms in a given domain
or subject area. When dealing with a dynamic domain that
does not have a fixed and agreed vocabulary, trying to define
one without the inherent control of ontologies would
generate ambiguity, lack of consistency and absence of
hierarchy. Having reusability in consideration, ontologically-
defined knowledge of a domain can be shared and reused.

The chosen research approach will use Action Research
[4] and Experimental Software Engineering [5] to evaluate
results. Action research is used in an enterprise environment
and the outputs can be adapted to other domains.

II. STATE-OF-THE-ART
The state of art of this work relates to essentially three

main areas: Model-Driven Development, Ontology and
Software Product Lines.

A. Model-Driven Development
Model-Driven Development (MDD), a common name

for Model-Driven Software Development (MDSD) [6], aims
at the provision of practically applied modules for the
software development processes, regardless of tools, in
model-driven approaches [6, 7]. Model-driven development
is generic to the development of everything, based on
models, while model-driven software development is
specific to software realities. In this document we will
always refer to model-driven in the context of software.

The software engineering discipline that deals with this
subject is called Model-Driven Engineering (MDE), in
which the process strongly depends on using models, as can
be seen in [8, 9]. One OMG initiative called Model Driven
Architecture (MDA) [10], is considered a possible
metamodeling architecture that enables the use of MDE

2009 Fourth International Conference on Software Engineering Advances

978­0­7695­3777­1/09 $26.00 © 2009 IEEE

DOI 10.1109/ICSEA.2009.88

559

principles. MDE centers on models. A model is interpreted
as a description or specification of a certain system for a
specific purpose [11], a set of statements about some system
under study [12]. A modeling language (e.g. UML, EMF) is
used to specify models and they can be defined by
metamodels. A metamodel is a model of a modeling
language. It makes statements and constrains what can be
expressed in the valid models of a given modeling language
[12]. The relations between models and metamodels can be
expressed thru metamodeling architectures. These usually
are composed by three layers, like in MDA. The layers are:

• M1 layer, also called model layer, it’s where models
are defined by using modeling languages;

• M2 layer also called metamodel, where the
metamodels, or models of the modeling languages,
are defined. Examples of models of modeling
languages are UML and EMF.

• M3 layer also called metametamodel layer where the
only metamodeling language is defined. Examples of
metamodeling languages are MOF (for UML) and
Ecore (for EMF). We say the only metamodeling
language in this layer in order to give a unique
grammar space for defining various modeling
languages on the M2 layer.

The relation between the layers is of the instance-of or
conformant-to type. This is to say that a model is an
instance-of (or conformant-to) a metamodel and a
metamodel is an instance-of (or conformant-to) a
metametamodel. By using only one metamodeling language,
the various modeling languages that are instances of if, share
the same structures and can be processed the same way, for
instance, using the same interface.

One important aspect related to MDA is model
transformations [13]. Transformations are categorized as
Model-to-Model (M2M) and Model-to-Code (M2C) [13].
M2M transformations translate between a source and a target
model. M2C transformations can be seen as a special case of
M2M transformations with extra information about the target
programming language and translate a model to text. OMG’s
defined a standard for M2M transformations, named
Query/View/Transformations (QVT) [14].

For some authors, model-driven software development is
considered “the first true generational shift in programming
technology since the introduction of compilers” [15], able of
really changing the way of developing applications [16].

B. Ontology
The term “ontology” originates from philosophy, where

it denotes the study of existence [15]. In computer science,
the most common definition has been provided by Gruber
[17], which says that “An ontology is an explicit
specification of a conceptualization”. Corcho [18], extended
that definition, by saying that an ontology is “a formal,
explicit specification of a shared conceptualization”.
Conceptualization refers to an abstract model of some
phenomenon in the world by having identified the relevant
concepts of that phenomenon. Explicit means that the type of
concepts used, and the constraints on their use, are explicitly
defined. Formal refers to the fact that the ontology should be

machine-readable, that is to say that a machine can process
it. Shared reflects the notion that an ontology captures
consensual knowledge, that is, it is not private of some
individual, but accepted by a group. It is the consensus of a
community of experts. Also Gasevic [3] reinforces that
ontologies can be interconnected by themselves, opening a
perspective on ontological mapping.

Ontologies are used to model static knowledge [18] while
problem solving methods specify generic reasoning
mechanisms. A common case is the relationship between a
user account in a given information system and the
corresponding real person. It is not easy to determine how
many roles this person has in the system. He can play a role
of a customer, the person to be compensated by an accident
and so on. The person can have multiple accounts in the
different systems, each according to a given role. Modeling
users and their roles in the different systems requires an
extensive ontological modeling work. In complement to this
reasoning, ontologies can help to configure new systems
from existing reusable components.

According to Uschold [19], an ontology may take a
variety of forms, but necessarily it will include a vocabulary
of terms, and some specification of their meaning. This
includes definitions and an indication of how concepts are
inter-related which collectively impose a structure on the
domain and constrain the possible interpretations of terms.
There has been an increased interest in ontologies as artifacts
[20] to represent human knowledge and to work in critical
sections of applications.

According to Sure and colleagues [21], the three main
ideas of ontology content evaluation are: Ontology content
should be evaluated for it’s the entire life cycle; The content
evaluation should be support by ontology development tools
in the entire ontology building process and; There is a strong
relation between content evaluation and the underlying
knowledge representation paradigm of the language in which
the ontology is implemented.

Gasevic [3] points out that ontologies provide a number
of useful features, like:

• Vocabulary: a controlled vocabulary, referring to
terms in a business area;

• Taxonomy: hierarchical categorization or
classification of entities within a domain;

• Content Theory: ontologies go further than the sole
identification of classes, relations and associations.
They provide that information in an elaborate way,
using ontology specification languages;

• Knowledge Sharing and Reuse: besides providing
the description and relation of concepts in a domain,
ontologies also promote their sharing among agents
and applications.

Software engineering ontology defines [20] common
sharable software engineering knowledge including
particular project information. It defines concepts, and the
way they are related or can be related. It can be possible to
achieve a common and consensual vocabulary between
members of a project. With ontologies, it is possible to
represent and communicate software engineering knowledge
and project information.

560

Ontologies and models are related in the software
development process, since a metamodel is [3] an explicit
model of the constructs and rules needed to build specific
models within a domain of interest. This can be mapped to
an ontology, by relating constructs and rules with entities and
relationships.

C. Software Product Lines
Along the years companies have placed a great deal of

effort to produce software artifacts that can be reused in
other projects [22-24]. In relation to software product lines
(SPL), the effort to develop a single product is sometimes
similar to the one needed to develop a line of products [25]
able to produce several artifacts. They need to reorganize
their development strategies to promote reuse and mass-
customization [24]. The difference between two or more
products is so minimal that it is financially sustained to
develop a line of products instead of a single one. In the
insurance domain many products are almost identical,
differentiating only in some particularities.

Traditional software development is usually performed
one system at a time [25], being focused on delivery, and not
caring much on its evolution. This leads to several problems:
failing to deliver the project on time and on budget; its
quality is sometimes arguable; the maintenance cost is high;
and all this leads to a decrease of competitiveness. When
considering the previously exposed, some objectives could
be defined [25], without any order:

• Reduce the development cost: if the software cost
doesn’t decreases, it may no longer continue to be
pervasive as now;

• Increase quality of software: increasing reliability,
maintainability, efficiency and other overall system
quality attributes must be considered;

• Decrease time-to-market: if the time it takes to
deliver a product on the market is reduced, there are
more profit opportunities;

• Decrease maintenance cost: it is needed a
fundamental change in development to reduce
maintenance cost of installed products.

One possible solution to achieve these objectives is thru
reuse of software. Reuse should be [25] opportunistic,
carefully planned and proactively thought. It should also
employ a top-down approach, that is, it must follow a master
building plan, not discarding cases when bottom-up
decisions must be made – the case when a implementation
decision affects the architecture of the system.

According to some authors [23, 26], SPLs have been
probably the software development paradigm shift that
brought the biggest revolution since the advent of high-level
programming languages. A SPL is [26] a set of software-
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market
segment or mission and that dare developed from a common
set of core assets in a prescribed way. These last words,
“prescribed way”, are what distinguish the previous product
line definition from the traditional one. They points out the
need to follow guidelines for developing assets, not let them
be built in an arbitrary fashion, separately, from scratch [26].

A product line focus on promoting strategic high-level
reuse, which is planned, opportunistically placed, not
fortuity. Product lines are based on more than components.
They involve planning, management, and more. In a product
line there are multiple simultaneous products, each with its
own versioning and lifecycle. Previous versions are kept in a
family of products, ensuring maintenance.

A SPL is composed by three essential activities: Core
Asset Development, Product Development and
Organizational Management.

Core asset development main objective is to establish a
production capability for products [26, 27]. It consists of
three main outputs [26]: the product line scope, with the
definition of the products that constitute the product line; the
core assets, that are the basis for production of products in
the product line; and the production plan, that is the
description of how the products are produced from the core
assets.

The product development essential activity depends on
the outputs of the core assets development activity and on the
specific requirements for each product. Those inputs to this
activity if carefully followed will allow the creation of a
properly developed product. They must take into
consideration the variation points being selected for a given
product. This activity may lead to changes in the product line
scope definition, generating new core assets and then causing
the production plan to be updated.

The Organizational Management essential activity
encompasses the need for a strong management commitment
that allows the product line to succeed. The role of the
organizational management is to determine the funding that
will ensure the development of the core assets, to organize
and coordinate the activities of core assets development and
product development and to contribute with artifacts needed
to developing products, like schedules or budgets.

III. RESEARCH OBJECTIVES AND APPROACH
As a main research objective it has been defined the

formalization of an approach that combines multi-stage
(time-variant stages), with ontological support and multi-
level primitives (abstraction levels) for the insurance domain
software process development. Multi-stage allows the
mapping of multi-level primitives into the stages. The
insurance ontological reference is able to unify that mapping.
Stages are also useful to delimiter borders and make artifacts
as deliverables between stages [28]. Each stage can be
viewed as a separate company, delivering products to the
next stage and receiving what they need from the previous
ones. Each one has its one reality, characteristics and
support, all disconnected from the others. This way we can
only pass artifacts and documentation between stages,
allowing, for instance, the software house to actively
communicate with the insurance company and vice-versa.

Taking into account that this work will adopt the
insurance domain as the target for experimenting the up to be
proposed approach, it will be attempted to formalize a draft
of an insurance ontology. This draft will be used along the
entire thesis as a semantic reference to support the validation
of the multi-stage framework (Figure 1). The intrinsic

561

complexity of the adopted domain (insurance) will not allow
achieving a full definition, in the current work, since the
number of concepts and hierarchies involved and the
discussion that arises from the need to remove ambiguity
would void our attempt.

The establishment of a relation between ontologies and
the software development process will be one of the
consequences of formalizing a multi-stage framework with
ontology as semantic reference. In this context, mapping
levels of abstraction to achieve traceability of artifacts and
concepts in the business application domain will be a core
concern. Some plug-ins for the software development tools
will be prototyped to assess the feasibility of adopting the
same ontology to support the representation of business
knowledge and the execution of validation of final artifacts.

Ontologies will act as a guideline containing the core
business and development concepts required by the mode-
driven tools to generate specialized and business validated
software artifacts. Those artifacts will be traceable along the
development lifecycle, from the core assets thru the final
product installation and configuration in the customer.
Taking into account that the software development process
relies on a product line, assets reusability and categorization
would be guaranteed by the links established between the
artifacts and the ontology.

It will be proposed a process that aims mapping the
inherent temporal dimension in product lines with the
artifacts’ abstraction levels. That mapping can rely on
insurance ontologies to guarantee its coherence and act as a
guideline.

To accomplish the chosen research objective, it was
chosen to use Action Research [4] in conjunction with
Experimental Software Engineering [5]. This method
involves both research and intervention [29], being the
researcher also a practitioner. This kind of research method
can address complex real-life problems and the immediate
concerns of practitioners [4], being appropriate for
investigating the introduction of technologies into any
organization [29, 30]. This can be done in a cyclic way,
starting with a problem definition, research a possible
solution and then see how successful that solution is, and, if
not satisfied with it, repeat the steps [29-31]. The problem is
systematically studied and based on theoretical
considerations [31], scientific documents [30] and models
[32]. In Action Research, participants are also researchers,
being enrolled in the process and connected to the initiating
researcher. According to Villiers [29], action research
encompasses action outcomes and research outcomes. As it
starts with the problem identification, it becomes an agent of
change when taking action upon that problem. When dealing
with information systems, action research proves itself useful
[33]. The researcher in actively involved and the direct
benefits are for both researcher and organization. Also, the
knowledge obtained can be immediately applied by the
active and dependent observer, the researcher [30], who
seeks to study the process and to promote change in the
organization. Theory and practice are together, in a cyclic
way. To do so, the researcher is actively involved in a
software house that works exclusively several leading

insurance companies in its country. The software house will
act as a laboratory and the deployment sites (in the software
house and eventually in some clients) will be used to test the
research achievements.

IV. CURRENT WORK AND PRELIMINARY RESULTS
In the on-going work, domain of insurance is being

investigated. This domain is used as an application baseline,
which will first help to extract specific needs
coming from the real world, and finally, it will help to
evaluate the achieved results. The insurance domain deals
with business and technological variability in various
aspects. Its business models depend upon product line
diversity, commercialization channels, or even governmental
or institutional laws. There are many different product lines
in this specific domain, namely Life, Health, Group,
Intermediary Property and Casualty products. Also, it must
be accounted that many back office management activities
are executed by stable and large legacy systems. Customers
interact with those systems through internet and employees
through the intranet of the company [1]. As the information
demand increases, it also increases time that takes to provide
solutions [34]. This process can often trigger intensive and
time consuming background. There is no commercial
software system or solution that can deliver such content or
reasoning in an automatic way. The weight of legacy
applications in today’s insurance platforms, the need to
supply non-standardized information to customers [35], the
insurance market dynamics and the continuous need to adapt
systems to the market reality are some of the problems
focused on this work. This leads to the need for systematic
and rigorous modeling of the insurance domain [36].

The insurance industry activity and especially the
software house work that as to be done to support that
activity relies on information. If by one side – the insurance
company – data is needed, by the other – the software house
– data has to be provided. There are many legal requirements
that need to be fulfilled, like Portuguese Insurance Institute’s
(ISP) information requirements [37], or internal management
information required to run the insurance company or even
auditing or statistic maps. To provide such information, there
are many applications that support queries that deliver such
data. From there emerges an initial difficulty, that is how to
know, from the information extraction responsible point of
view, where to extract required information due to the
variety of sources.

Our current approach aims at mapping ontologies to the
software product line development process in a model-driven
approach. Regarding Figure 1, the multi-stage ontological
support (horizontally defined) allows the mapping of muli-
level primitives (vertically placed) into the stages. The
ontological referential is able to unify that mapping. Stages
are also useful to delimiter borders and make artifacts as
deliverables between stages [28]. Each stage can be viewed
as a separate company, delivering products to the next stage
and receiving what they need from the previous ones. Each
one has its one reality, characteristics and support, all
disconnected from the others. This way we can only pass
artifacts and documentation between stages.

562

A stage is directly related to time, being an object that
has its own lifecycle. Stages may begin with the initial phase,
where there is no core assets defined in the domain level. If
there are core assets defined, stages automatically begin in a
posterior stage. A level refers to abstraction, being the first
level the most concrete, where all artifacts are implemented
and executed. The last level is the most abstract, usually the
building plan that guides the core assets. Some of the needed
transformations will be later formalized using QVT [14].

...

Stage 1 Stage nStage 3Stage 2

Time

Level m

...

Level 2

Level 1

Ab
st

ra
ct

io
n

Ontology

ClientSoftware House

Pr
od

uc
t

D
om

ain

N
on

-ru
nt

im
e

Ru
nt

im
e

Figure 1: Multi-stage ontologically-sustained approach to SPL multi-level

architectures

We have represented the “domain” section, which refers
to the domain engineering level or core assets development
[26], where the basis for the SPL are developed, in an
organized fashion. Also represented is the “product” section,
referring the application engineering level, or product
development [26] , where the assets previously defined are
put together to work.

Two other dimensions are the “client” and the “software
house”. Regarding the software house, it represents the place
where the artifacts are being developed and by client we
refer to the customer where the product will be running.

Also related to the previous dimensions we have run-time
and non run-time. By non-runtime we mean the levels where
the artifact isn’t executable. By run-time, it is meant the
levels where the artifact is executing.

The chosen approach implies that we need to formalize
the multi-stage process approach regarding SPL. This will
allow building up the initial representation of the product,
regarding an ontological view associated with a temporal
dimension of the phases that a system passes from analysis
thru run-time. After that, it is necessary to associate a multi-
level approach with the multi-stage approach: When dealing
with the temporal line defined by the multi-stage, it is
possible to adopt several levels of abstraction associated with
each phase, thus enabling a better comprehension of the
problem we are dealing with. The analysis of the product line
viability in technological terms is also a subject requiring
attention. We need to match the multi-level and multi-stage
product line with technologically-related constraints that may
or not exist in a software house. This kind of technological

constraints are related with existing frameworks, information
repositories, mandatory components, legacy systems, and
domain languages, all of them with the ability to frame the
levels and/or the stages and also to affect the architecture
itself. Finally, the validation of the achieved results with a
real case: iteratively test our methodological proposal with a
real case, using the software house systems’ and product
lines’ to provide the necessary validation.

V. WORK PLAN AND IMPLICATIONS
To accomplish the previously detailed approach it as

been defined a set of activities that will lead to the
fulfillment of the research objectives. First and foremost,
there is the need to read related approaches and the state of
the art in the area. With this literature review it is intended to
acquire knowledge about the efforts done in similar
problems and approaches. The main areas of study are:

• Role, creation, usage, benefits, critics, advantages of
ontologies on information systems;

• Software product lines systems, usage, and adoption,
as well as new trends that may appear in that area;

• Model driven engineering/architectures, specially
their relation with product-lines and ontologies.

Next, the approach will represent the relation between
ontologies and the software development process, always
regarding software product lines. A SPL approach to multi-
stage software process development will grant us an insight
of the full system and help building the ontological system
that will grant coherence to all parts. Also there is a
temporal dimension inherent to the software process
development that may lead us to other findings and research
opportunities. We plan to generalize the chosen approach to
multi stages in a product line approach. Future constraints to
the process, like the time-dimension in modeling [38], or the
software product line process formalization [39] will most
likely require changes to the model.

Other major step regards the abstraction analysis on the
SPL regarding a multi-level view of the line. This approach
will also make a valuable contribution for the ontological
system. In parallel to this the ontological support will start to
appear, shaping itself and guiding features development.

The next phase is the viability analysis of the achieved
solution. This phase is mainly a technologically constraint
view about the previous research objectives and will impose
a strong involvement with a software house development
process and methods. It is needed to formalize the multi-
stage and the multi-level approaches regarding SPL to the
technological reality of the software house. Legacy systems
are expected to play a major role in the architecture
definition. Other aspects, like official mandatory regulations
may imply changes and adaptations to our model.

The last phase encompasses the validation of the
achieved results in the previous phases. This will be done by
using a real software house’s applications as example and
test cases. Having enough iterations using action research we
expect to prove the viability of our findings in a real
situation. The software house’s proprietary ERP software
will allow us to gather information regarding our model and

563

the degree of fulfillment of our research objectives. We plan
to collect information about our experiments and to validate
the previous objective with a real situation.

VI. CONCLUSION
In this paper we related the fundamentals of ontologies,

model-driven software development in a software product
line process approach. We made an initial proposal of a work
plan to tackle an actual and real problem in the software
development for highly variable domains (Insurance).

Our proposal regards adding two main dimensions to the
product line approach, time and abstraction. If so, the degree
of conceptualization rises. A multi-stage process approach is
required to deal with the time elapsed in the different product
development phase, from core asset thru final product,
executed in the customer’s environment. The other
dimension, the degree of abstraction referred as multi-stage,
implies different conceptualizations of the system.

An ontological approach is necessary to unify and guide
the process which coordinates all the abstraction and time of
the development lifecycle in a product line. Ontological
characteristics like the sharing of the same vocabulary [3]
makes it suitable for enabling coherence between the phases
and the levels. We are trying to create a process that manages
the evolution of software product line artifacts over time and
ensures the consistent integration of the changes in all
affected product line applications. By doing this we expect to
manage the product line artifacts in their life spam and thus
achieving a possible solution for the highly dynamic
insurance domain software development maintainability,
conceptualization and configuration problems.

VII. REFERENCES
[1] M. Simonov, et al., “Ontology-driven Natural Language access to
Legacy and Web services,” Proc. BIS2004, 2004.
[2] J. Rilling, et al., “Semantic Technologies in System Maintenance
(STSM 2008),” Proceedings of the 2008 The 16th IEEE International
Conference on Program Comprehension - Volume 00, IEEE Computer
Society, 2008 of Conference, pp.
[3] D. Gasevic, et al., Model Driven Architecture and Ontology
Development, Springer, 2006.
[4] D.E. Avison, et al., “Action research,” Commun. ACM, vol. 42, no. 1,
1999, pp. 94-97.
[5] M.V. Zelkowitz and D.R. Wallace, “Experimental models for validating
technology,” Computer, vol. 31, no. 5, 1998, pp. 23-31.
[6] T. Stahl and M. Völter, Model-Driven Software Development :
Technology, Engineering, Management, John Wiley & Sons, 2006.
[7] S. Beydeda, et al., eds., Model-Driven Software Development,
Springer, 2005.
[8] J. Bézivin, “On the Unification Power of Models,” Proc. Software and
System Modeling.
[9] J.-M. Favre, “Towards a Basic Theory to Model Model Driven
Engineering,” Workshop on Software Model Engineering, 2004.
[10] “OMG - Object Managment Group,” 2009; http://www.omg.org.
[11] J. Mukerji and J. Miller, “MDA Guide v1.0.1,” 2003;
http://www.omg.org.
[12] E. Seidewitz, “What models mean,” Software, IEEE, vol. 20, no. 5,
2003, pp. 26-32.
[13] K. Czarnecki and S. Helsen, “Classification of Model Transformation
Approaches,” Proc. 2nd Workshop on Generative Techniques in the
Context of MDA (2003).
[14] OMG, “QVT 1.0,” 2009; http://www.omg.org/spec/QVT/1.0/.

[15] B. Selic, “The pragmatics of model-driven development,” Software,
IEEE, vol. 20, no. 5, 2003, pp. 19-25.
[16] C. Atkinson and T. Kuhne, “Model-Driven Development: A
Metamodeling Foundation,” IEEE Softw., vol. 20, no. 5, 2003, pp. 36-41.
[17] T.R. Gruber, “A translation approach to portable ontology
specifications,” Knowledge Acquisition, vol. 5, 1993, pp. 199-220.
[18] O. Corcho, et al., “Ontological Engineering: Principles, Methods,
Tools and Languages,” Ontologies for Software Engineering and Software
Technology, 2006, pp. 1-48.
[19] M. Uschold, “Knowledge level modelling: concepts and terminology,”
Knowl. Eng. Rev., vol. 13, no. 1, 1998, pp. 5-29; DOI
http://dx.doi.org/10.1017/S0269888998001040.
[20] P. Wongthongtham, et al., “Software Engineering Ontology for
Software Engineering Knowledge Management in Multi-site Software
Development Environment,” Proc. 10th International Protégé Conference,
2007.
[21] Y. Sure, et al., “Why Evaluate Ontology Technologies? Because It
Works!,” IEEE Intelligent Systems, vol. 19, no. 4, 2004, pp. 74-81; DOI
http://dx.doi.org/10.1109/MIS.2004.37.
[22] M. Staples and D. Hill, “Experiences adopting software product line
development without a product line architecture,” Proc. Software
Engineering Conference, 2004. 11th Asia-Pacific, 2004, pp. 176-183.
[23] F.J.v.d. Linden, et al., Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering, Springer-Verlag New
York, Inc., 2007.
[24] K. Pohl, et al., Software Product-line Engineering – Foundations,
Principles, and Techniques, Springer, 2005.
[25] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach, ACM Press/Addison-Wesley Publishing
Co., 2000, p. 354.
[26] P. Clements and L. Northrop, Software product lines: practices and
patterns, Addison-Wesley, 2002, p. 608.
[27] L.M. Northrop, “SEI's Software Product Line Tenets,” IEEE Softw.,
vol. 19, no. 4, 2002, pp. 32-40.
[28] A. Bragança and R.J. Machado, “Transformation Patterns for Multi-
staged Model Driven Software Development,” 12th International Software
Product Line Conference - SPLC 2008, IEEE Computer Society Press, Los
Alamitos, California, U.S.A., 2008 of Conference, pp. 329-338.
[29] M.R.d. Villiers, “Three approaches as pillars for interpretive
information systems research: development research, action research and
grounded theory,” Proceedings of the 2005 annual research conference of
the SAICSIT on IT research in developing countries, SAICSIT, 2005 of
Conference, pp. 142-151.
[30] R.L. Baskerville, “Investigating information systems with action
research,” Commun. AIS, vol. 2, no. 3es, 1999, pp. 4.
[31] R. O'Brien, “An Overview of the Methodological Approach of Action
Research,” 1998; http://www.web.net/~robrien/papers/arfinal.html.
[32] V.R. Basili, et al., “Experimentation in Software Engineering,” IEEE
Trans. Software Eng., vol. 12, no. 7, 1986, pp. 733-743.
[33] M.D. Myers, “Qualitative Research in Information Systems,” MIS
Quarterly, vol. 21, no. 2, 1997, pp. 241-242.
[34] A. Chris van, Organizational Principles for Multi-Agent Architectures
(Whitestein Series in Software Agent Technologies), Birkhauser, 2005.
[35] B. Yildiz and S. Miksch, “ontoX - A Method for Ontology-Driven
Information Extraction,” Computational Science and Its Applications –
ICCSA 2007, 2007, pp. 660-673.
[36] D. Oberle, et al., “Towards ontologies for formalizing modularization
and communication in large software systems,” Applied Ontology, vol. 1,
no. 2, 2006, pp. 163-202.
[37] Report de Informação para Efeito de Supervisão - Empresas de
Seguros, Instituto de Seguros de Portugal - Norma Regulamentar N.º
21/2003-R, 2003.
[38] C.I. Theodoulidis and P. Loucopoulos, “The time dimension in
conceptual modelling,” Inf. Syst., vol. 16, no. 3, 1991, pp. 273-300.
[39] J. Bosch, “Adopting Software Product Lines: Approaches, Artefacts
and Organization,” Proc. Proceedings of the International Workshop on
Product Line Engineering - The Early Steps: Planning, Modeling, and
Managing (PLEES’01), IESE-Report No. 050.01/E, 2001.

564

